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Abstract
The genus Newportia Gervais, 1847, includes some 60 nominal species distributed in the Caribbean islands 
and from Mexico to central South America. Modern keys to species and subspecies are available, greatly fa-
cilitating identification, but some species are based on few specimens and have incomplete documentation of 
taxonomically-informative characters. In order to explore genetic variability and evolutionary relationships 
within geographically-widespread morphospecies, specimens of N. (N.) stolli (Pocock, 1896) and N. (N.) 
divergens Chamberlin, 1922, two nominal species distinguished principally by differences in suture patterns 
on T1, were sequenced for mitochondrial 16S rRNA and cytochrome c oxidase subunit I (COI) genes from 
populations in southern Mexico, Guatemala, Honduras and Brazil. N. (N.) stolli is paraphyletic with respect 
to N. (N.) divergens within a clade from Guatemala, Honduras, and Chiapas (Mexico), most trees being 
consistent with a single loss of a connection between the anterior transverse suture on T1, whereas specimens 
of “N. (N.) stolli” from Brazil are not closely allied to those from the Mesomerican type area. The widespread 
morphospecies N. (N.) monticola Pocock, 1890, was sequenced for the same loci from populations in Costa 
Rica, Colombia and Brazil, finding that specimens from these areas do not unite as a monophyletic group. 
Samples of N. (N.) oreina Chamberlin, 1915, from different regions of Mexico form geographic clusters that 
resolve as each other’s closest relatives. These results suggest that some widespread species of Newportia may 
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be taxa of convenience more so than natural groupings. In several cases geographic proximity fits the phylog-
eny better than taxonomy, suggesting that non-monophyletic species do not result from use of inappropriate 
molecular markers. Molecular identification is possible for specimens missing taxonomically informative 
morphological characters, notably damaged specimens that lack the ultimate leg pair, a protocol that may 
also apply to other taxonomically difficult genera that are prone to damage (such as Cryptops).

Keywords
Scolopocryptopidae, Newportiinae, Neotropics, phylogeny

Introduction

Newportia Gervais, 1847 is a species-rich Neotropical genus that belongs to the fam-
ily Scolopocryptopidae, encompassing blind Scolopendromorpha with 23 leg-bearing 
segments, pectinate second maxillary claws, and kinked and pineapple-shaped pro-
cesses in the gizzard (Shelley and Mercurio 2005; Koch et al. 2009, 2010). Newportia 
has until recently been classified as one of two genera in the subfamily Newportii-
nae, distinguished from Tidops Chamberlin, 1915, by different forcipular structures 
(Chagas-Júnior 2011). Phylogenetic analyses based on multi-locus molecular sequence 
data have, however, indicated that Tidops nests within Newportia rather than being the 
sister group, as does another clade that had been assigned to a separate subfamily, the 
Mesoamerican Ectonocryptopinae (Vahtera et al. 2013).

The geographic distribution of Newportia (including Tidops, Ectonocryptops Cra-
bill, 1977, and Ectonocryptoides Shelley & Mercurio, 2005 as subgenera: Vahtera et al. 
2013) extends from northern Mexico throughout Central America and the Caribbean 
islands to Paraguay. Most species of Newportia have tarsus 2 of the ultimate leg divided 
into five to nearly 40 tarsomeres, or with indistinct separation of tarsi 1 and 2. Cur-
rently some 60 nominal species or subspecies are recognised (Minelli et al. 2006 and 
onwards; Schileyko 2013). In many species, diagnostic features involve the spinose 
processes on the ultimate prefemora and femora and the number of tarsomeres, all 
inconvenient characters because individuals frequently lose these legs when collected.

We propose a solution to the taxonomic impediment of missing ultimate legs 
by using mitochondrial sequence data to supplement identifications. We also explore 
phylogeographic patterns within and between select species of Newportia from Mexico 
and Central America using parsimony and maximum likelihood methods. The result-
ant phylogenies allow the taxonomic value of purportedly diagnostic morphological 
characters to be evaluated and for the limits of morphospecies to be tested.

Methods

Thirty-four specimens of Newportia from Mexico, Guatemala, Honduras, and Costa 
Rica were sorted mostly from collections made by the LLAMA (Leaf Litter Survey of 
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Mesoamerica) project, deposited in the Museum of Comparative Zoology (MCZ), 
Harvard University, Cambridge Massachusetts, USA and accessible through the dedi-
cated data base MCZbase (http://mczbase.mcz.harvard.edu). All tissues were fixed in 
absolute ethanol and thus were amendable to DNA sequencing.

Identifications were made using the most recent key for N. (Newportia) (Schil-
eyko, 2013), supplemented with taxonomic descriptions in modern literature (Schi-
leyko and Minelli 1998; Chagas-Júnior and Shelley 2003), standard monographs 
(Attems 1930), original descriptions, and examination of type material designated by 
R. I. Pocock in The Natural History Museum (London) and or by R. V. Chamberlin 
in the MCZ.

LLAMA specimens keyed to either N. (N.) monticola Pocock, 1890, N. (N.) stolli 
(Pocock, 1896), N. (N.) oreina Chamberlin, 1915, or N. (N.) divergens Chamberlin, 
1922. All LLAMA specimens were sequenced for two mitochondrial loci: 16S rRNA 
and cytochrome c oxidase subunit I (COI). These loci were selected because they vary 
both within and between species, and even between individuals from geographically 
close populations. The 34 LLAMA samples were supplemented with N. (Newportia) 
and N. (Ectonocryptoides) sequences from our previous work (Vahtera et al. 2013), nine 
new Newportia specimens from five localities in Amazonas and Roraima, Brazil, and 
novel sequences for an individual of N. (N.) pusilla Pocock, 1893, from Ecuador (see 
Table 1 for morphospecies determinations and locality data).

Total DNA was extracted from the legs utilizing the NucleoSpin®Tissue kit (Mach-
erey-Nagel). Samples were incubated overnight. PCR amplifications were performed 
with illustra TM PuReTaq TM Ready-To-GoTM PCR Beads (GE Healthcare). The 
COI fragments were amplified using primer pair HCO1490 (Folmer et al. 1994) and 
HCOout (Carpenter and Wheeler 1999) and the 16S rRNA fragments using primer 
pair 16Sa/16Sb (Xiong and Kocher 1991; Edgecombe et al. 2002). The normal am-
plification cycle for COI consisted of an initial denaturation step (2 min at 95 °C), 
followed by 35 cycles of denaturation (1 min at 95 °C), annealing (1 min at 43 °C) 
and extension (1.5 min at 72 °C), followed by a final extension step (4 min at 72 °C). 
For the 16S rRNA fragment the cycle consisted of an initial denaturation step (2 min 
at 94 °C), followed by 35 cycles of denaturation (30 s at 94 °C), annealing (30 s min 
at 43 °C) and extension (1 min at 72 °C), followed by a final extension step (7 min at 
72 °C). Visualization of the PCR products was done by 1 % agarose electrophoresis 
using Midori Green Advanced DNA Stain and FastGene® GelPic LED Box (Nippon 
Genetics, GmbH).

Samples were purified using ExoSAP-IT (Affymetrix) and sent to FIMM (Institute 
for Molecular Medicine Finland) for sequencing. Chromatograms were visualized and 
assembled using Sequencer 5.0.1 (Gene Codes Corp., Ann Arbor, Michigan, USA). 
Sequence alignment editor Se-Al (Rambaut 1996) was used to visualize the sequences 
simultaneously. GenBank registrations for new sequences are listed in Table 1.

Parsimony analysis was conducted with POY ver. 5.1.1 (Wheeler et al. 2014) run 
in 16 nodes in the high-performance supercluster Taito at CSC (IT-Center of Science), 
Finland. A timed search of three hours was first performed on the unaligned data set. 

http://mczbase.mcz.harvard.edu
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The resulting tree was used as the starting tree for the next round in which an additional 
timed search of six hours was performed. Parameter set 111 (indel/transversion and 
transversion/transition costs all equal) was used throughout the searches and branch 
lengths were reported using the newly implemented command “report (“file_name.
tre”, trees:(total, branches:true))”. Nodal support was calculated using parsimony jack-
knifing (Farris et al. 1996).

Additional analyses used a probabilistic approach with the maximum likelihood 
program RAxML ver. 8.0.22 (Stamatakis 2014). For these, multiple sequence 
alignments (MSA) were first estimated with MUSCLE ver. 3.6 (Edgar 2004) and 
then trimmed using Gblocks ver. 0.91b (Castresana 2000; Talavera and Castresana 
2007) to remove areas of ambiguous alignment. Since COI sequences showed no 
length variation, they were not trimmed in Gblocks. The amount of 16S rRNA data 
that remained after trimming was 59% of the original 585 positions. The two data sets 
were concatenated using SequenceMatrix (Vaidya et al. 2011) and the concatenated 
data were analyzed with RAxML in the CIPRES Science Gateway (Miller et al. 
2010). A unique general time reversible (GTR) model was specified for each partition 
independently. Nodal support was estimated using the rapid bootstrap algorithm 
(applying the Majority Rule Criterion) using the GTR-CAT model (Stamatakis et 
al. 2008).

Results

The combined analysis of both COI and 16S fragments using parsimony as the opti-
mality criterion resulted in two most parsimonious (MP) trees of length 4625 steps. 

N. adisi

N. collaris

N. divergens

N. ernsti ernsti

N. monticola 

N. oreina

N. pusilla

Newportia sp.

N. stolli

N. longitarsis
stechowi

Figure 1. Map of Mesoamerica, the Caribbean and northern South America showing geographic distri-
bution of Newportia specimens analyzed herein (see Table 1 for coordinates of samples).
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The strict consensus tree (Fig. 2) shows these two trees are almost identical, differ-
ing only in the placement of two Brazilian specimens of N. (N.) stolli in relation to 
each other. Comparing strongly supported clades, the maximum likelihood tree (lnL 
-14054.372302: Fig. 3) shows the same major geographic and taxonomic groupings as 
the parsimony tree. This congruence is noteworthy because the data sets analyzed under 
these two optimality criteria were different (unaligned in POY and analyzed using the 
concept of dynamic versus static homologies with some regions removed in RAxML), 
as are the resampling methods (jackknifing and bootstrapping, respectively). Parts of 
the trees that are incongruent between the two analyses involve nodes that received low 
resampling supports in both analyses (e.g., the positions of N. (N.) adisi and Brazilian 
specimen 89b relative to other species). Both analyses depict substantial branch lengths 
both within and between species, with only a few instances of no (or minimal) variation 
between specimens from the same or geographically close populations.

As in previous analyses based on sparser sampling for Newportia (Vahtera et al. 2013), 
Tidops (T. collaris) and Ectonocryptoides (E. quadrimeropus) nest within Newportia in all 
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Figure 2. Strict consensus of two optimal cladograms for Newportia under parameter set 111 for par-
simony (POY) analysis. Abbreviations: BRA, Brazil; COL, Colombia; CR, Costa Rica; DR, Dominican 
Republic; ECU, Ecuador; FRG, French Guiana; GUA, Guatemala; HON, Honduras; MEX, Mexico.
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analyses. Specifically, they unite with Newportia (Newportia) spp. that inhabit the same 
geographic region i.e., N. (T.) collaris from the Brazilian Amazon groups within a clade 
composed of species of Newportia (Newportia) from there, whereas N. (E.) quadrimero-
pus from Jalisco, Mexico, groups with the Mexican N. (N.) oreina. These results reinforce 
proposals to classify Tidops, Ectonocryptoides and presumably allied Ectonocryptops within 
Newportia and to regard Ectonocryptopinae as subordinate to Newportiinae (Vahtera et 
al. 2013). The traditional classification of N. (Tidops) and N. (Ectonocryptoides) as sepa-
rate genera because of their obvious phenotypic differences from N (Newportia) might 
have predicted that they would be markedly different from N. (Newportia) genetically. 
However, neither N. (Tidops) collaris nor N. (Ectonocryptoides) quadrimeropus depict long 
branch divergences from their closest relatives with respect to the studied loci, indeed 
being shorter than some population-level branches within species.

Newportia oreina consists of two geographical clades and this division is found 
in both parsimony and likelihood analyses; one clade consists of all specimens from 
Tamaulipas (JK, BS 100) and the other of ones from Oaxaca (JK 100, BS 98). Inter-
estingly, N. (Ectonocryptoides) quadrimeropus forms a well-supported (JK 99, BS 73) 
clade with the N. (N.) oreina populations from Oaxaca, rendering N. (N.) oreina para-

Figure 3. Maximum likelihood tree (lnL = -14054.372302). Abbreviations for countries as in Fig. 2.
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phyletic with respect to Ectonocryptoides (and presumably Ectonocryptops). A previous 
scolopendromorph phylogeny (Vahtera et al. 2013) had also indicated affinity between 
N. (N.) oreina and N. (Ectonocryptoides) quadrimeropus; analyses based on combined 
molecular and morphological data resolved them as sister-groups, although only one 
individual of each was then available. We note that N. oreina possesses a shorter tarsus 
than most congeners. The phylogeny interprets the ancestral condition of the ultimate 
leg tarsi of Newportia as being elongate and divided into tarsomeres, with the rela-
tively short tarsus 2 of N. (N.) oreina being a possible precursor to the stout tarsi of 
the submerged taxon, “Ectonocryptopinae”. This transformation series increases the 
plausibility of the subclavate “ectonocryptopine” ultimate legs being derived from an 
ancestor with flagelliform tarsi, a result that was already strongly signaled by molecular 
phylogenies (Vahtera et al. 2013) and is reinforced by the current trees.

A Mesoamerican clade uniting N. (N.) stolli and N. (N.) divergens from Mexico 
(Chiapas), Guatemala and Honduras is recovered in both parsimony and likelihood 
analyses (Figs 2, 3), though resampling methods did not strongly support it (JK <50, 
BS 57). N. (N.) divergens is resolved as monophyletic in the POY analyses but is nested 
within a paraphyletic N. (N.) stolli, implying a single loss of the median part of the 
anterior transverse suture on T1 (Fig. 2). However, there is no jackknife support for 
the divergens clade. In contrast, the likelihood analysis did not support monophyly 
of N. (N.) divergens; six individuals from Guatemala and Honduras resolve as a well-
supported clade (BS 98), but two others from Honduras (81, 82) are grouped with two 
Mexican N. (N.) stolli specimens, albeit with weak nodal support.

Specimens identified as N. (N.) stolli from the Brazilian Amazon do not unite with 
supposed congeners from Mesoamerica but are instead most closely related to other 
taxa from the same region, i.e., a specimen identified as N. (N.) monticola (91) and N. 
(Tidops) collaris. This result implies that N. (N.) stolli is polyphyletic and an indistinct 
segmentation of ultimate tarsus 2 has multiple (convergent) origins. This character 
had once served as the basis for recognising a subgenus N. (Scolopendrides), e.g., in the 
classification of Bücherl (1974), but this taxon is not used in current classifications 
(Schileyko and Minelli 1998). We re-examined the N. (N.) stolli specimens again in 
light of the signal for non-monophyly in the phylogenetic analysis, attempting to rec-
ognize any morphological character(s) that would separate the specimens from Brazil 
from those from Mesoamerica. However, we found no distinctive characters between 
the samples; the specimens appear to be morphologically indistinguishable and using 
the existing keys they would all be identified as N. (N.) stolli with confidence.

Costa Rican specimens of N. (N.) monticola unite as a monophyletic group (JK 
100, BS 99) in both analyses. In the maximum likelihood tree (Fig. 3) a Colombian 
specimen of N. (N.) monticola (103974) is resolved as a sister taxon to the Costa Ri-
can clade but this relationship is not found in the parsimony tree (Fig. 2). In neither 
analysis did a Brazilian specimen identified as N. (N.) monticola unite with the other 
supposed conspecifics.

The two included specimens of N. (N.) pusilla, one from Ecuador (specimen 86) 
and the other from Brazilian Amazonas (specimen 90), likewise do not form a clade 
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but instead are situated in different parts of the tree. The Brazilian specimen conforms 
to “Amazonian type pusilla” of Schileyko and Minelli (1998), characterized by rudi-
mentary paramedian sutures on T1 (in contrast to their complete absence in other 
populations). Both analyses group this Brazilian specimen together with N. (N.) lon-
gitarsis stechowi but since there is no strong resampling support in either analysis (JK 
<50, BS 69), the question about its identity and closest relative remains unclear.

We also included a few Newportia specimens that could not be identified mor-
phologically since they lacked ultimate legs, were juveniles, or did not key out to any 
known species. A specimen (54) from Costa Rica has a unique character combination 
and is apparently a distinct species but lacks its ultimate legs. In the POY analysis it 
groups together, although with weak support, with the Costa Rican N. (N.) monticola 
clade. A very distinctive Brazilian specimen (89b) with all tarsi bipartite and tarsus 2 
of the ultimate leg undivided groups at the base of the Mexican N. (N.) oreina/N. (E.) 
quadrimeropus clade in the parsimony analysis. However, there is poor resampling 
support for this grouping and it is instead allied to species with indistinctly segmented 
ultimate tarsus 2 and the Brazilian clade in the likelihood tree. The poor support values 
and topological instability under different analytical conditions render the affinities of 
this undescribed species uncertain.

Discussion

Some of the specimens used in this study were either of small size because of the collec-
tion methods employed (and thus may not have been appropriate for keying using tra-
ditional criteria formulated for mature specimens) or were missing their taxonomically-
informative ultimate legs. Nonetheless, several such specimens could be identified with 
a high degree of accuracy because their sequence data placed them within clades whose 
nomenclature could be established based on standard external morphological characters. 
An example is provided by a juvenile from Brazil (92) that is in poor condition and can-
not be identified to species. However, the analysis shows it to be a juvenile of a Brazilian 
clade assigned to N. (N.) stolli. This approach is likely to be valuable in other groups of 
taxonomically-difficult centipedes that rely heavily on characters of the ultimate leg pair 
but often lack those legs in fixed specimens, such as Cryptops, where the numbers of tibial 
and tarsal saw teeth are fundamental taxonomic characters. The identification of develop-
mental stages or adults without key taxonomic characters is becoming standard for many 
groups of animals, including other arthropod groups, such as insects (Monaghan et al. 
2009; Gattolliat and Monaghan 2010) and arachnids (Fernández et al. 2014).

Some morphologically delimited species were found to be monophyletic groups, like 
N. (N.) divergens in the parsimony analysis, but others were paraphyletic or polyphyletic. 
This could be interpreted as a failure of the taxonomic characters traditionally used to 
delimit species or a failure in reconstructing an accurate tree by the markers selected. The 
second option is unlikely for the reasons outlined below, especially the biogeographical 
patterns exhibited in many clades where “distinct” species from the same regions tend 
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to cluster together and not with their supposed conspecifics from other geographical re-
gions. In particular N. (N.) stolli formed a series of geographic groupings that in part were 
paraphyletic with respect to sympatric species (specifically, to N. (N.) divergens in Mes-
oamerica) or in other cases were found to be distantly related (Brazilian “N. (N.) stolli”). 
The first pattern is consistent with N. (N.) stolli being a grade united by a plesiomorphy (a 
continuous anterior transverse suture on T1), some parts of which are most closely related 
to a species defined by an apomorphic state (i.e., loss of the median extent of the anterior 
transverse suture). The tree topology, however, suggests that the Brazilian specimens iden-
tified as N. (N.) stolli are misidentified. Newportia (N.) monticola is likewise a questionable 
taxon, the monophyletic Costa Rican group never uniting with a specimen of the same 
putative species from Brazil and only variably so with one from Colombia. Brazilian N. 
(N.) monticola and N. (N.) stolli unite in a well-supported clade (JF and BS 100), indicat-
ing that, in this instance, geography is a better predictor of relationships than taxonomy. It 
is noteworthy that N. (N.) stolli and N. (N.) monticola are among the most geographically 
widespread “species” of Newportia, but our results suggest that the wide distribution is 
partly an artifact of morphologically-based identifications. The same evidently applies to 
N. (N.) pusilla, a morphospecies that is regarded as ranging from St. Vincent through Co-
lombia to the Brazilian Amazon (Schileyko and Minelli 1998; Chagas-Júnior et al. 2014). 
Polyphyly of this species in the molecular trees suggests that its diagnostic characters (ab-
sent or rudimentary paramedian sutures on T1 and a lack of ventral spinose processes on 
the ultimate leg femora) evolved convergently in different regions.

Centipede systematics, still strongly influenced by mid 20th Century conceptu-
alisations of species (see Edgecombe 2007), primarily assumes polymorphic and geo-
graphically widespread entities. The existing concepts that N. (N.) monticola and N. 
(N.) stolli are widespread throughout much of Central and South America exemplify 
where morphospecies do not appear to correspond to clades but rather are classes de-
fined by combinations of characters. In these instances, molecular tools may prove to 
be invaluable for species delimitations, and novel morphological characters will need 
to be identified to rediagnose polyphyletic species.
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