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Abstract

Multiagent systems require techniques for effec-
tively allocating resources or tasks to among agents
in a group. Auctions are one method for structuring
communication of agents’ private values for the re-
source or task to a central decision maker. Different
auction methods vary in their communication re-
quirements. This paper makes three contributions
to the understanding the types of group decision
making for which auctions are apprpriate meth-
ods. First, it shows that entropy is the best measure
of communication bandwidth used by an auction
in messages bidders sendand receive. Second, it
presents a method for measuring bandwidth usage;
the dialogue trees used for this computation are a
new and compact representation of the probablity
distribution of every possible dialogue between two
agents. Third, it presents new guidelines for choos-
ing the best auction, guidelines which differ signif-
icantly from recommendations in prior work. The
new guidelines are based on detailed analysis of the
communication requirements of Sealed-bid, Dutch,
Staged, Japanese, and Bisection auctions. In con-
tradistinction to previous work, the guidelines show
that the auction that minimizes bandwidth depends
on both the number of bidders and the sample space
from which bidders’ valuations are drawn.

1 Introduction
Multiagent system designers can achieve significant cost sav-
ings by making the correct choice of algorithm for team de-
cision making. The results in this paper show that no single
auction type minimizes bandwidth usage for all team sizes
or for all possible valuations for the resource. For instance,
Sealed-bid auctions require the least communication for small
problems. The Dutch, Staged, and Bisection auctions each
require least communication in some situations.

A Sealed-bid auction requires each bidder and the auction-
eer to exchange 5 bits of information in a system with 60
agents where each agent’s valuation is drawn independently
and uniformly from the range $1 to $32. A Dutch auction re-
quires an exchange of approximately one bit on average under

the same assumptions. A difference of four bits of informa-
tion may seem insignificant by today’s standards but modern
systems may make millions or billions of related team deci-
sions every second. While sacrificing no team decision qual-
ity, a system designer could save over 80 percent of its com-
munication bandwidth just by implementing a different set of
auction rules.

Previous work has made recommendations for the best
choice of auction for making group decisions. However, the
assumptions that led to those recommendations are incompat-
ible with real systems in which communication bandwidth is
costly, such as those using Internet-like networks.

This paper makes three main contributions to the under-
standing of communication for decision making in multia-
gent systems. First, we argue for entropy as the metric of
communication bandwidth used by all messages exchanged.
Communication in any multiagent system is made up of a se-
ries of messages that one agent sends to another. System de-
signers need to choose an encoding for messages. For exam-
ple, the number nine is commonly given the binary encoding
“1001” but in ASCII code it is assigned the binary encoding
“0011 1001”. Measuring communication in decision-making
algorithms using a particular message encoding could lead to
results that are applicable only for that encoding. This paper
uses principles of Information Theory to measure informa-
tion in a coding-independent way. The receiver of a message
can generate a probability distribution over the set of possible
messages it can receive. The entropy of that distribution is
a lower bound on the average size of the encoding for each
message.

Second, we provide details of a three-step method for mea-
suring bandwidth used by an algorithm. In the first step, the
analyst builds a dialogue tree that represents all possiblese-
quences of messages exchanged between the auctioneer and
each bidder. In the second step, the edges of the dialogue tree
are labeled with the probability associated with each message.
Finally, in the third step, the expected information in the dia-
logue is calculated using the tree representation.

Third, we apply the analysis to Sealed-bid, Dutch (de-
scending), Japanese (ascending), Staged (ascending), and
Bisection auctions and provides system designers with the
knowledge necessary to choose the auction that minimizes
communication bandwidth. Auctions are particularly attrac-
tive for multiagent decision making because they provide a



way to structure the allocation of a resource or task to the
member of a multiagent system that values it most, when the
resource’s value is private to each group member. Equiva-
lently, auctions are used to assign a task to the member of
a group that is best suited to perform it when the suitability
of each group member to the task is private[Hunsberger and
Grosz, 2000; Rauenbusch, 2004].

Our recommendations, based on a minimizing commu-
nication requirements, differ from those of economists and
computer scientists. Economic analysis typically ignores
communication costs entirely. Some computer scientists
[Shoham and Tennenholtz, 2001] have focused on prefer-
ence revelation, which concerns the willingness to disclose
information. They consider only those messages sent from
a bidder to an auctioneer and ignore message sent in the op-
posite direction. Some researchers[Grigorievaet al., 2002]
have used communication complexity or other metrics that
assume a particular message encoding. Their results may
be misleading for measuring bandwidth requirements in sys-
tems that employ more efficient encodings—our results are
coding-independent.

This paper is organized as follows. In Section 2 the sin-
gle item allocation problem is formally defined, and the five
auctions are described. Next, Section 3 details the process
for measuring communication in a dialogue using Dialogue
Trees. Section 4 describes the application of dialogue trees to
auctions. Guidelines for system designers choosing auction
rules that minimize communication are given in Section 5.
Section 6 highlights important related work and Section 7
gives conclusions and suggests areas for future work.

2 Item Allocation and Auctions

A single-item allocation problem is characterized by a group
of n bidder agents and a seller agent (also called the auction-
eer) that possesses a single, atomic item. Each bidder has
a value for the item that is private and drawn independently
and uniformly from the set of integers from 0 to2R

− 1 in-
clusive. Another way to look at a bidder’s value is that it
is being drawn from one of2R bins. The distribution from
which each bidder’s value is drawn is common knowledge.
Bidder i’s value is denoted byxi. The goal of the seller is
to allocate the task to the bidder with the highest value. If
there is a tie for the highest value, the task may be allocated
to any of the bidders with the highest value. Asolution to a
single-item allocation problem is the indexi, wherexi is the
maximum value among alln bidders.

We analyze five auction types: Sealed-bid, Japanese,
Staged, Dutch, and Bisection. This particular list of five auc-
tion types is representative of the range of auctions typically
used to allocate a single item and is not intended to be exhaus-
tive. For reference, the rest of this section provides a descrip-
tion of each auction type. Rauenbusch[2004] provides more
detail, including pseudocode for each. In each auction, we
assume bidders are honest. Prices are used to structure com-
munication with the bidders and not as a tool for building in
incentives for honesty.

Sealed-bid. All bidders send their value to the auctioneer.
The winner is the bidder that sends the highest value.

Japanese (Ascending). The auctioneer maintains acurrent
price, initially set to 0. The auctioneer sends each bidder in
turn the current price. If a bidder’s value is greater than or
equal to the current price, it sends a message affirming its con-
tinued participation in the auction. Otherwise, it sends a mes-
sage indicating its desire to leave the auction. The auctioneer
then increments the current price, and repeats the process.If
only one participating bidder remains in the auction after a
round, the auction ends and that remaining bidder is the win-
ner. If no participating bidders remain, the winner is chosen
from the bidders in the previous round. Once a bidder leaves
the auction, it may not rejoin.

Staged (Ascending). The auctioneer maintains acurrent
price, initially set to 0. In Stage 1, the auctioneer sends bid-
der 1 the current price. If the bidder’s value is greater than
or equal to the current price, it sends its value and the current
price is updated to this value. Otherwise, it sends a message
indicating its desire to leave the auction. The auctioneer then
moves on to Stage 2, sends the current price to bidder 2, and
the process repeats. The auctioneer continues in this way with
each bidder and the process ends after thenth stage. The win-
ner is the last bidder that did not leave the auction.

Dutch (Descending). The auctioneer maintains acurrent
price, initially set to2R

− 1. The auctioneer sends each bid-
der in turn the current price. The bidder sends a message
indicating whether its value is equal to the current price. If
no bidder’s value is equal to the current price, the auctioneer
decrements the price and repeats. If one or more bidder has
value equal to the current price, the auctioneer chooses one
as the winner.

Bisection. The auctioneer maintains anlower bound de-
notedl andupper bound denotedu, initially set to 0 and2R,
respectively. The auctioneer also maintains a list of active
bidders, initially the set of all bidders. The auctioneer calcu-
lates thecurrent price asu−

u−l

2 . The auctioneer sends each
bidder in turn the current price. Each bidder sends a message
of either “Yes” or “No” to indicate whether its value is greater
than or equal to the current price. If there are two or more bid-
ders that sent a “Yes” message, the lower bound is updated to
the current price, the set of active bidders updated to include
only those that sent a “Yes” message, and the process repeats.
If no bidder sent a “Yes” message, the upper bound is updated
with the current price and the procedure repeats. If one bid-
der sent a “Yes” message, that bidder is declared the winner
and the procedure ends. If the upper bound and lower bound
differ by only one, one of the active bidders is chosen as the
winner. After finding a winner, typically the bisection auction
may proceed into a “price determination” phase that provides
incentives for honesty. Because we assume honesty, the price
determination phase is omitted from our analysis.



Encoding Probability
Message Enc1 Enc2 AlgA AlgB

a 0000 0 0.0625 0.99
b 0001 10001 0.0625 0.000333
c 0010 10010 0.0625 0.000333
d 0011 10011 0.0625 0.000333

. . . . . . . . . . . . . . .
p 0011 10011 0.0625 0.000333

Table 1: Two encodings for sixteen messages used by Algo-
rithms AlgA and AlgB

3 Communication Properties of a Dialogue

This section serves three main purposes. First, it presentsan
argument for the use of entropy and information theory to
measure communication for team decision making. Second,
it highlights the need to consider all communication. In auc-
tions, this means that complete analysis requires evaluating
communication in two directions: both from the bidders to
the auctioneer and from the auctioneer to the bidders. Third,
it presents dialogue trees—a tool for using entropy to mea-
sure the expected information transmitted in successive mes-
sages between agents. It details the use of dialogue trees in
measuring communication for team decision making.

3.1 Entropy: Metric for Measuring
Communication

A metric for measuring communication is required to com-
pare auction rules by their communication cost. In each auc-
tion, information is exchanged between the auctioneer and
each bidder by sending and receiving messages. In any im-
plementation of an auction, the center and the bidders must
agree to an encoding of messages.

Measuring information required by a multiagent algorithm
using a particular encoding for messages may lead to mis-
leading results. To illustrate why, we refer to the example
given in Table 1. The columns labeled Enc1 and Enc2 shows
two possible encodings for each of sixteen messages labeled
a throughp. Two algorithms, labeled AlgA and AlgB, each
require one of sixteen messages to be sent from one agent to
another but they differ in the frequency with which each mes-
sage is sent. The probability associated with each message
for each algorithm is shown in the two rightmost columns of
the table.

With encoding Enc1, both AlgA and AlgB require four bits
to transmit the message. But with encoding Enc2, AlgA re-
quires 4.75 bits and AlgB requires 1.04 bits in expectation.
Therefore, the algorithm that requires the least communica-
tion depends on the encoding chosen. Just as in this toy exam-
ple, conclusions about the communication properties of auc-
tions using a particular encoding are misleading because it
is not clear whether those conclusions hold for other possi-
ble encodings. Work in Information Theory[Shannon, 1948;
Cover and Thomas, 1991] has shown that the entropy of a
random variable describing a message is a lower bound on
the average size of the encoding for that message. Rather
than evaluate an algorithm using a particular encoding, we

therefore use entropy to measure expected information com-
municated.

3.2 Direction of Communication

It is convenient to distinguish betweencoordination mes-
sages, which are those sent by the auctioneer to a bidder,
from revelation messages, which are those sent by the bid-
der to the auctioneer. In this paper, the communication costs
associated with coordination and with revelation are consid-
ered when calculating the expected information transmitted
in an auction. In particular, the results provided are for the
sum of coordination and revelation costs. This assumption
is supported by Internet-like computer networks in which in-
creased bandwidth requires costs associated with increased
infrastructure for both directions of communication.

In a Sealed-bid auction, each bidder always reveals its
value. Therefore, Sealed-bid auctions have the highest band-
width requirements for revelation messages. As the resultsin
Section 5 indicate, it would be misleading to rely on revela-
tion messages alone when choosing an auction. Even though
Sealed-bid auctions require more information transmittedin
revelation than any other auction, they require no coordina-
tion. For that reason, they have low communication require-
ments in settings with small teams and coarse distributions
from which bidders’ values are drawn.

3.3 Dialogue Trees

A dialogue is a sequence of messages sent from one agent
to another agent, in which the agent that sends the odd-
numbered messages receives the even-numbered messages.
Dialogue trees simplify the construction of a probabilistic
model of the messages. In this section, we describe dialogue
trees and provide a detailed method for calculating the ex-
pected information in a dialogue. We use dialogue trees to
measure expected information in an auctions by analyzing the
dialogue between the auctioneer and each bidder. Dialogue
trees apply equally to other dialogues and are not limited to
analysis of auctions.

A dialogue tree is a tree data structure with labeled edges.
Each node represents a message, and is labeled with the mes-
sage it represents.Query messages are those sent by the auc-
tioneer to request a message from the bidder;reply messages
are those sent by the bidder.Status messages are those sent
by the auctioneer to which no reply is expected. Figures that
represent dialogue trees (such as Figure 1) show query nodes,
reply nodes, and status nodes enclosed by circles, boxes, and
diamonds, respectively.Nodes(d) denotes the set of all nodes
in dialogue treed.

The children of a node in a dialogue tree represent the
sample space from which the next message is drawn, given
that the message represented by the parent node has been
sent. Children(m) denotes the set of child nodes of node
m. Parent(m) denotes the parent node of nodem.

A label on an edge between a parent and child node indi-
cates the receiver’s belief, prior to receiving the message, that
the message represented by the child node is the one that the
sender will send.In(m) denotes the edge label that is incident
on nodem in a dialogue tree.



The edge labels define a probability distribution over the
sample space represented by the children. The probability
distribution and sample space together define a probabilistic
model for messages in a dialogue.

In the auctions described in this paper, a bidder always
sends a reply after receiving a query; therefore, a query node
is never a leaf in a dialogue tree. A reply node may be either a
leaf or a non-leaf node, depending on whether the center may
follow the corresponding reply message with a message. A
status node is always a leaf in a dialogue tree.

The remainder of this section details how a dialogue tree is
used to calculate the expected information in a dialogue. The
procedure uses edge labels for two purposes: to calculate the
information content of a node and to calculate the probability
of visiting a node.

The information content (IC) of nodem is the entropy of
the random variable represented by the labels of all edges
originating at the node. Formally,

IC(m) = −

∑

c∈Children(m)

In(c) log In(c) (1)

A leaf node therefore has information content of 0.
A path from the root node to each leaf node represents

every possible dialogue between the two agents. The amount
of information in a dialogue is the sum of the information
content in each node on the path. Each of the possible di-
alogues represented by a tree has a different probability of
occurring. This probability is the product of the edge labels
along the path of the dialogue from the root of the tree to
a leaf. Theprobability of visiting (PV) nodem (that is, the
probability that a message represented by a particular node
will be sent in a dialogue) is the product of the probability of
the message represented by its parent node and the label on
its incident edge. There is unit probability of visiting theroot
node. Formally,

PV(m) =

{

1 if m is root
PV(Parent(m)) · In(m) otherwise (2)

Thecontributed information (CI) of a nodem is the prod-
uct of the amount of information represented by the node and
the probability the node is visited. Formally,

CI(m) = PV(m)IC(m) (3)

We use expected information in a dialogue as the metric
for communication. Expected information of a dialogue (EI)
represented by dialogue treed is the sum of the contributed
information of each node ind. Formally,

EI(d) =
∑

m∈Nodes(d)

CI(m) (4)

Contributed information provides a straightforward way to
separate the information contribution of messages sent by the
center from those sent by the bidder. The child nodes of a re-
ply node represent messages sent by the center and the child
nodes of a query node represent messages sent by the bidder.
The amount of information sent by the bidder is the sum of
the contributed information of all query nodes and the amount

of information sent by the center is the sum of the contributed
information of all reply nodes. This is counter-intuitive and
arises because contributed information of each node is de-
rived from the probabilities associated with the edgesorigi-
nating at that node, which define the information content of
the messages represented by its child nodes. Section 4 de-
scribes the dialogue tree in Figure 1 and how it is used to
analyze the Bisection auction.

4 Analysis of Auctions
Using dialogue trees as a tool, in each auction we first deter-
mine the structure of the tree, then calculate the appropriate
edge labels. To aid in determining the structure of the tree,the
messages in each of the five auctions are divided into the fol-
lowing two types of query/response pairs: (1) best response,
and (2) value. In a best response query, the auctioneer sends
the bidder a message that includes a price. The bidder then
responds with the messageYes if its value is higher than the
price and the messageNo otherwise. In a value query, the auc-
tioneer sends a message, and the bidder responds by sending
a message containing its value.

Decomposing these algorithms into two types of con-
stituent query/response pairs is a tool used to simplify of the
analysis. The measurement of the expected information in a
dialogue for each auction is independent of this decomposi-
tion. For example, if a bidder in the Staged auction responds
Yes when sent the first message, it always sends its value. It
is therefore not necessary to send a query message for the
bidder’s value after receiving the response. But, there is zero
communication cost for the value query (because the proba-
bility of sending it given aYes response is 1).

Two methods are used to determine the edge labels. The
first and simplest way to determine the edge labels is by sim-
ulation. An auction is run many times in simulation, and
the frequency of each message is recorded and used for the
edge labels. The main advantage of this approach is that it re-
quires little labor, after coding the algorithm. One disadvan-
tage of the simulation method is that the time required to run
the many simulations needed to accurately estimate the fre-
quency of low-probability messages usually found near the
leaves of the dialogue tree may be prohibitive. In addition,
this method requires a different simulation for each setting of
parameters of interest. For example, the results given in Fig-
ure 2 would require 1220 sets of simulations: one for each of
122 team sizes and 10 settings for the number of bins.

The second method is to calculate the edge labels ana-
lytically. This approach uses the common knowledge from
which the bidder’s value is drawn, and the knowledge ac-
quired through messages represented by higher levels of the
tree. The main drawback with this approach is that it is labor
intensive because an analyst must reason about the receiver’s
mental model for each message in each algorithm. The main
advantage of this approach is that the procedure for generat-
ing edge labels in one particular setting (e.g., for a team of20
agents and 4 bins) applies equally well to other settings (e.g.,
21 agents and 8 bins) by substituting appropriate parameters.
An additional advantage is that the edge labels are calculated
precisely rather than estimated.
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Figure 1: Highest three levels of a dialogue tree for Bisection
auction with four bidders and sixteen bins

The results presented in this paper were based on generat-
ing edge labels using the second method. The first method
was used to verify the results. The rest of this section pro-
vides an example of a dialogue tree for the Bisection auction
to illustrate the use of dialogue trees to measure the expected
amount of information transmitted in the five auctions. De-
tails of the analysis have been omitted due to lack of space.
Rauenbusch[2004] provides the details of the analysis of the
dialogue trees for each auction.

The calculation of the edge labels in any dialogue tree in-
volves reasoning about the knowledge of the receiver of each
message: the distribution from which the bidder’s value is
drawn and all messages represented in higher levels of the
tree. Figure 1 shows the dialogue tree that represents the first
five messages exchanged between the auctioneer and one bid-
der in a Bisection auction. In the tree, the message containing
the best response query with valueb is represented by a query
node with labelb.

To provide an example of the reasoning involved in com-
puting edge labels, we specifically consider the edges on the
path from the root node labeled8 to the leaf node labeled14.
Calculation of edge labels in the figure assumes that there are
four bidders, with values drawn from 16 bins—0 through 15
inclusive.

The root of the tree corresponds to the best response query
with value 8. The bidder replies to this query withYes if its
value is greater than or equal to 8, andNo otherwise. The re-
ceiver of theYes or No message—the auctioneer—believes
that theYes message will be sent with probability 0.5 be-
cause it knows the distribution from which the bidder’s value
is drawn. Therefore, the edge into theYes node is labeled 0.5.

To compute the next edges, labeled 0.125 and 0.875, we
first assume that the bidder sent aYes response to the first
query. The bidder will win the auction (and will be sent a
message indicating that it is assigned to the item) if and only
if no other bidder sent aYes response to the first query. Given
the common knowledge that bidders’ values are distributed
uniformly between 0 and 15, the probability that all three
other bidders sent aYes query is(0.5)3 = 0.125. There-
fore, the edge incident on theAssign node is labeled 0.125,
and the edge incident on the 12 query node is labeled with its
complement 0.875.
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Figure 2: Algorithm with lowest expected information trans-
mitted for varying numbers of bidders and bins

The edges incident on the next reply nodes are labeled 0.5.
The auctioneer knows (1) that the bidder’s value was drawn
uniformly from 0–15 by common knowledge; and (2) the bid-
der’s value is greater than 8 by virtue of theYes response rep-
resented in a higher level of the tree. Therefore, the auction-
eer’s believes that there is a probability of 0.5 that the bidder’s
value is higher than 12.

The calculation of the edge labeled 0.661, incident on the
node labeled 14 in the tree, is complex and full details are
omitted. To get a feeling for why, the analysis begins with
the knowledge that given that the bidder sent theYes message
represented by the top of the edge, the message represented
by the node labeled 14 will be sent if and only if at least one
other bidder also has value greater than 12. But the bidder
knows that at least one other bidder had value greater than 8.
The calculation involves the bidder assigning a belief vector
representing is belief that each of one, two, and three other
bidders still remain in the auction. The value 0.661 is then
computed using this vector.

5 Results
Figure 2 indicates the algorithm that has lowest expected in-
formation transmitted for increasing numbers of bidders and
for increasing numbers of bins. It clearly shows that choosing
the algorithm that needs least expected information transmis-
sion is highly dependent on the two parameters of the envi-
ronment. For large numbers of bidders and bins, Bisection
requires the least communication. Sealed-bid, Dutch, and
Staged auctions each require the least communication for par-
ticular parameter settings.

For a very small number of bidders and bins (fewer than
five bidders with two or four bins, and fewer than three bid-
ders with eight bins) the Sealed-bid auction performs best.
A sealed-bid auction by definition requires the maximum
amount or revelation and no coordination. Therefore, for
very small problems, the savings in revelation from any other
auction method are outweighed by the cost of coordination.
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Figure 3: Expected information transmitted per bidder for
varying numbers of bins with 60 bidders

When there are two bins, the Japanese auction has the same
communication properties as the Sealed-bid auction because
the first and only query in the Japanese auction is always sent
and the bidder reveals its value (by its response that indicates
whether its value is in the higher or lower bin).

For all but the smallest numbers of bidders and bins, the Bi-
section, Dutch, and Staged Japanese auctions perform well.
The graph in Figure 3 shows the expected amount of infor-
mation transmitted between the center and each bidder for a
varying number of bins for a constant 60 bidders.

The first thing of note on the graph is that the communica-
tion requirements of the Sealed-bin auction increase linearly
as the number of bins increases exponentially. The Sealed-
bid auction has zero coordination cost and a revelation cost
that is logarithmic in the number of bins.

The graph shows that as the number of bins increases expo-
nentially, the expected amount of communication required by
the Bisection auction rises then levels off. For a small num-
ber of bins, the Staged auction has very low communication
requirements. For small numbers of bins, the Dutch auction’s
communication requirements actually decrease as the number
of bins increase. Therefore, as the number of bins increases,
the auction with the lowest communication costs is first the
Staged auction, then the Dutch auction and finally the Bisec-
tion auction.

6 Related Work
Economic analysis of auctions[Rasmussen, 1989, inter alia]
focuses on the effect of auction rules and prices on the strate-
gies of non-cooperative bidders. While this paper is con-
cerned with systems in which strategies can be imposed by
methods external to the auction itself, dialogue trees can be
used to measure communication requirements of all types of
auctions. In multiagent systems where the assumption of ex-
ternally imposed incentives does not hold, dialogue trees can
be used to compare the communication costs of auctions that
impose desirable incentives on the bidders.

Researchers in computer science have used several alterna-
tives to entropy for measuring communication in multiagent

decision making. One such approach counted the number of
messages required to arrive at a team decision[Ortiz et al.,
2003], which is equivalent to assuming that each message has
a fixed length. In systems with communication channels that
carry encoded messages, the assumption that each message
has a fixed length does not hold. Under a fixed length assump-
tion, the Sealed-bid auction would always be preferred. Thus,
such analyses may be misleading because an algorithm with
fewer fixed-length messages will not always be the cheaper
algorithm in terms of expected information transmitted.

Sunderham and Parkes[2003] measure the volume remain-
ing in the space of feasible private information after bidders
have sent the auctioneer constraints on their private informa-
tion in a multi-attribute auction. They use this metric to com-
pare the amount of revelation in auctions. For our purposes,
entropy is a preferred metric because it provides a direct mea-
sure of bandwidth required by an auction and it provides the
common currency of bits to measure both coordination and
revelation.

Communication complexity[Kushilevitz and Nisan, 1996]
provides an alternative method for analyzing communication
between agents. Grigorieva et al.[2002] use communication
complexity to analyze the bisection auction. Communication
complexity evaluates the worst case amount of communica-
tion required for two agents to compute a function. The com-
munication complexity model assumes that sending each bi-
nary message costs one bit. If any prior information is avail-
able, it is ignored for the purposes of calculating communi-
cation complexity. As long as there issome arbitrarily small
possibility that an agent will send a ‘0’, that communication
costs one bit. Protocol trees[Yao, 1979] are used as a tool
to evaluate communication complexity of an algorithm while
dialogue trees are used to calculate expected information in a
dialogue that represents messages sent in an algorithm.

The main benefit of this assumption is that there is no need
to assume a prior distribution, and that simplifies the analy-
sis. The main drawback is that it assumes a particular encod-
ing of messages and therefore no savings can be attained by
alternative encodings. A system designer that relies on com-
munication complexity in choosing an auction will select an
auction that performs well under a worst case assumption of
the encoding costof each message. In this paper, we assume
that system designers prefer choosing an auction based on the
expected information transmitted.

Shoham and Tennenholtz[2001] use a method related to
communication complexity for the analysis of the functions
computed in team decision-making mechanisms. They de-
finef as the maximum value ofn bidders’ willingness to pay
for an item, where each bidderi has a willingness to pay of
xi. They imply that the domain ofxi is continuous on the in-
terval(0, maxprice) and assume that each bidderi can com-
municatexi to the auctioneer with one bit by making use of
a common clock. They claim that by using an auction similar
to the Dutch auction, the functionf can be computed by a
single bidder communicating a single bit.

In both Yao’s theory of communication complexity and
Shannon’s theory of information[Shannon, 1948], the cost
of communicating an arbitrary value drawn from a continu-
ous interval is infinite, not a single bit, because there is an



infinite number of messages that the bidder can send to the
center. The theory of information makes assumptions that
are consistent with modern wired and wireless computer net-
works, in which messages can be encoded. Shoham and Ten-
nenholtz’ critical assumption that a continuous value may be
communicated in one bit does not hold in modern multiagent
systems.

Relying on Shoham and Tennenholtz’ assumptions would
lead a system designer to always choose their version of the
Dutch auction to minimize the amount of communication
from the bidder to the center. This paper shows that the ex-
pected amount of information communicated by an algorithm
is highly dependent on the number of bidders and the distribu-
tion of bidders’ private values. The Dutch auction is often not
the algorithm that minimizes the expected amount of commu-
nication from the bidder to the center. Therefore, a system
designer that relies on Shoham and Tennenholtz’ assumption
may incur unnecessary costs.

Much prior work [Shoham and Tennenholtz, 2001; Sun-
deram and Parkes, 2003, inter alia] has centered around mea-
suring how much of a bidder’s preferences are revealed by
an algorithm instead of how much bandwidth is used by an
algorithm. Therefore, a common assumption has been that
coordination messages are free while revelation messages are
costly. Under that assumption, it is desirable to select an al-
gorithm with low revelation costs, even if it has high coordi-
nation costs. The results presented in Section 5 are for the
sum of revelation and coordination costs and differ from such
prior work for several reasons. However, situations in which
only one direction of communication is important can be han-
dled easily by the models described in this paper by ignoring
the other direction in the analysis.

7 Conclusion and Future Work
In this paper, we presented three major contributions. First,
we presented an argument for measuring expected informa-
tion transmitted in a dialogue to determine the bandwidth
need by multiagent algorithms. Second, we provided a
method for measuring expected information using dialogue
trees. Third, we showed that using that method to analyze
five auctions leads to recommendations for multiagent sys-
tem design that differ from recommendations made in previ-
ous work. The results of the analysis indicated that the correct
choice of auction depends on the number of bidders and the
size of the sample space from which bidders’ values for the
item are drawn. The Staged, Dutch, and Bisection auctions
are each appropriate for different situations, and the Sealed-
bid auction is best for very small problems. The guidelines
presented in this paper could lead to real savings in commu-
nication bandwidth with no loss in decision quality.

In future work, we plan to use dialogue trees to analyze
algorithms for more general team decision problems than
single-item assignment and for more general algorithms than
auctions. Auctions are commonly suggested for item or task
assignment in multiagent systems because they are a conve-
nient method for structuring communication between agents.
We plan to compare other methods for allocating a single
item, such as inter-agent exchange, to auctions. We assumed

that agents were honest—small adjustments to the auctions
rules instead allow us to build incentives into an auction di-
rectly. We plan to evaluate the communication costs incurred
by auctions with built-in incentives and analyze the impactof
those incentives on the correct choice of auction method.
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