Masamune: a tool for automatic dynamic PET data processing, image reconstruction and integrated PET/MRI data analysis

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/2197-7364-1-S1-A57</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462532</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

Masamune: a tool for automatic dynamic PET data processing, image reconstruction and integrated PET/MRI data analysis

Daniel B Chonde1,2,3*, David Izquierdo-Garcia1, Kevin Chen1,2, Spencer L Bowen1, Ciprian Catana1

From PSMR14: 3rd Conference in PET/MR and SPECT/MR
Kos Island, Greece. 19-21 May 2014

1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA

We describe a novel semi-automated pipeline which integrates advanced data analysis tools for MR and PET with advanced PET reconstruction correction methods (partial volume effect correction [PVC], motion correction [MC], attenuation correction [AC]) in a user-friendly Matlab graphical user interface (GUI).

The reconstruction and analysis GUI is written in Matlab. Computationally intensive tasks in the pipeline are automatically transferred to a high-performance computing cluster and retrieved.

Descriptions of the commercial packages used can be found in their corresponding references. SPM8 [1] is used in MC and AC processing. Comkat [2] and PMOD [3] are used for kinetic modeling. FSL [4] and SPM8 are used for group analysis. Freesurfer [5] is used for regions-of-interest (ROI) definition and smoothing.

Data preprocessing: Head-motion is derived from a number of sources: echo-planar MR images, MR-based motion navigators, and directly from the PET data when MR data is unavailable (e.g. during shimming). Subsequently, the ME-MPRAGE is reoriented to the reference position. Cortical and subcortical ROIs are labeled using FreeSurfer; similarly, the MPRAGE is registered to MNI-space for generating subject-specific atlases.

Image reconstruction: An OP-OSEM algorithm is used for PET reconstruction [6]. MC [7] and PVC [8] can be performed using the results from data preprocessing. AC can be imported directly from CT, using MR-images [9], or through atlas-based methods.

Automated Bolus Arrival Time (BAT) & Image-Derived Input Function: The singles count rate is recorded during PET acquisition. The BAT is determined by fitting a trilinear piecewise function and used as the reference time. Time-of-Flight MR can then be used to segment the arteries of the head and an image-derived input function can be determined using short frames.

We presented a novel pipeline which interfaces with a number of different commercial software to provide improved PET data quantification.
Authors’ details

1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA. 2Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA. 3Program in Biophysics, Harvard University, Cambridge, MA, USA.

Published: 29 July 2014

References

doi:10.1186/2197-7364-1-S1-A57

Cite this article as: Chonde et al.: Masamune: a tool for automatic dynamic PET data processing, image reconstruction and integrated PET/MRI data analysis. EJNMMI Physics 2014 1(Suppl 1):A57

Submit your next manuscript at ➤ springeropen.com