Masamune: a tool for automatic dynamic PET data processing, image reconstruction and integrated PET/MRI data analysis

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/2197-7364-1-S1-A57</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462532</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Masamune: a tool for automatic dynamic PET data processing, image reconstruction and integrated PET/MRI data analysis

Daniel B Chonde1,2,3*, David Izquierdo-Garcia1, Kevin Chen1,2, Spencer L Bowen1, Ciprian Catana1

From PSMR14: 3rd Conference in PET/MR and SPECT/MR
Kos Island, Greece. 19-21 May 2014

We describe a novel semi-automated pipeline which integrates advanced data analysis tools for MR and PET with advanced PET reconstruction correction methods (partial volume effect correction [PVC], motion correction [MC], attenuation correction [AC]) in a user-friendly Matlab graphical user interface (GUI).

The reconstruction and analysis GUI is written in Matlab. Computationally intensive tasks in the pipeline are automatically transferred to a high-performance computing cluster and retrieved.

Descriptions of the commercial packages used can be found in their corresponding references. SPM8 [1] is used in MC and AC processing. Comkat [2] and PMOD [3] are used for kinetic modeling. FSL [4] and SPM8 are used for group analysis. Freesurfer [5] is used for regions-of-interest (ROI) definition and smoothing.

Data preprocessing: Head-motion is derived from a number of sources: echo-planar MR images, MR-based motion navigators, and directly from the PET data when MR data is unavailable (e.g. during shimming). Subsequently, the ME-MPRAGE is reoriented to the reference position. Cortical and subcortical ROIs are labeled using FreeSurfer; similarly, the MPRAGE is registered to MNI-space for generating subject-specific atlases.

Image reconstruction: An OP-OSEM algorithm is used for PET reconstruction [6]. MC [7] and PVC [8] can be performed using the results from data preprocessing. AC can be imported directly from CT, using MR-images [9], or through atlas-based methods.

Automated Bolus Arrival Time (BAT) & Image-Derived Input Function: The singles count rate is recorded during PET acquisition. The BAT is determined by fitting a trilinear piecewise function and used as the reference time. Time-of-Flight MR can then be used to segment the arteries of the head and an image-derived input function can be determined using short frames.

We presented a novel pipeline which interfaces with a number of different commercial software to provide improved PET data quantification.
Authors’ details
1 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA. 2 Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA. 3 Program in Biophysics, Harvard University, Cambridge, MA, USA.

Published: 29 July 2014

References

doi:10.1186/2197-7364-1-S1-A57
Cite this article as: Chonde et al: Masamune: a tool for automatic dynamic PET data processing, image reconstruction and integrated PET/MRI data analysis. EJNMMI Physics 2014 1(Suppl 1):A57

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com