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Abstract 

This review describes work presented in the 2014 inaugural Springer-Tsinghua Nano Research Award 

lecture, as well as current and future opportunities for nanoscience research at the interface with brain 

science. First, we briefly summarize some of the considerations and the research journey that has led to 

our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for 

and our seminal contributions to nanowire-based nanoscience and technology, including the rational 

design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of 

‘applications’ enabled by the capability to control structure, composition and size from the atomic level 

upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for 

brain science, including (i) motivation for nanoelectronics in brain science, (ii) demonstration of 

nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (iii) the 

development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single 

ion channels, (iv) the introduction and demonstration of a new paradigm for innervating cell networks 

with addressable nanoelectronic arrays in three-dimensions. Last, we will conclude with a brief 

discussion of the exciting and potentially transformative advances expected to come from work at the 

nanoelectronics-brain interface.  
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1. Introduction and personal note (cml) 

It was a great honor to receive the 2014 inaugural Springer-Tsinghua Nanoresearch Award. At the outset 

I would like to acknowledge all of my coworkers who have contributed to the research recognized by 

this award, and give special thanks, as part of the 2014 SINO-USA meeting, to the many Chinese 

graduate students, postdoctoral fellows and visitors who I have had the pleasure to work with and who 

have made pioneering contributions to our research in nanoscience (see Addendum Table-1). Given the 

pedagogical nature of the SINO-USA meeting, I will begin this review with a brief account of some of 

the considerations and pathway that has led to our focus on bottom-up nanoscale science and technology 

(section-1), review succinctly the motivation for and our seminal contributions to nanowire-based 

nanoscience and technology (section-2), and finally we will discuss very exciting evolution of this work 

in one current direction: the interface between nanoelectronics and brain science where we see huge 

potential for future (section-3).  

 Our research focus on nanoscience can be traced to an early interest in understanding local nanoscale 

structural and electronic effects of doping and chemical substitution in two-dimensional (2D) metal 

dichalcogenide and layered metal oxide materials using scanning tunneling microscopy/spectroscopy 

(STM/STS), especially with respect to the fascinating charge-density-wave and superconducting phase 

transitions observed in these materials [1-13]. This interest in understanding the behavior of low-

dimensional materials from a local nanoscale perspective led naturally to an interest in fullerene based 

solids, which when doped with alkali metals, exhibited unusually high-temperature superconductivity 

compared to the corresponding alkali metal-doped graphite/graphene parent material [14-19]. Our low-

temperature STM/STS studies provided unique insight into the mechanism of superconductivity [16,17], 

but also highlighted the need to tune chemically the clusters, which we achieved through synthesis of 
13

C/
12

C isotope-substituted C60 [18,19], to better understand superconductivity in these nanocluster-

derived materials. 

 The above studies began an emphasis towards controlled-synthesis of functional nanoscale building 

blocks, although the Lieber group remained focused much of the 1990s on characterization of nanoscale 

and low-dimensional materials [20-28], as well as developing new methods for characterizing 

fundamental chemical, electrical and mechanical properties of nanoscale structures [29-33]. STM/STM 

was used to demonstrate experimentally for the first time the diameter-chirality dependent electronic 

properties of carbon nanotubes [20,21], and also a number of more subtle and interesting structure-

electronic characteristics of single-walled nanotubes [22-28].  

 At the same time and in-line with asking myself the question: “How could we use these 

nanostructures to create or do something unique and different from what was possible by top-down 

fabrication?” we realized it was also important to understand their conductivity and mechanical 

properties. To this end we carried out some of the first measurements of the single carbon nanotube 

conductivity [31], and the first measurements of the elastic modulus and strength of individual carbon 

nanotube and carbide nanowires [32] by developing new scanning probe microscopy methods. These 

measurements of the electrical-mechanical properties, then led to realization that nanotubes could 

function uniquely as bottom-up organized electromechanical devices, where we proposed and 

demonstrated for the first time a carbon nanotube nanotweezers [34], which was capable of grasping and 
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manipulating nanoclusters, and a nanotube-based nonvolatile random access memory [35], which led to 

a successful company producing radiation hard memory chips [36]. 

 Despite these significant advances in characterization and ‘applications’ of carbon-based 

nanostructures, we recognized early on key limitations that had to be overcome for developing our 

vision of the bottom up paradigm for nanoscience, including (i) the lack of a selective synthesis of 

semiconducting and metallic carbon nanotubes, and more generally, (ii) the difficulty to elaborate the 

structure, composition and morphology in general manner by design. In this regard, we began in the 

early-to-mid 1990s a concerted effort focused on the synthesis of one-dimensional (1D) nanoscale 

building blocks in which structure, composition, size and physical properties could all be controlled 

rationally during synthesis [37-91]. In the next section, we briefly review the motivation for developing 

our vision bottom-up paradigm and our focus 1D nanowire building blocks. 

 

2. Bottom-up paradigm and nanowire functional building blocks 

In the bottom-up paradigm, precisely synthesized nanoscale building blocks are assembled into 

functional structures, much like the way nature uses proteins and other macromolecules to construct 

complex biological systems [42,69-71,73,86,92-110]. The bottom-up approach has the potential to go 

far beyond the limits and functionality of top-down technology by defining key nanometer-scale metrics 

through synthesis and subsequent assembly, and not by lithography. In addition, the bottom-up approach 

enables new concepts for nanoscale structures, functional units and systems, and thus offers the promise 

of creating technologies that might previously have been more the realm of science fiction versus 

scientific reality. Several examples of such opportunities at the interface between nanoscience and 

biology will be described below in section-3. 

 Within the context of the bottom-up paradigm, our focus on 1D nanostructures was motivated early 

on by several important basic concepts. First, 1D nanostructures represent the smallest dimension 

structure that can efficiently transport information, including electron and hole carriers, photons and 

magnetic excitations, and thus are ideally suited to the critical and ubiquitous task of moving and 

manipulating information in integrated nanoscale systems. Second, 1D nanostructures can also exhibit 

device function, and thus can be exploited as both the wiring and device elements in architectures for 

functional nanosystems [92-100].  

 Central to the bottom-up approach is the rational synthesis of nanoscale building blocks with 

precisely controlled and tunable chemical composition, structure, size, and morphology since these 

characteristics determine their corresponding physical properties. Specifically, the capability to create 

new nanostructures and assemblies with tunable composition and structure on many length scales is 

critical to and drives the scientific breakthroughs that enable revolutionary advances and future 

technologies. In other words, rather than exploring a single nanomaterial, many of the greatest 

opportunities lay with systems in which the structure, composition and corresponding properties can be 

tuned.  
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 In this regard, semiconductor nanowires serve as one of the most powerful platforms available today 

in nanoscience given that it is now possible to design structures ab initio, and synthetically realize these 

structures with the structure and composition controlled from the atomic scale and up. These capabilities 

– to design and synthetically realize complex nanowire materials – is almost unique among 

nanomaterials, and enables systems or building blocks to be created, which have predictable physical 

properties and which enable for testing fundamental limits of performance. It is also possible to 

assemble hybrid or multicomponent functional materials in novel environments using these diverse 

nanowire building blocks, allowing for rational exploration of the possible applications of multi-

component materials. With these characteristics and capabilities, nanowires are ideal building blocks for 

exploring what is possible in nanoscience and also creating new technologies. This has been our focus 

over the past decade and continues to be so as we move forward in our research today. 

 An overview of the current status of nanowire synthesis is shown in Figure 1, which highlights five 

distinct structural classes available today. The basic semiconductor nanowire structure (center, Fig. 1) 

consists of a uniform composition, one-dimensional (1D) structure with diameter typically in the range 

of 3 – 500 nm. We first reported that metal nanoparticles could be used as ‘catalysts’ within the general 

context of a vapor-liquid-solid growth mechanism to control the critical nucleation and subsequent 

elongation steps of nanowire growth [39,40]. Using this approach, we showed early on that a broad 

range of semiconductor nanowires with homogeneous composition and single-crystal structures could be 

prepared from the main group of the periodic table [40,42,43]. In addition, this work on homogenous 

composition nanowire materials demonstrated that the diameter was controlled by the size of the 

nanoparticle ‘catalyst’, as suggested by the growth model, with diameters as small as 3 nm realized 

[47,48,55], that nanowire length was proportional to growth time [48] and, significantly, that specific 

dopants could be incorporated into nanowires to control their electronic properties [47,92-94]. The 

ability to control the fundamental electronic and optical properties of nanowires through doping has 

been central to much of the success of researchers worldwide in developing active electronic and 

optoelectronic nanodevices. 

 With the nanocluster-catalyzed growth formalism in hand, it has been possible to elaborate the basic 

nanowire structure in many new and sometimes unexpected directions. In early 2002, my group [50] and 

several other laboratories around the world first demonstrated that it was possible to synthesize 

structures in which the composition and/or doping were modulated along the nanowire axial or growth 

direction (lower left, Fig. 1). Later that same year [52], we showed that composition and/or dopant 

modulation could be encoded in the radial direction with core/shell nanowire structures (upper left, Fig. 

1). This core/shell nanowire structural motif has proven exceptionally powerful for a wide-range of 

electronic and photonic device applications [61,63,65,67-71,74-76,78,80,87,91]. A third basic motif 

involves the synthesis of branched or tree-like nanowire structures using sequential nucleation of 

nanowires from a nanowire backbone (upper right, Fig. 1), where each generation of nanowire branches 

can have a unique diameter and composition [56,85].  

 Most recently, we have shown that one can break from linear  1D structures and the branched-linear 

motif, to one in which topological centers are synthetically introduced in a controlled manner (lower 

right, Fig. 1) [83]. In this latter direction, we demonstrated that iterative control over nucleation and 

growth leads to kinked or zigzag nanowires in which the straight sections are separated by triangular 
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joints and where doping can be varied at these topologically-defined points. Moreover, new work [59] 

has shown that it is possible to control the ‘stereochemistry’ of adjacent kinks in a manner that allows 

the synthesis of increasingly complex two- and three-dimensional structures akin to organic chemistry, 

thus opening up a great opportunity for the future in terms of designed synthesis. 

 This broad range of increasingly complex nanowire building blocks has enabled researchers 

worldwide to explore and develop a wide-range of science and technology as indicated in Figure 2. For 

example, nanowire building blocks have provided a unique platform for seminal advances in (i) 

electronic devices, assembled electronic circuits and nanoprocessors [47,50,52,53,57,62,66-

69,74,76,92,94-96,98,101-103,106-108,110-118], (ii) quantum physics [63,81,119-127], (iii) 

nanophotonic devices and circuits [44,50-53,61,65,69,70,72,78,85,92,104,115,128-137], (iv) 

nanoenabled energy [75,80,87,138-143], and (v) biology and nanomedicine [84,86,90,144-170]. Within 

the constraints of time and space we will focus our discussion of recent and emerging work on only a 

subset of one area – the interface between nanobiolectronics and neural systems – in section-3 below.  

 

3. Nano-bioelectronics for brain activity recording and mapping 

The brain consists of densely wired circuits made of heterogeneous cells [171]. These circuits are 

organized through synaptic connections, which exhibit time- and learning-dependent strengths and 

connectivity, into hierarchical networks. The function of neural circuits arises from the coordinated 

activity of large numbers of neuron operating on spatial and temporal scales that span multiple orders of 

magnitudes. Therefore, the development of tools with high spatial and temporal precision as well as 

scalability to make highly parallel measurements are  a priority to investigate and understand the 

function of neural circuits and the brain. 

 Nano-bioelectronic devices, which have the capability to sense and record electrical and chemical 

changes [84,86,90,144-168], provide unique opportunities for brain activity recording and mapping (Fig. 

3). First, nano-bioelectronic devices enable the study of the neural circuits at both cellular and 

subcellular resolution. This is especially important for investigating small subcellular structures such as 

the neuronal dendrites and synapses [172]. Second, the small size of nanoscale devices in nano-

bioelectronics allows for high scalability in terms of the recording density and total number of the 

recording sites. Third, the small device size can minimize the perturbation of neurons and neural circuits. 

Fourth, the demonstrated capability to present nanoelectronic devices as highly-flexible networks 

promises better biocompatibility compared to conventional rigid structures [173], which can allow for 

long-term stable recording studies as well as the development of new brain-machine interfaces.  

 Nano-bioelectronics, especially devices and arrays based on functional free-standing nanoscale 

building blocks such as nanowires, has already made key advances in studies of neurons and neural 

circuits relevant to understanding the brain [150, 155, 165]. The capability of using nanowire and other 

building blocks in a bottom-up/top-down scheme allows for great versatility in the fabrication of 

recording probes. For example, the nanoelectronic devices can not only be assembled onto flexible 

plastic substrates leading to conformal recording from the brain surface [174], but also seamless 

interpenetration of nanoelectronics in the three-dimensional (3D) space of artificial tissue constructs so 
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that 3D mapping of neural activity is possible [162, 163]. The well-established control over nanowire 

structure, composition, size and morphology allow designed functions to be encoded during synthesis, 

thus enabling the hierarchical design of devices that can be used for both extracellular and intracellular 

recording [84, 150-157, 160-167]. Below we will briefly discuss representative work interfacing 

nanoelectronics with neural and related systems, with an emphasis on free-standing semiconducting 

nanowires based nanoelectronics. 

 Nanoscale field-effect transistors (FETs) using silicon nanowires (SiNWs) as semiconducting 

channels have been used to record extracellular action potentials from cultured rat cortical and 

hippocampal neurons (Fig. 4A) with unprecedented spatial resolution as early as 2006 [150].The 

depolarization of cell membrane during action potential firing results in negative charging of the 

extracellular space around the nanowire which leads to the conductance change of the FET devices. The 

signals recorded by the SiNW FETs were in good temporal correlation with the intracellular action 

potentials recorded by a glass micropipette [150]. A key advantage of this work using SiNW FET nano-

bioelectronics is that it was possible to record action potentials from the cell body and much smaller 

neurite projections, where conventional microelectrode arrays (MEAs) typically cannot record from the 

neurites due to the large electrode size. This highlights the higher spatial precision and resolution of 

nanoscale devices in neural activity recording. It should be pointed out that the small active junction 

area for nanowire/axon interfaces, 0.01-0.02 m
2
, is at least two orders of magnitude smaller than 

microfabricated electrodes and planar FETs [175]. This higher spatial precision, together with the 

capability of making higher density device array, makes efficient multiplexed recordings from single 

neurons possible. As shown in Fig. 4A, patterning yielded growth of neurites across three of the four 

peripheral SiNW FET devices in an array, while signals were recorded from these three SiNW FETs but 

not the device without a crossing neurite following stimulation. Importantly, our multiplexed recording 

carried out in this way proved the capability of nanoscale devices for high-density neural activity 

mapping. These capabilities provide one of the very first examples of the power and potential 

importance of nanodevices for high-resolution neural mapping as very recently set forth as a high 

priority of the BRAIN initiative. 

 We subsequently extended our seminal work on cultured neurons to map neural circuit activity in 

acute brain slices in 2010 [155] to demonstrate the unique capabilities of high density SiNW FET arrays. 

For example, an optical image of an oriented acute brain slice (Fig. 4B, left), which was placed on top of 

the SiNW FETs device array, shows the lateral olfactory tract (LOT) and the pyramidal neuron layers. 

Following stimulation at different points within the LOT, excitatory postsynaptic potentials (EPSPs) and 

population spikes (p-spikes) can be recorded from the SiNW FET array located under the pyramidal 

neuron cell circuit [155]. Significantly, differences in the recorded signal were observed between 

devices with spacing as small as 5 m, which exceeds substantially that reported in previous MEAs and 

planar FETs measurement [176-179]. The differences lie in the amplitude and shape of both the EPSP 

and p-spike, which reflect the different change of the extracellular potential at different local regions of 

pyramidal cells, corresponding to current sources and sinks in the neural network. This difference 

demonstrates the high spatial resolution of the SiNW FET recording, which was then exploited to map 

the neural connectivity in the olfactory cortex. Representative data recorded from eight devices 

following stimulation at eight different spots (a-h, Fig. 4B, left) in the LOT showed distinct responses 
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(Fig. 4B, right). Specifically, the 2D maps from the SiNW FET array resolved clearly the heterogeneous 

activity of the neural circuit [155, 165]. 

 The capability to control the structure, morphology, composition and corresponding function of 

nanowire building blocks provides great opportunities to design and fabricate devices with unique 3D 

configurations that can be used for high-resolution intracellular recording with minimal invasiveness. 

Compared to extracellular recording, intracellular recording can provide more information, such as the 

subthreshold transmembrane potential change associated with synaptic interactions [180]. Conventional 

intracellular recording is relatively invasive to neurons because of the large probe sizes of patch-clamp 

micropipettes, and leakage of solution from these probes into the cells being studied [180]. Furthermore, 

the complexity of the micromanipulator based recording makes it difficult to perform simultaneous 

recordings at a large number of sites [180]. One effective approach to overcome the above limitations of 

conventional intracellular recording probes and also to enable new capabilities is to develop nanoscale 

intracellular probes with active FET detection elements. However, FETs have conventionally existed in 

a linear geometry with source/drain connections that preclude access to the inside of cells [165].  

 We have for the first time overcome this previous hurdle to exploiting FETs for intracellular 

recording using two novel but general classes of nanoprobes based on kinked nanowire FETs [83, 84, 88] 

and nanotube coupled FETs [160, 161]. In the first approach, a kink structure and the voltage-sensitive 

active transistor channel (a lightly doped segment) are designed and rationally-encoded into the 

nanowire by synthesis using our nanocluster-catalyzed growth approach (upper image, Fig. 5A) [83, 84]. 

A cell probe is fabricated by connecting the two heavily doped arms of the kinked nanowire probe with 

strained metal interconnects that bend upwards to present the kinked tip to open 3D space (lower image, 

Figure 5A) above the device chip. After cell membrane penetration with the kink tip, the nanoscale FET 

accesses the intracellular space and can record the transmembrane potential change from inside the cell. 

 Another approach takes advantage of the hierarchical design of the nanowire-nanotube 

heterostructures. A vertical or nearly vertical electrically insulating SiO2 nanotube is integrated on top of 

the SiNW FET channel. After the nanotube tip penetrates the cell membrane, the cytosol fills the 

nanotube and the underlying FET can thereby record potential changes within the cell. In this way, the 

probe, which is termed the branched intracellular nanotube FET (BIT-FET), can record the intracellular 

transmembrane potential change or action potentials [160]. Our BIT-FET design uses the tip of 

controlled-diameter nanotubes to interface to and probe intracellular regime. It allows for the smallest 

absolute probe size possible for any electrophysiology tool reported to date. For example, BIT-FET 

devices with sub-10 nm diameter nanotubes have been fabricated and demonstrated to be capable of 

intracellular recording (Fig. 5B, 167). The small diameters accessible with the BIT-FET suggest that it 

will be minimally invasive with ultra-high spatial resolution, and thus, could probe the smallest cellular 

structures, including neuron dendrites and dendritic spines, which are difficult by means of conventional 

electrophysiology [172,181,182]. In addition, this design is compatible with large-scale, high-density, 

planar nanoscale FET arrays, which makes it possible to do parallel recordings from large numbers of 

sites with much higher spatial resolution than with other probe [165]. 

 Our concept of using nanotube coupled FETs for intracellular recording can be extended to other 

designs. For example, we have shown that the nanotube can be made of semiconducting silicon such that 
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the nanotube itself can function as the active channel of the FET detector. The source and drain 

electrodes are fabricated on one end of the nanotube, while leaving the other end free for cell membrane 

penetration. The cytosol, which fills the nanotube after membrane penetration, can gate the FET from 

inside the nanotube which enables the recording of the intracellular potentials [161, 165, 182].  

 The kinked nanowire structure has also been extended, including the development and 

demonstration of free-standing 3D probes  and zero-degree kinked nanowire probe tips that can better 

access the interior of a cell or tissue [90]. Nanowire structures in which two-kink nanowire devices were 

juxtaposed in a single W-shape with nanoscale FETs integrated at the tips of each of the kinked regions 

were also achieved using this strategy [90]. By encoding multiple nanoscale FETs in these complex 

structures and precisely controlling the nanowire/cell interface, these probes offer the potential for 

relatively high-density multiplexed intracellular recording and/or simultaneous recording of both intra- 

and extracellular signals, which is unique compared to other passive recording devices [182] 

 For these nanoscale electronic intracellular probes, cell membrane penetration represents a critical 

step for successful, stable and minimally invasive recording. In contrast to mechanical suction or 

insertion used with conventional microscale tools, we have shown that phospholipid functionalization 

facilitates spontaneous membrane penetration with our nano-bioelectronic probes to yield a tight, high-

resistance probe/membrane seal (Fig. 5C). Using this unique biomimetic approach, it has been possible 

to record stable full-amplitude intercellular action potential signals from individual cardiomyocyte cells 

with both kinked nanowire and nanotube based probes [83, 84, 88, 160, 161]. For example, the transition 

from extracellular spikes to full-amplitude intracellular action potential peaks (with a concomitant 

decrease in baseline potential) occurs without application of an external force (Fig. 5D). Notably, the 

recorded intracellular action potential peaks exhibit all of the details of standard cardiac action potentials 

[183]. Furthermore, the probes can be retracted from the cell and re-enter at approximately the same 

position on the same cell to record intracellular action potentials multiple times without affecting the cell. 

This represents another unique characteristic of our nano-bioelectronic probes, and highlights their 

minimal invasiveness, reliability and robustness, which are all important characteristics for long-term, 

stable recording.  

 Simultaneous, multisite intracellular recording of action potentials from both single cells and cell 

networks can be readily achieved by interfacing these independently addressable nano-bioelectronic 

devices with cells. Our reported multiplexed measurements [160, 161] demonstrate the substantial 

potential of these probes for high spatiotemporal resolution and large-scale brain activity mapping. The 

small size of these nanoscale probes not only makes it possible for unprecedented high-density device 

arrays, which are critical for cellular and even sub-cellular resolution mapping, but also yields minimal 

perturbation of the cells and/or tissues under study. We believe that the nanoscale probes discussed here 

represent great candidates for use in brain activity mapping and related research [184] and can extend 

substantially the scope of fundamental and applied electrophysiology studies [172]. 

 The nanowire building blocks also allow for the design and fabrication addressable nanoelectronic 

device networks that can be seamlessly merged with living tissues in 3D. Conceptually, this integration 

of nanoelectronics with cell networks can be achieved in three basic steps (Fig. 6A). First, the 

addressable nanoelectronic network is fabricated in 2D by standard methods on a sacrificial layer (step 
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A). A variety of functional nanowire nanoelectronic elements can be incorporated including sensors [94, 

151], light-emitting diodes [65], logic and memory [96, 112], and energy production and storage devices. 

Second, the sacrificial layers is removed to release the nanoelectronic network and yield 3D, free-

standing nanoelectronic scaffolds (nanoES) (step B). Third, cells are seeded and cultured in the nanoES 

to yield 3D nanoelectronic-tissue hybrids (step C) [162, 163]. In this new paradigm, a macroporous 

electronic network (e.g., >95% porosity) is critical to enable 3D interpenetration of cells in the final 

hybrid tissue. Moreover, to mimic the well-studied scaffold materials used for tissue engineering, the 

nanoES structural elements have dimensions of nano- to micrometer, with mechanical properties similar 

to those of natural tissue. These unique structural and mechanical characteristics are distinct from all 

other types of electronics used to date for interfacing and insure good biocompatibility.  

 Figure 6B shows a 3D scaffold with interconnected and addressable nanowire FET sensors meeting 

our design concepts, where the 3D structure was self-organized by introducing strained elements during 

2D fabrication. Alternatively, 2D macroporous nanoelectronic networks can be transformed into 3D 

nanoES by directed assembly and manual manipulation. The nanoES can be used for 3D culture of 

neurons, cardiomyocytes, and smooth muscle cells. For example, a reconstructed 3D confocal 

micrograph from a two-week culture of rat hippocampal neurons within a 3D nanoES (Fig. 6C) shows 

neural network with a high density of spatially interconnected neurites interpenetrating the nanoES 

[162]. Cytotoxicity tests demonstrated that the nanoES has little or no effect on cell viability, and 

moreover, electrical measurements showed that SiNW FET device elements were stable for at least 12 

weeks. The embedded devices in the nano ES can successfully record action potentials from the artificial 

tissue constructs, which proves their unique capability for 3D activity mapping. Figure 6D shows an 

example of multiplexed extracellular recording from a coherently beating nanoES/cardiac cyborg tissue, 

where the recording demonstrates sub-millisecond temporal resolution with separations up to 6.8 mm 

within the 3D innervated tissue sample. The capability of the nanoES for long-term culture and monitor 

of the artificial tissue enables a number of in vitro studies, including drug screening assays, and also 

opens up novel opportunities for active implants and new types of chronic recording probes, where the 

coupling extends from the surface to inside the biological samples, and is thereby very distinct from 

either engineered tissue [185,186] or flexible electronics [152,174,187].  

 The above studies described in section-3 demonstrate that nanowire-based nano-bioelectronics 

represents a new and powerful platform for neural activity recording and mapping. As we look to the 

future, we can synthesize many of these nano-bioelectronics which advances in new ways to make 

transformative changes for in-vivo brain studies. Specifically, we propose to exploit the unique 

flexibility of macroporous nanoelectronic networks [162, 163], which will reduce inflammatory 

response in the brain and increase the stability of long-term chronic recordings [173], as well as the 

potential of these networks for high spatiotemporal resolution and high-density recording as a 

revolutionary approach for in-vivo electrical brain activity mapping (Fig. 7). The flexibility of the 

macroporous nanoelectronic network (Fig. 7A) makes it difficult to insert directly into the brain 

compared to rigid (but ultimately invasive) probes, although we envision two general strategies (Fig. 7B, 

C) for implanting this network that can take full-advantage of its unique capabilities for in-vivo neural 

activity recording and mapping. For example, the flexible nanoelectronic device network can be 

transferred to the surface of a biodegradable polymer layer with a more rigid structure such that direct 
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mechanical insertion is used as with conventional neural probes, but then the sacrificial support 

dissolves such that rigid structure is removed and the nanoelectronic device network remains inside the 

brain ultimately yielding a seamless nanoelectronics/neural network interface. Alternatively, the highly-

flexible nanoelectronic network is injected via a syringe needle directly into the brain (Fig. 7B), in a 

manner similar to drugs, viruses, and stem cells used in neurobiology studies. Post-injection, the 

nanoelectronic network is expected to yield a seamless nanoelectronics/neural network interface (Fig. 

7C). We believe that this new paradigm for integrating macroporous nanoelectronic networks within the 

brain, provides a leap forward in capabilities for mapping and modulating brain activity over long time 

periods in mature and developing systems. And it will open unique opportunities for treatment of 

neurological (e.g., epilepsy) and neurodegenerative (e.g., Parkinson’s) diseases, and will provide a 

paradigm change for brain-electronics interface that could revolutionize the power and capabilities of 

brain-machine interfaces.  
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Figure Captions  

Figure 1. Functional nanowire building blocks through design and rational synthesis. Parent nanowire 

structure consists of uniform composition and doping (green) and diameter; the nanocluster catalyst 

(golden) is highlighted at the left tip of the structure. (clockwise from lower left) Axial nanowire with 

composition and/or doping (indicated by different colors) modulated during elongation of the structure; 

core/shell or coaxial nanowire with composition and/or doping (indicated by different colors) modulated 

by sequential two-dimensional shell growth following axial elongation; branched or tree-like nanowire 

with unique composition and/or doping branches are elaborated by sequential nanocluster-catalyzed 

growth; and a kinked nanowire with structurally coherent “kinks” introduced in a controlled manner 

during axial elongation. Reproduced with permission from ref. 86.  Copyright Materials Research 

Society, 2011. 

Figure 2. Nanowire building blocks for science and technology applications. Functional nanowire 

building blocks have made a substantial impact and/or have the potential to be transformative on a wide-

range of science and technology areas, including those indicated in the blue ellipses.  

Figure 3. Schematics of interfacing nano-bioelectronics with the brain. (left) Illustration of the brain 

with superimposed electrophysiological recording of brain activity. (right) Higher-resolution depiction 

of a nanoelectronic network merged with a neural network after implantation of the nanoelectronic 

network within the brain.  

Figure 4: Extracellular recording with nanoscale devices. (A) Extracellular action potential recording 

from cultured neurons.  Left: optical image of a cortical neuron interfaced to three of the four SiNW 

FETs in an array; scale bar is 20 m; right: trace of intracellular current stimulation (IC Stim) and 

resulting electrical responses from the four SiNW FETs. Reproduced with permission from ref. 147150.  

Copyright American Association for the Advancement of Science, 2006. (B) Extracellular field and 

action potential recording from acute brain slices with an array of SiNW FETs. Left: optical image of an 

acute slice over a 4×4 NW FET array; the relative position on the brain slice of the eight devices used 

for recording are shown with respective numbering on the 4x4 grid. Crosses along the LOT fiber region 

of the slice mark the stimulation spots a-h. Scale bar is 100 m; right: Maps of the relative signal 

intensity or neuronal activity for devices 1-8. Reproduced with permission from ref. 152155.  Copyright 

National Academy of Sciences, 2010. 

Figure 5: Intracellular recording with nanoscale devices. (A)  Kinked nanowire intracellular probe. (top) 

SEM image of a doubly kinked nanowire with a cis configuration of two kinks; scale bar, 200 nm. Inset: 

schematic of kinked nanowire probe with active FET region (pink) encoded by dopant level modulation 

during synthesis. (Bottom) A 3D free-standing kinked nanowire FET probe fabricated on a substrate. 

The yellow arrow and pink star mark the nanoscale FET and SU-8, respectively. The 3D presentation of 

the nanowire device was achieved by introducing stress into the metal interconnects during fabrication, 

where the stress is subsequently relieved by ‘bending up’ the device. Scale bars, 5 m; (B) SEM image 

of an ultrasmall BIT-FET with nanotube ID ∼8 nm, and SiO2 wall thickness ∼10 nm. Inset: zoom of the 
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tip of the ultrasmall SiO2 nanotube; scale bars, 100 nm. (C) false-color microscopic image of a HL-1 cell 

penetrated by a kinked nanowire FET probe. Scale bars, 5 m (D) Transition from extracellular to 

intracellular recordings during internalization of a kinked nanowire FET probe into a beating 

cardiomyocyte cell. Green and pink stars denote the peak positions of intracellular and extracellular 

signal components, respectively. Reproduced with permission from ref. 84, 164167.  Copyright 

American Association for the Advancement of Science, 2010. National Academy of Sciences, 2014. 

Figure 6: Innervating tissue in 3D with nanoelectronic networks. (A) Schematic illustrating conceptual 

steps for creating artificial tissues merged with addressable nanoelectronic elements in 3D. (B) 3D 

reconstructed confocal fluorescence micrograph of a nanoES. Solid and dashed open magenta squares 

indicate two kinked SiNW FET devices located on different planes; scale bar, 20 m. (C) 3D 

reconstructed confocal images of rat hippocampal neurons after two-week culture on a nanoES similar 

to that shown in (B). Dimensions : x = 317, y = 317, z = 100 m. (D) Multiplexed electrical recording of 

extracellular action potentials from four SiNW FETs at different depth in a nanoES/cardiac tissue 

hybrid. Data are conductance versus time traces of the propagating field potential recorded at each 

SiNW FET while cells within the 3D tissue beat. Reproduced with permission from ref. 159162.  

Copyright 2012 Nature Publishing Group, 2012. 

Figure 7. Conceptual steps for realizing minimally-invasive implantation of a nanoelectronic network 

into the brain. (A) Fabrication of a flexible, free-standing macroporous nanoelectronic network. The 

green dots indicate positions of the nanoelectronic devices, and the red lines correspond to both 

encapsulated electronic interconnects and structural elements. (B)  The highly flexible nanoelectronic 

network is delivered into the brain by either injecting through a needle inserted into the brain (shown) or 

inserting supported on a removable or biodegradable rigid support probe. (C) Depiction of the 

nanoelectronic network merged with a brain neural network after implantation in a minimally-invasive 

manner. The color designations for the nanoelectronic network are the same as in (A).  
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Addendum: Table-1. Chinese coworkers trained in Lieber Research Group. Chinese graduate 

student, postdoctoral and visitor coworkers in chronological order. Undergraduate institutions in China 

are noted for graduate students and postdoctoral fellows, and current positions for all former coworkers 

are listed when available. 

1 Wu, Xianliang (Kevin) 1987-1991 

 Position in Group: Ph.D. student 

 Current Position: Managing Director, Ticona Asia Pacific, Celanese (China) Holding Co., Ltd. 

2. Wang, Yueli 

Position in Group: 

Current Position: 

1987-1992 

Ph.D. student 

Research Associate, DuPont Photopolymer and Electronic Materials 

3. Chen, Chia-Chun (Jay) 
Position in Group: 

Current Position: 

1988-1993 

Ph.D. student 

Professor, National Taiwan Normal University 

4. Zhang, Zhe  
Position in Group: 

Current Position: 

1989-1993 

Ph.D. student 

Executive Vice President, Silan Microelectronics 

5. Li, Yonghong  
Position in Group: 
Current Position: 

1990-1994 

Ph.D. student 

Research Scientist, Texas Instruments 

6. Dai, Hongjie  
Position in Group: 
Current Position: 

1990-1995 

Ph.D. student 

Professor, Stanford University, Department of Chemistry 

7. Liu, Jie  
Position in Group: 
Current Position: 

1990-1996 

Ph.D. student 

Professor, Duke University, Department of Chemistry 

8. Niu, Chunming 
Position in Group: 
Current Position: 

1992-1993 

Postdoctoral fellow 

Professor, Xi’an Jiaotong University, Center of Nanomaterials for Renewable Energy 

9. Yao, Zhen  
Position in Group: 
Current Position: 

1992-1997 

Ph.D. student 

Associate Professor, University of Texas at Austin, Department of Physics 

10. Fan, Shoushan  
Position in Group: 
Current Position: 

1993-1994 

Visitor 

Professor, Tsinghua University, Department of Physics 

11. Zhang, Z. John  
Position in Group: 
Current Position: 

1993-1996 

Postdoctoral fellow 

Professor, Georgia Institute of Technology, School of Chemistry and Biochemistry 

12. Yang, Peidong  
Position in Group: 
Current Position: 

1993-1997 

Ph.D. student 

Professor, University of California, Berkeley, Department of Chemistry 

13. Zhang, Jian  
Position in Group: 
Current Position: 

1993-1997 

Ph.D. student 

Software Engineering Manager, Optikos Corporation 

14. Wong, Stanislaus  1994-1998 
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Position in Group: 
Current Position: 

PPh.D. student 

Professor, SUNY Stony Brook, Department of Chemistry 

15. Hu, Jingtao  
Position in Group: 
Current Position: 

1995-1999 

Ph.D. student 

Application Scientist, Nanometrics, Inc. 

16. Cheung, Barry ChinLi  
Position in Group: 
Current Position: 

1995-2001 

Ph.D. student 

Associate Professor, University of Nebraska, Lincoln, Department of Chemistry 

17. Wei, Qingqiao  
Position in Group: 
Current Position: 

1995-2001 

Ph.D. student 

Hardware Design Engineer, Hewlett-Packard Company 

18. Chen, Liwei  
Position in Group: 
Current Position: 

1996-2001 

Ph.D. student 

Professor, Chinese Academy of Sciences, Suzhou Institute of Nano-Tech and Nano-
Bionics 

19. Wang, Jianfang  
Position in Group: 
Current Position: 

1996-2002 

Ph.D. student 

Associate Professor, The Chinese University of Hong Kong 

20. Duan, Xiangfeng  
Position in Group: 
Current Position: 

1996-2002 

Ph.D. student 

Professor, University of California, Los Angeles, Department of Chemistry and 
Biochemistry 

21. Ouyang, Min  
Position in Group: 
Current Position: 

1997-2001 

Ph.D. student 

Associate Professor, University of Maryland, Department of Physics 

22. Cui, Yi  
Position in Group: 
Current Position: 

1997-2002 

Ph.D. student 

Associate Professor, Stanford University, Department of Materials Science and 
Engineering 

23. Huang, Yu  
Position in Group: 
Current Position: 

1999-2003 

Ph.D. student 

Associate Professor, University of California, Los Angeles, Department of Materials 
Science 

24. Zhong, Zhaohui 
Position in Group: 
Current Position: 

2000-2005 

Ph.D. student 

Associate Professor, University of Michigan, Department of Electrical Engineering 

25. Wang, Deli  
Position in Group: 
Current Position: 

2001-2003 

Postdoctoral fellow 

Associate Professor, UCSD, Department of Electrical and Computer Engineering 

26. Wang, Wayne  
Position in Group: 
Current Position: 

2001-2004 

Ph.D. student 

Senior Scientist, BioScale, Inc. 

27. Xie, Ping  
Position in Group: 
Current Position: 

2001-2013 

Ph.D. student, (Postdoc 2008-2013) 

Principle Scientist, Oxford Nanopore Technologies, Inc. 

28. Wu, Yue  
Position in Group: 
Current Position: 

2001-2006 

Ph.D. student 
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Associate Professor, Iowa State University, Chemical and Biological Engineering 

29. Yang, Chen  
Position in Group: 
Current Position: 

2001-2006 

Ph.D. student 

Associate Professor, Purdue University, Department of Chemistry & Department of 
Physics 

30. Zheng, Gengfeng  
Position in Group: 
Current Position: 

2001-2006 

Ph.D. student 

Professor, Fudan University, Laboratory of Advanced Materials and Department of 
Chemistry 

31. Jin, Song  
Position in Group: 
Current Position: 

2002-2004 

Postdoctoral fellow 

Associate Professor, University of Wisconsin – Madison, Department of Chemistry 

32. Lin, Keng-Hui  
Position in Group: 
Current Position: 

2002-2004 

Postdoctoral fellow 

Associate Research Fellow, Academia Sinica, Institute of Physics 

33. Xiang, Jie  
Position in Group: 
Current Position: 

2002-2006 

Ph.D. student 

Assistant Professor, UCSD , Department of Electrical and Computer Engineering 

34. Fang, Ying  
Position in Group: 
Current Position: 

2002-2008 

Ph.D. student 

Professor, National Center for Nanoscience and Technology 

35. Qian, Fang  
Position in Group: 
Current Position: 

2002-2008 

Ph.D. student 

Research Scientist, Lawrence Livermore National Laboratory, Physical and Life 
Sciences 

36. Lu, Wei  
Position in Group: 
Current Position: 

2003-2005 

Postdoctoral fellow 

Associate Professor, University of Michigan - Ann Arbor, Department of Electrical 
Engineering 

37. Li, Yat 
Position in Group: 
Current Position: 

2003-2007 

Postdoctoral fellow 

Associate Professor, University of California, Santa Cruz, Department of Chemistry 

38. Dong, Yajie  
Position in Group: 
Current Position: 

2003-2010 

Ph.D. student 

Senior Device Scientist, QD Vision, Inc 

39. Yan, Hao  
Position in Group: 
Current Position: 

2003-2012 

Ph.D. student 

Postdoctoral Fellow, Stanford University 

40. Yu, Guihua  
Position in Group: 
Current Position: 

2003-2009 

Ph.D. student 

Assistant Professor, University of Texas at Austin, Department of Mechanical 
Engineering 

41. Ding, Weiping  
Position in Group: 
Current Position: 

2004-2004 

Visitor 

Professor, Nanjing University 

42. Hu, Yongjie  
Position in Group: 
Current Position: 

2004-2011 

Ph.D. student (Postdoc 2010-2011) 
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Assistant Professor, UCLA , Department of Mechanical Engineering 

43. Jiang, Xiaocheng  
Position in Group: 
Current Position: 

2004-2012 

Ph.D. student (Postdoctoral fellow 2011-2012) 

Postdoctoral fellow, Massachusetts General Hospital, Department of Surgery 

44. Qiao, Zheng-Ping  
Position in Group: 
Current Position: 

2004-2005 

Postdoctoral fellow 

Associate Professor, Sun Yat-Sen University,  Chemistry and Chemical Engineering 

45. Tian, Bozhi  
Position in Group: 
Current Position: 

2004-2010 

Ph.D. student 

Assistant Professor, University of Chicago, Department of Chemistry 

46. Gao, Xuan  
Position in Group: 
Current Position: 

2005-2007 

Postdoctoral fellow 

Associate Professor, Case Western Reserve University, Department of Physics 

47. Gong, Jian-Ru  
Position in Group: 
Current Position: 

2005-2008 

Postdoctoral fellow 

Professor, NCNST, Physical Chemistry 

48. Cao, Anyuan  
Position in Group: 
Current Position: 

2006-2006 

Visitor 

Professor, Peking University, Department of Advanced Materials and Nanotechnology 

49. Qing, Quan  
Position in Group: 
Current Position: 

2006-2012 

Postdoctoral fellow 

Assistant Professor, Arizona State University, Department of Physics 

50. Wang, Lu  
Position in Group: 
Current Position: 

2006-2011 

Ph.D. student 

Preceptor, Harvard University, Department of Chemistry and Chemical Biology 

51. Xiong, Qihua  
Position in Group: 
Current Position: 

2006-2009 

Postdoctoral fellow 

Associate Professor, Physics and Applied Physics, Nanyang Technological University 

52. Zheng, Xiaolin  
Position in Group: 
Current Position: 

2006-2007 

Postdoctoral fellow 

Associate Professor, Stanford University, Department of Mechanical Engineering 

53. Duan, Xiaojie  
Position in Group: 
Current Position: 

2008-2013 

Postdoctoral fellow 

Assistant Professor, Peking University, College of Engineering 

54. Hu, Jinsong  
Position in Group: 
Current Position: 

2008-2011 

Visitor, Postdoctoral fellow 

Professor, ICCAS  Key Laboratory of Molecular Nanostructure and Nanotechnology 

55. Mai, Liqiang  
Position in Group: 
Current Position: 

2008-2011 

Visitor 

Professor, Wuhan University of Technology, WUT-Harvard Joint Nano Key 
Laboratory 

56. Gao, Ruixuan  
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