Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1038/ncomms8838

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462071

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst

Daniel B. Graham1,2, Christine E. Becker3, Aivi Doan1, Gautam Goel3, Eduardo J. Villablanca1,2,3, Dan Knights4, Amanda Mok1, Aylwin C.Y. Ng1,5, John G. Doench1, David E. Root1, Clary B. Clish1 & Ramnik J. Xavier1,2,3,5,6

The phagocyte oxidative burst, mediated by Nox2 NADPH oxidase-derived reactive oxygen species, confers host defense against a broad spectrum of bacterial and fungal pathogens. Loss-of-function mutations that impair function of the Nox2 complex result in a life-threatening immunodeficiency, and genetic variants of Nox2 subunits have been implicated in pathogenesis of inflammatory bowel disease (IBD). Thus, alterations in the oxidative burst can profoundly impact host defense, yet little is known about regulatory mechanisms that fine-tune this response. Here we report the discovery of regulatory nodes controlling oxidative burst by functional screening of genes within loci linked to human inflammatory disease. Implementing a multi-omics approach, we define transcriptional, metabolic and ubiquitin-cycling nodes controlled by Rbpj, Pfkl and Rnf145, respectively. Furthermore, we implicate Rnf145 in proteostasis of the Nox2 complex by endoplasmic reticulum-associated degradation. Consequently, ablation of Rnf145 in murine macrophages enhances bacterial clearance, and rescues the oxidative burst defects associated with Ncf4 haploinsufficiency.

1 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. 2 Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. 3 Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. 4 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA. 5 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. 6 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. Correspondence and requests for materials should be addressed to D.B.G. (email: dgraham@broadinstitute.org) or to R.J.X. (email: xavier@molbio.mgh.harvard.edu).
Results

Functional genetic screen for phagocyte oxidative burst.

Accumulating evidence demonstrates the importance of phagocyte oxidative burst in maintaining host defense and immune homeostasis in mucosal tissues. Specifically, coding variants in *NCF4* and *NCF2* are associated with IBD. Thus, we reasoned that impaired oxidative burst mediated by the Nox2 complex represents a central pathway in mucosal immunity. Furthermore, we postulated that IBD GWAS loci would contain previously unknown regulators of the Nox2 NADPH oxidase complex. To identify novel regulatory nodes controlling oxidative burst, we performed a functional knockdown screen of genes present within IBD loci, those associated with Mendelian inheritance of IBD, and select genes involved in inflammatory pathways associated with autoimmunity. In total, we screened > 400 candidate genes for functional effects on oxidative burst in RAW264.7 macrophages (Fig. 1a,b). Knockdown of candidate genes and controls (*Ncf4* and *Cat*) was achieved by lentiviral delivery of shRNAs with an average coverage of 5 hairpins per gene, for a total of ~2,000 unique hairpins screened individually. After lentiviral delivery of shRNAs and selection, RAW cells were stimulated with zymosan yeast particles to engage dectin-1-dependent ITAM signalling and induce NADPH oxidase activation. Kinetics of ROS production was monitored over the course of 1 h with the chemiluminescent substrate luminol. In parallel, duplicate samples were assessed for cell viability by Alamar Blue and target gene knockdown by quantitative PCR (qPCR). Results from the primary screen demonstrate the sensitivity of the assay and ability to identify *Ncf4* as a positive regulator and *Cat* as a negative regulator. Furthermore, known ROS activators such as Card9 scored as positive regulators in the screen. To identify negative regulatory nodes in the ROS pathway, we devised a hit-calling strategy using a structured Bayesian approach to control for the per gene false discovery rate (FDR; Fig. 1c). This approach incorporated the experimental structure into the FDR estimation to share strength among multiple shRNAs for the same gene, thus allowing genes with low but consistent support across shRNAs to be identified. A key strength of this approach is in integration of multiple data measurements from multiple hairpins per gene to minimize false positive calls due to off-target effects and/or inefficient target gene knockdown (Supplementary Data 1). Accordingly, we used *Ncf4* to define the parameters of the activator class and *Cat* for the
augmented ROS production, knockdown of increased bacterial burden (c.f.u. at 2 h; Fig. 2c). Consistent with knockdown resulted in impaired bacterial killing, as evidenced by units (c.f.u.) of remaining live bacteria. As a control, Ncf4 extracellular bacteria. Bacterial killing was monitored by lysing were cultured in the presence of gentamicin to kill any remaining macrophages were cultured with bacteria for 30 min to allow infection in CGD 5. After knockdown of candidate genes, based on knockdown efficiency and confirmed that ablation of Rbpj, Pfkl or Rnf145 resulted in augmented knockdown trend towards enhanced zymosan-induced oxidative burst in primed BMDCs, Rnf145 knockdown did not resulted in more effective bacterial killing relative to control shRNAs (Fig. 2c). Thus, perturbation of negative regulatory nodes within the ROS pathway can enhance bacterial killing. Having identified three negative regulatory nodes in the oxidative burst response in RAW cells, we sought to determine if these nodes are functional in primary bone marrow-derived macrophages (BMDMs) and if this is affected by distinct priming stimuli. Thus we knocked down candidate genes in BMDMs and measured the oxidative burst response to zymosan in unprimed cells or those that had been primed with IFN-γ or IL-4. Our results indicate that Rbpj and Pfkl function as negative regulators of zymosan-induced oxidative burst regardless of the priming stimuli being tested (Fig. 3a,b). In contrast, Rnf145 represented a negative regulatory node on priming with IFN-γ or IL-4 but not in unprimed cells (Fig. 3c). We next addressed the possibility that these three regulatory nodes function in a cell type-dependent manner by performing the same experiment in bone marrow-derived dendritic cells (BMDCs). Although Rbpj and Pfkl knockdown trend towards enhanced zymosan-induced oxidative burst in primed BMDCs, Rnf145 knockdown did not (Supplementary Fig. 1). Thus, the oxidative burst may be controlled by distinct regulatory nodes in different cell types and under different stimulation conditions. To further dissect molecular regulation of these nodes in macrophages, we systematically evaluated Rbpj in the context of transcription, Pfkl in metabolism and then focused predominantly on Rnf145 because of its novel role in ubiquitin-dependent control of Nox2 function.

Rbpj is a transcriptional node in the oxidative burst. Enhanced ROS production and antibacterial activity after Rbpj knockdown suggests Notch regulation in macrophages, and we thus sought to determine if Notch signalling directly impacts ROS production in macrophages. In support of this model, ectopic expression of the constitutively active Notch1 intracellular domain (Notch-ICD)
inhibited oxidative burst, suggesting that Notch is a negative regulator in this context (Fig. 4a). To identify transcriptional programmes controlled by the Notch–Rbpj axis in myeloid cells, we knocked down Rbpj in BMDMs and performed transcriptional profiling. Towards this end, we designed a custom Fluidigm panel to measure expression of cytokines, inflammatory markers and transcription factors (Supplementary Data 2). Strikingly, Rbpj knockdown led to increased expression of the Notch target Hes1 (Fig. 4b). Given that Rbpj acts as a transcriptional repressor in the absence of Notch signalling and an activator in its presence, our results suggest that intrinsic Notch signalling is absent or low in cultured macrophages. Thus, Rbpj largely functions as a repressor in this context. Indeed, Rbpj knockdown dramatically upregulated the transcription factor Runx3 and the master regulator of gp91phox expression in myeloid cells Sfpi1 (PU.1)17 (Fig. 4b). Together, Runx3 and PU.1 function cooperatively to induce expression of myeloid-specific genes18. Consistent with this notion, our transcriptional profiling further demonstrated an upregulation (~20%) of gp91phox (Cybb) on knockdown of Rbpj. In addition, Rbpj knockdown in BMDMs resulted in enhanced expression of Ncf1, Ncf4, Cyba and Sfpi1 (Fig. 4b,c). Thus, our results demonstrate that repressive activity of Rbpj in macrophages inhibits a myeloid transcriptional programme associated with expression of Nox2 subunits.
glycolysis, we observed increased lactate and decreased TCA cycle flux. This switch from mitochondrial oxidative phosphorylation to glycolysis has been shown to control glycolytic flux in T cells. In T cells derived from patients with rheumatoid arthritis, Pfkfb3 expression was reduced, glycolysis was impaired and PPP flux was increased, resulting in impaired energy generation and senescence. Thus, inhibition of glycolysis shunts glucose metabolism towards the PPP and increases cellular levels of NADPH, which functions as a cofactor for NADPH oxidase catalysis and superoxide production.

Macrophages. Consistent with our findings in macrophages, Pfkb has been shown to control glycolytic flux in T cells. In T cells derived from patients with rheumatoid arthritis, Pfkfb3 expression was reduced, glycolysis was impaired and PPP flux was increased, resulting in impaired energy generation and senescence. Thus, inhibition of glycolysis shunts glucose metabolism towards the PPP and increases cellular levels of NADPH, which functions as a cofactor for the NADPH oxidase catalysis and superoxide production.

Rnf145 is a ubiquitin-cycling node in the oxidative burst. To identify the function of Rnf145 in the oxidative burst response, we tested the hypothesis that Rnf145 controls a regulatory node functioning in the ubiquitin cycle. Given that Rnf145 contains a C-terminal RING domain and shares structural homology with several transmembrane-anchored E3 ubiquitin ligases involved in endoplasmic reticulum-associated degradation (ERAD), we sought to determine the effects of Rnf145 depletion on the ubiquitin landscape in macrophages. Towards this end, we knocked down Rnf145 in RAW cells and compared the ubiquitin proteome to that in control cells with and without stimulation by IFN-γ and zymosan. After treatment, cells were lysed and subjected to trypsin digest prior to immunoprecipitation with a monoclonal antibody specific for the ubiquitin remnant (KGG) (Lys-Gly-Gly) present on trypsin-cleaved ubiquitin substrates. Ubiquitin substrates were then identified and quantified by MS. We observed several thousand ubiquitinated peptides in macrophages and ~100 of these increased in abundance after zymosan stimulation.
Fluidigm (oxidative burst was measured by luminol chemiluminescence as in Fig. 2a–c. Primary bone marrow-derived macrophages were transduced with lentivirus encoding constitutively active Notch1 ICD expressed from bicistronic IRES–GFP or IRES–GFP alone. Zymosan-induced signalling events such as Erk phosphorylation (Fig. 6d), which resulted in a severe impairment of Nox2 NADPH oxidase-derived phagosomal ROS (Fig. 7c). Moreover, haploinsufficiency of Ncf4 variants, led to a partial defect in oxidative burst (Fig. 7c). We reasoned that Ncf4 haploinsufficiency decreases NADPH oxidase activity by altering the stoichiometry of regulatory subunits (p40phox and indirectly p67phox) and decreases efficiency of their assembly. We hypothesized that increasing gp91phox expression by CRISPR targeting of Rnf145 may promote assembly of the complex even if the regulatory subunits are present at suboptimal levels.

To determine if steady-state levels of the Nox2 complex are controlled by Rnf145 and ubiquitination, we depleted Rnf145 in RAW cells and observed elevated levels of gp91phox as measured by western blot (Fig. 6d and Supplementary Fig. 1a). Importantly, zymosan stimulation did not appear to alter steady-state levels of gp91phox, suggesting that the role of Rnf145 in regulating Nox2 complex subunits is independent of stimulation. Consistent with this notion, depletion of Rnf145 had no effect on zymosan-induced signalling events such as Erk phosphorylation (Fig. 6d), which is a requisite event for activation of the oxidative burst. Having shown increased levels of gp91phox after Rnf145 knockdown, we performed the converse experiment by overexpressing Rnf145 in RAW cells and measuring gp91phox expression by western blot. Indeed, Rnf145 expression reduced protein levels of gp91phox compared with the mock-transduced RAW cells (Fig. 6e). Moreover, we observed increased ubiquitin K48 linkages on gp91phox after ectopic expression of Rnf145 (Fig. 6e and Supplementary Fig. 1b), suggesting that these conjugates are destined for proteosomal destruction through ERAD. In fact, the close parologue of Rnf145, AMFR, has been shown to participate in ERAD.

Similarly, we observed that Rnf145 localizes to the ER along with the core ERAD protein Derlin 1 (Fig. 6f). While Rnf145 localized to the ER, we found that gp91phox was widely distributed throughout the cell, with its primary address in vesicles and the plasma membrane (Fig. 6g). Thus, these data indicate that Rnf145 does not colocalize with mature gp91phox in vesicular structures, but instead may interact with nascent gp91phox protein translated on the rough ER.

Having identified novel regulatory nodes in the oxidative burst pathway, we hypothesized that perturbation of these nodes could compensate for genetic lesions associated with IBD. We first deleted Rnf145 in RAW cells using RNA-guided Cas9 nucleases. Two independent CRISPR lines, each containing an indel mutation rate of ~80% within the Rnf145 coding sequence, led to augmented oxidative burst induced by zymosan (Fig. 7a). As a specificity control, we demonstrated that ectopic expression of human Rnf145 (but not green fluorescent protein (GFP)) in murine RAW cells reduced elevated ROS production in CRISPR-targeted cells (Fig. 7a). We then employed CRISPR technology in primary BMDMs (Fig. 7b) to determine if perturbation of the Rnf145 node can rescue defective oxidative burst associated with Ncf4 deficiency. Like in human subjects, deletion of Ncf4 in mice resulted in severe impairment of Nox2 NADPH oxidase-derived phagosomal ROS (Fig. 7c). Moreover, haploinsufficiency of Ncf4, which may more accurately simulate IBD-associated Ncf4 variants, led to a partial defect in oxidative burst (Fig. 7c).

We reasoned that Ncf4 haploinsufficiency decreases NADPH oxidase activity by altering the stoichiometry of regulatory subunits (p40phox and indirectly p67phox) and decreases efficiency of their assembly. We hypothesized that increasing gp91phox expression by CRISPR targeting of Rnf145 may promote assembly of the complex even if the regulatory subunits are present at suboptimal levels.

Figure 4 | Rbpj negatively regulates a myeloid transcriptional programme controlling expression of Ncf1 (p47phox). (a) RAW264.7 cells were transduced with lentivirus encoding constitutively active Notch1 ICD expressed from bicistronic IRES–GFP or IRES–GFP alone. Zymosan-induced oxidative burst was measured by luminol chemiluminescence as in Fig. 2a–c. Primary bone marrow-derived macrophages were transduced with lentivirus encoding the indicated shRNAs. After 6 h of treatment with the indicated stimuli, macrophages were lysed and subjected to transcriptional profiling by Fluidigm (b) and qPCR (c). Data represent the mean of triplicates ± s.d. *P ≤ 0.05 as determined by Student’s t-test.
levels. Strikingly, we found that CRISPR-mediated deletion of Rnf145 in Ncf4+/- macrophages rescued oxidative burst and restored the response to levels akin to wild type (Fig. 7c,d). Taken together, we leverage functional genomics to discover regulatory nodes controlling oxidative burst and show that perturbation at these nodes can bypass or compensate for genetic lesions associated with IBD.

Discussion

Here we demonstrate the utility of human genetics as a source of candidate genes controlling critical regulatory nodes in immune pathways. Given genetic and functional evidence implicating phagocyte oxidative burst in mucosal immunity, we performed a functional genetic screen of genes within IBD risk loci. We based this strategy on the notion that IBD candidates will be enriched for regulators of key immune pathways, irrespective of their putative relationship with IBD. Thus, our objectives were threefold: (1) to assign function to incompletely annotated genes, (2) to identify critical regulatory nodes constraining oxidative burst and (3) to define the mechanistic basis of Nox2 NADPH oxidase regulation. While the connection between genetic variation and IBD pathophysiology is complex, our data are consistent with the notion that alterations in oxidative burst (either positive or negative) can impose selective pressure on microbial communities in the gut, and that this can precipitate dysbiosis resulting in maladaptive inflammatory pathology.

Transcriptional regulation of oxidative burst was first described with the discovery that IFN-γ primes phagocytes to massively enhance antibacterial function and oxidative burst. Further investigation then revealed the mechanistic basis of Stat1-dependent transcriptional activation of Nox2 subunits. In fact these studies motivated clinical trials demonstrating benefit among CGD patients from IFN-γ therapy, although, as it turns out, efficacy was independent of effects on Nox2 subunit expression. While Nox2 NADPH oxidase transcriptional
Figure 6 | Rnf145 knockdown reduces ubiquitination of the Nox2 complex. (a) RAW264.7 cells were transduced with lentivirus-encoding shRNA targeting Rnf145 or control (LacZ). Cells were then left untreated or stimulated with zymosan for 30 min. Cells were then lysed, and ubiquitinated peptides were immunoprecipitated and enumerated by UbiScan (see methods). Differential abundance of each ubiquitinated peptide was compared between control and Rnf145 knockdown. The network was constructed by anchoring on hit components (>|2.5-fold difference between Rnf145 knockdown and control). Hits are represented by nodes and the network was extended by iteratively incorporating interacting partners using protein–protein interaction data derived from the curated Human Protein Reference Database and genome-wide interactome screens. The network was then pruned to include only first-order interactions (represented by edges) that directly connect the hits from UbiScan (enrichment \(P = 2 \times 10^{-15} \)). (b) Relative abundance of ubiquitinated peptides derived from transmembrane proteins. Values represent fold difference between Rnf145 knockdown and control. (c) Peptide sequences derived from p22\(^{phox}\) and gp91\(^{phox}\) showing ubiquitination sites (*), fold difference in Rnf145 knockdown relative to control and relative abundance (max intensity). (d) Knockdown of Rnf145 was performed in RAW264.7 macrophages (as in Fig. 2a), followed by stimulation with zymosan and western blot for the indicated proteins. (e) Rnf145 was expressed in RAW264.7 cells by lentiviral transduction. Cells were then lysed and analysed by western blot for gp91\(^{phox}\) and ERK2 as a loading control. In addition, gp91\(^{phox}\) was immunoprecipitated to detect K48-specific ubiquitin linkages by western blot. (f) RAW264.7 cells were transduced with lentivirus encoding Rnf145 with a C-terminal V5 epitope tag. Confocal microscopy was performed to visualize cellular localization of Rnf145 (VS), gp91\(^{phox}\) or Derlin 1. Scale bar, 10 \(\mu \)m. Arrows indicate colocalization of Rnf145 and Derlin 1 (f) or gp91\(^{phox}\)-positive vesicles (g).
such as Ncf1, cFms and FcgR. Thus, Notch appears to constrain the myeloid compartment by repressing late-stage differentiation factors controlling phagocyte effector function. In fact, Notch2 is required to enforce late-stage differentiation of CD11b+ mucosal dendritic cells and CD8+ splenic dendritic cells. Moreover, Notch signalling influences myeloid effector function by converging with Toll-like receptor pathways. In this context, intrinsic Notch signalling in macrophages restrains cytokine production in an Rbpj-dependent manner. Our results suggest that intrinsic Notch signalling is low in cultured macrophages, as evidenced by the observation that Rbpj knockdown enhances expression of the Notch target Hes1, and that Rbpj is known to function as a repressor in the absence of Notch signalling.

Of note, we also found that Rbpj knockdown leads to increased expression of Runx3, which has been shown by ChIP-seq to physically bind the Cybb promoter. Given that Runx3 can function together with PU.1 to promote transcriptional activation of myeloid-specific genes in dendritic cells, our data are consistent with a model in which Rbpj-mediated suppression of Runx3 limits PU.1-dependent transcription of Ncf4 subunits. While the complexity of Notch–Rbpj transcriptional regulation in macrophages will require further investigation, our findings collectively highlight the role of Rbpj in restraining the oxidative burst by repressing expression of Ncf4 complex subunits.

Post-transcriptional regulation of the Ncf4 complex occurs at multiple levels. After assembly of the cytosolic regulatory subunits with membrane-associated gp91phox and p22phox, catalytic activity of NADPH oxidase commences. Superoxide generation involves a two-step electron transfer reaction through cofactors bound to gp91phox. First, gp91phox binds NADPH, which donates an electron to FAD. In turn, FAD transfers an electron to haem and subsequently to molecular oxygen for production of superoxide radicals. Thus, metabolic regulation of cellular redox state and NADPH levels form a restriction point that controls the catalytic rate of the oxidative burst. Our metabolomic analyses reveal that the rate-limiting glycolytic enzyme Pfkl regulates NADPH oxidase activity by affecting the PPP and NADPH levels. In the absence of Pfkl, glucose is diverted towards the PPP, which along with controlling purine metabolism is the primary source for cellular NADPH. We observed increased flux through the PPP and augmented oxidative burst in macrophages lacking Pfkl. Consistent with this notion, phagocyte activation by pathogen-associated molecular patterns and inflammatory mediators massively upregulates glucose uptake and utilization. Furthermore, these activation pathways promote a metabolic switch from glycolysis to the PPP by recruiting phosphoglycerate mutase to the Nox2 complex.

In addition to identifying mechanisms controlling oxidative burst at the level of Ncf4 subunit transcription (Rbpj) and...
catalytic function (Pdk), we identify Rnf145 as a novel E3 ubiquitin ligase that regulates gp91phox steady-state protein levels. This is the only E3 ligase that scored among more than a dozen that we screened. Very little is known about regulation and turnover of proteins within the Nox2 complex. Recent work identified gp91phox as a caspase 1 substrate that is cleaved after inflammasome activation; however, this was an inductive event that controlled the duration and amplitude of oxidative burst and had no effect on baseline proteostasis. More recently, gp91phox protein levels were shown to be regulated by Lrrc33, although a specific ubiquitin ligase targeting the Nox2 complex was not identified. Here we identify Rnf145 as required for ubiquitination of the Nox2 complex and precisely define ubiquitinated lysine residues in gp91phox and p22phox. Our data support a model in which Rnf145 controls steady-state levels of the Nox2 complex by ubiquitination. Importantly, the function of Rnf145 as a central ubiquitin ligase controlling oxidative burst has relevant implications for host defense. In fact, perturbation of this ubiquitin-cycling node by ablation of Rnf145 in Ncf4-haploinsufficient macrophages restores oxidative burst to levels in Ncf4-replete cells. This example of epistatic compensation highlights the potential value of identifying regulatory nodes as therapeutic targets.

Taken together, we report key insights from mining genes within GWAS candidate loci and performing genetic screens followed by deep functional analysis. In particular, this approach has proven fruitful in defining central regulatory nodes in the oxidative burst pathway.

Methods

Primary screen and ROS assay. The primary screen was performed in murine RAW264.7 cells (ATCC) that were seeded at a density of 1 x 10⁴ per 100 µl per well in 96-well, clear bottom, black wall plates. After 24 h, each well was transduced with 20 µl of shRNA lentivirus (The RNAi Consortium, Broad Institute) supplemented with 8 µg/ml -1 polybrene (Sigma) and centrifuged at 1,150 g 25°C for 30 min. The following day, media was exchanged and supplemented with 5 µg/ml -1 puromycin (InvivoGen). Three days after selection, cell viability was measured by Alamar Blue assay according to the manufacturer’s recommendation (Life Technologies). Cells were primed overnight with 10 ng/ml -1 murine IFNγ (Peprotech) prior to assaying oxidative burst. Media was exchanged for assay buffer (PBS, 0.9 mM CaCl₂, 0.5 mM MgCl₂, 20 mM dextrose, 200 µM linolein, 25 mM -1-horseradish peroxidase and 100 µg/ml -1 zymosan or heat killed S. aureus) and plates were briefly centrifuged to settle zymosan particles. Luminol-derived chemiluminescence was then monitored in a BioTek SynergyH4 microplate reader every 3 min for 30 min with temperature control at 37 °C. Duplicate plates were designated for RNA extraction and validation of shRNA knockdown by western blot with rabbit anti-Pfkl (AV45774, Sigma, dilution 1:1,000) or rabbit anti-Rbpj (5313S, Cell Signaling Technology, dilution 1:1,000). Where indicated, RAW264.7 cells were transduced with lentivirus encoding murine Rnf145 (C-terminal V5 epitope tag), GFP or human NOTCH1 ICD within a doxycycline inducible lentiviral vector (Addgene). Transcriptional readouts were assessed by qPCR (EvaGreen Supermix, Bio-Rad).

Primary macrophage assays. Murine BMDMs were seeded at 3.5 x 10⁴ cells per 50 µl per well in 96-well, clear bottom, black wall plates. Following 24-48 h in culture with granulocyte-macrophage colony-stimulating factor, cells were transduced with 30 µl of the indicated lentiviral shRNA and cultured for an additional 3 days, at which point media was supplemented with puromycin at a concentration of 4 µg/ml -1. After 2 days in selection, cells were primed with IFN-γ (25 ng/ml -1) or IL-4 (25 ng/ml -1) and stimulated with zymosan as described for the RAW264.7 screen.

Bacterial killing assay. RAW264.7 cells were plated at 5 x 10⁴ per well in 96-well plates in DMEM with 10% FBS overnight. S. aureus (Reynolds strain capsular serotype 5) was grown overnight at 37°C in Columbia media supplemented with 2% NaCl and sub-cultured the next day to the mid-exponential phase (OD₅₆₀nm = 0.8 – 0.9). One hour before infection, media was replaced with DMEM with 1% FCS. S. aureus bacterial particles were disrupted by passing 10 to 15 times through a 30-G needle with a 1-ml syringe and were then added at a multiplicity of infection (MOI) of 5. The plate was centrifuged for 5 min at 515 g, 4°C and incubated at 37°C for 30 min to allow internalization of S. aureus by macrophages. Cells were washed three times with 200 µl Dulbecco’s phosphate-buffered saline (DPBS) to remove non-adherent cells and bactoagar. 200 µl of fresh media containing gentamicin (final concentration of 300 µg/ml -1) was added to kill extracellular bacteria. After 1 h of incubation, media was replaced with fresh DMEM containing 100 µg/ml -1 gentamicin. At indicated time points (time after internalization), supernatants were removed and cells were washed three times in 200 µl DPBS, supplemented with 2% NaCl and sub-cultured the next day to the mid-exponential phase. Supernatants were injected directly onto a 150 mm plate of murine macrophages (RAW264.7, ATCC) seeded at a density of 1 x 10⁵ per well. Plates were briefly centrifuged to settle zymosan particles. Luminol-derived chemiluminescence was then monitored in a BioTek SynergyH4 microplate reader every 3 min for 30 min with temperature control at 37 °C.

Transcriptional readouts. Knockdown of the indicated target genes in murine BMDMs was achieved as described above. Following selection and stimulation, total RNA was extracted (Qiagen RNeasy Mini kit) and subjected to transcriptional profiling with the BioMark HD system (Fluidigm). In brief, murine RAW264.7 RNA was reverse transcribed (qScript Supermix, VWR) prior to target-specific pre-amplification by standard PCR. Custom primers (Supplementary Data 2) specific for inflammatory genes were utilized for pre-amplification followed by qPCR (EvaGreen Supermix, Bio-Rad).

Metabolomics. Endogenous, polar metabolite profiles were measured using two separate triphasic interaction liquid chromatography (HILIC) tandem MS methods. 19 Polar metabolites were identified in the positive ion mode using a liquid chromatography (LC) system comprised of a 1,200 Series pump (Agilent Technologies) and an HTS PAL autosampler (Leap Technologies) that was coupled to a 4,000 QTRAP mass spectrometer (AB SCIEX) equipped with an electrospray ionization source. Samples were prepared by drying 100 µl of cell extract under nitrogen and resuscipend the residue in 10 µl of 10/67.4/22.4/0.2 v/v/v/v water/acetonitrile/methanol/formic acid containing stable isotope-labelled internal standards (valine-d8, Sigma-Aldrich; and phenylalanine-d8, Cambridge Isotope Laboratories). The samples were centrifuged (10 min, 10,000 r.p.m., 4°C) and the supernatants were injected directly onto a 150 mm plate of murine macrophages (RAW264.7, ATCC) seeded at a density of 1 x 10⁵ per well. Plates were briefly centrifuged to settle zymosan particles. Luminol-derived chemiluminescence was then monitored in a BioTek SynergyH4 microplate reader every 3 min for 30 min with temperature control at 37°C. Duplicate plates were designated for RNA extraction and validation of shRNA knockdown by western blot with rabbit anti-Pfkl (AV45774, Sigma, dilution 1:1,000) or rabbit anti-Rbpj (5313S, Cell Signalling Technology, dilution 1:1,000). Where indicated, RAW264.7 cells were transduced with lentivirus encoding murine Rnf145 (C-terminal V5 epitope tag), GFP or human NOTCH1 ICD within bicistronic IRES-GFP cassette of the lentiviral backbone CSGW.

Hit calling. The method assumes that each gene belongs to one of three classes (‘activator,’ ‘null’ or ‘inhibitor’), with the area under the ROS luminescence curve being the metric for each class. For each modelled (AUC) was determined by median/median absolute deviation within plate to control for plate effects; (6) centre data on zero based on positive control inhibitors and activators (for visualization purposes).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8838
© 2015 Macmillan Publishers Limited. All rights reserved.
Ubiquitin proteomics. Rif145 knockdown in RAW264.7 cells was performed as described above, with scale-up for 10 cm dishes. Cells were primed with IFN-γ (10 ng ml⁻¹) overnight, and where indicated stimulated with zymosan (50 μg ml⁻¹) for 30 min. Samples were processed at Cell Signaling Technology, Inc. using the UbiScan proteomic platform as previously described.41–43. Samples were washed once with cold PBS and lysed in urea lysis buffer (200 μM HEPS pH 8.0, 9.0 M urea, 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate). Lysates were snap frozen on dry ice/ethanol until further processing. Cells were sonicated at 15 K output power twice for 20 s, and once for 15 s. The resulting sonicated lysates were centrifuged at 20,000 g for 15 min to remove insoluble material. The yielded protein extracts were reduced and carboxamidomethylated.

After normalizing total protein for each cell line (15 mg of total protein each), proteins were digested overnight with trypsin (Worthington). Resulting peptides were separated from non-peptide material by solid-phase extraction with Sep-Pak Classic C18 cartridges (Waters Corp). Purified peptides were lyophilized for 3 days at 30 mtorr at −65°C (Virtis). Lyophilized peptides were redisolved in IAP buffer (50 mM MOPS pH 7.2, 10 mM NaH2PO4, 50 mM NaCl), and ubiquitinated peptides were enriched by immunoaffinity purification using the Ubiquitin Remnant Motif antibody (35562, Cell Signaling Technology) immobilized on Protein A agarose beads (Roche) following the standard protocol for immunoaffinity enrichment (http://www.cellsignal.com/services/pdfs/PTScan_Proteomics_System_Protocol.pdf). Peptides were eluted from antibody-resin into a total volume of 100 μl in 0.15% trifluoroacetic acid (TFA), and concentrated with C18 STAGE tips.46

Mass spectrometric analysis. The samples were run in duplicate to generate analytical replicates and increase the number of MS/MS identifications from each sample. Peptides were loaded directly onto a 10 cm × 75 μm PicoFrit capillary column packed with Magic C18 AQ reversed-phase resin. The column was developed with a 90-min linear gradient of acetonitrile in 0.125% formic acid delivered at 280 nl min⁻¹. Tandem mass spectra were collected with an LTQ-Orbitrap VELOS hybrid mass spectrometer running XCalibur 2.0.7 SP1 using a top 20 method, a dynamic exclusion repeat count of 1 and a repeat duration of 30 s. Real-time recalibration of mass error was performed using lock mass with a 5 p.p.m. and a retention time window of ±5 p.p.m. precursor ions and 1 Da for product ions. Enzyme specificity was limited to trypsin, with at least one K or R terminus required per peptide and up to four mis-cleavages allowed. Cysteine carboxamidomethylation was specified as a static modification, and methionine oxidation and di-glycine (lysine epsilon-gly-gly modification) was allowed. Results were further narrowed to peptides containing the di-glycine modification. The final false positive discovery rate on motif-containing peptides ranged from 2.0 to 2.6%.

Label-free quantitation. Label-free quantification was performed using Progenesis V4.1 (Nonlinear Dynamics) combined with previously described peak detection software.44,47–49. MS1 peak intensities for ubiquitinated peptides identified in at least one sample were retrieved from the ion chromatogram files of all samples using a mass precision of ±5 p.p.m. and a retention time window of 5 min. Intensity time warping (or chromatographic alignment) was performed across binary comparisons to allow retrieval of the correct peak intensity. Peak intensities for all peptides that changed in abundance between treatments were manually reviewed using XCalibur and the corresponding LC-MS files to ensure accuracy, and where necessary due to varying chromatographic peak shapes between washed once with cold PBS and lysed in urea lysis buffer (200 μM HEPS pH 8.0). Lysates were resolved by PAGE, transferred to Immobilon PVDF membranes (Millipore) and subjected to western blot. Primary antibodies were mouse anti-gp91phox (611415, BD Pharmlingen, dilution 1:1,000), mouse anti-p40(phox) (401965, Cell Signaling Technology, dilution 1:1,000) and rabbit anti-ERK2 (sc-154, Santa Cruz Biotechnology, dilution 1:2,000). Secondary antibodies were horseradish peroxidase conjugates of mouse-anti IgG and anti-rabbit IgG (7074S and 7076S, Cell Signaling Technology dilution, 1:5,000). For immunoprecipitation experiments, lysates were incubated overnight with protein A/G-coupled magnetic beads (I-Rescued coupled to rabbit Anti-PU.1, 5 μg per sample). Western blots were performed as described above with anti-Ubiquitin B4 (12805S, Cell Signaling Technology, dilution 1:1,000).

Microscopy. IFN-γ-primed RAW264.7 cells were allowed to adhere to cover slips, then fixed in 4% paraformaldehyde for 15 min at 37°C. Cells were then stained with mouse monoclonal anti-V5 (R960-25, Invitrogen dilution 1:250), polyclonal rabbit anti-Vav1 (ab129068, dilution 1:250) and polyclonal rabbit anti-Derlin-1 (8897S, Cell Signaling Technology, dilution 1:250) in staining buffer (3% BSA, 0.1% saponin, PBS). Secondary staining was performed with goat anti-rabbit IgG Alexa Fluor 488 (Invitrogen) and goat anti-mouse IgG Alexa Fluor 594 (Invitrogen). After thorough washing, cells were visualized using a laser-scanning confocal microscope (Leica SP5/X) and analysed with ImageJ (NIH).

Crispr. Guide RNAs targeting the mouse genome were selected from the CRISPR design tool and cloned into a phiKO lentiviral vector (a gift from B. Ebert, Harvard Medical School and Broad Institute)40. RAW264.7 or BMDMs were transduced with CRISPR lentivirus as described above, but with concentrated viral supernatant produced by centrifugal filtration (Millipore). Nfκb/−/− mice were a gift from P.T. Hawkins (Babraham Institute, Cambridge, UK).

Animals. All animal studies were conducted under protocols approved by the Subcommitte. All mice have been backcrossed to the C57BL/6 background, and both sexes were utilized for bone marrow harvest at 8–12 weeks of age. References

Acknowledgements
We are grateful to Dr Agniesz Gardet for her help in designing, optimizing and completing the screen, and Bihua Li for technical assistance. We thank Drs Jeffrey Silva and Matthew Stokes at Cell Signaling Technology for expert assistance with proteomics. In addition, we thank Drs Moran Yassour, Isabel Latore and Natalia Nedelevsky for critical comments and advice. R.J.X. was supported by funding from The Leona M. and Harry B. Helmsley Charitable Trust, the Crohn’s and Colitis Foundation of America Genetics Initiative and the National Institutes of Health grant DK043351.

Author contribution
D.B.G., C.E.B., A.D., E.J.V. and A.M. performed the experiments. G.G., D.K. and A.C.Y.N. performed the computational analyses. J.G.D., D.E.R. and C.B.C. provided novel reagents and contributed to experimental design. D.B.G. and R.J.X. conceived the experiments, interpreted the data and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications
Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/