
Abbreviated text input

Citation
Stuart M. Shieber and Ellie Baker. Abbreviated text input. In Proceedings of the 2003
International Conference on Intelligent User Interfaces, pages 293-296, Miami, FL, 2003.

Published Version
http://doi.acm.org/10.1145/604045.604103

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252612

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252612
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Abbreviated%20text%20input&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=f3544ba77b8d80eb4892400b01a626b3&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Abbreviated Text Input

Stuart M. Shieber
Harvard University
33 Oxford Street

Cambridge, MA 02138 USA

shieber@deas.harvard.edu

Ellie Baker
Harvard University
33 Oxford Street

Cambridge, MA 02138 USA

ellie@eecs.harvard.edu

ABSTRACT
We address the problem of improving the efficiency of nat-
ural language text input under degraded conditions (for in-
stance, on PDAs or cell phones or by disabled users) by
taking advantage of the informational redundacy in natural
language. Previous approaches to this problem have been
based on the idea of prediction of the text, but these re-
quire the user to take overt action to verify or select the
system’s predictions. We propose taking advantage of the
duality between prediction and compression. We allow the
user to enter text in compressed form, in particular, using
a simple stipulated abbreviation method that reduces char-
acters by about 30% yet is simple enough that it can be
learned easily and generated relatively fluently. Using sta-
tistical language processing techniques, we can decode the
abbreviated text with a residual word error rate of about
3%, and we expect that simple adaptive methods can im-
prove this to about 1.5%. Because the system’s operation is
completely independent from the user’s, the overhead from
cognitive task switching and attending to the system’s ac-
tions online is eliminated, opening up the possibility that
the compression-based method can achieve text input effi-
ciency improvements where the prediction-based methods
have not.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—interaction styles, natural language; I.2.7 [Arti-

ficial intelligence]: Natural Language Processing—lan-

guage models

General Terms
Human factors

Keywords
text input, abbreviation, compression, prediction, natural-
language processing

Copyright is held by the author/owner.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
ACM 1-58113-586-6/03/0001.

1. INTRODUCTION
The problem of text input with devices under degraded

conditions is not new; disabled users, for instance, have
had to interact with computers under sometimes severely
degraded means, using mouth sticks, symbol-scanning sys-
tems, eye-gaze tracking, and so forth. The problem has
renewed currency, however, because of the increased preva-
lence of small and embedded computing systems (PDAs, cell
phones, digital video recorders, and the like) for which tradi-
tional text input and verification modalities (keyboard and
monitor) are impractical.

Natural language text is highly redundant, inviting the
possibility that the redundancies could be used to allow
more efficient text entry. The traditional approach to take
advantage of this redundacy relies on prediction of the user’s
text. For instance, at each keystroke, the system can pre-
dict the most likely future string the user may be typing
and allow the user to merely verify the prediction rather
than typing all the remaining characters. Alternatively, a
set of predictions can be provided, allowing the user to se-
lect the correct prediction instead of typing its characters.
A paradigm example is the Reactive Keyboard of Darragh
and Witten [4], though the approach arose as early as the
early 1970’s. Though intuitive, the idea suffers in practice
from severe problems: Because users must take overt ac-
tion to verify or select, they must be constantly attending
to the system’s predictions. Typing moves from a fluent,
unconscious task to one in which each keystroke requires a
significant cognitive load. Previous research [6] has shown
that the overheads involved swamp any advantages in speed
gained unless the keystroke rate is extremely slow. For this
reason, these predictive methods are only useful and have
only found acceptance among severely disabled users.1

Our approach is based on the duality of prediction and
compression [1]. A good statistical model of language, one
that can generate good predictions, can inherently be used
for compression as well. If we can have the user enter com-
pressed text whose compression is based on a good predic-
tive model, we can then use that model to decode the com-
pressed text into the intended full text. The advantage of
the compression approach over the previous prediction ap-

1Exceptions that prove the rule include such applications as
URL completion in browsers or variable name completion in
the emacs editor, which are useful because of the extremely
low density and large keystroke count of the “vocabulary”,
and simple prediction methods used on handheld mobile de-
vices, which amount to abbreviation methods after the user
is trained. The method presented here is complementary to
these.

proach is clear: The generation of the (compressed) text is
not an interactive task that requires task switching, verifica-
tion of system proposals, selection of options, and so forth.
The cognitive load increase is limited to that induced by the
ability to fluently generate compressed text.

Because a person must generate the compressed text flu-
ently, we require a human-centered compression method. As
a reductio imagine choosing a standard “computer-centered”
method, say, some Lempel-Ziv variant, as used in the stan-
dard gzip compression facility. We might expect to obtain
a two to one reduction in keystrokes or more, at the cost
of requiring a user to compute the Lempel-Ziv compression
of the original text mentally, an obvious absurdity. The
question arises, then, as to how to devise a human-centered
compression method to limit this cognitive load.

As a proof of concept, we devised a human-centered com-
pression method based on a simple stipulated word abbre-
viation method. A simple stipulated model of abbreviation,
that seems relatively well matched to the natural method,
is simply to drop all vowels.2 (We consider “y” a conso-
nant always.) Noting that letters early in the word are most
predictive of the remainder, we can retain the first letter
even when it is a vowel. (This solves the problem of what
to do with words consisting of only a single vowel as well.)
Finally, we might allow dropping of consecutive duplicate
consonants. Thus, the word “association” would be abbrevi-
ated “asctn” under this method, and the sentence “We have
conducted some preliminary experiments on the problems
of disabbreviation that show the potential for this method.”
would be abbreviated as “W hv cndctd sm prlmnry exprm-
nts on th prblms of dsbrvtn tht shw th ptntl fr th mthd.”
with 38 fewer characters, 31% of the 123 in the original.

2. IMPLEMENTATION
In order to decode text that has been abbreviated in this

way, we constructed a statistical model of the abbreviation
process as a weighted finite-state transducer [9].3 The model
transduces word sequences, weighted according to a lan-
guage model, to the corresponding abbreviated character
sequence. Viterbi decoding, a standard algorithm for effi-
ciently computing the best path through an automaton, can
then be used to reconstruct the maximum likelihood word
sequence that would generate a given abbreviated form.

The weighted finite-state transducer technology is well
suited to this task in that the model can be composed as a
cascade of simpler transducers in an elegant fashion. These
include:

1. An n-gram language model (LM). This model was trained
on some 1.8 million words of text from the Wall Street
Journal using the CMU-Cambridge Statistical Lan-
guage Modeling Toolkit. [2] Special tokens are inserted
for unknown words and numbers. The model was rep-
resented as a weighted finite-state automaton.

2. A spelling model (SP). This transducer converts the

2Something like this has been proposed by Tanaka-Ishii [13]
for Japanese.
3Weighted finite-state transducers constitute a simple gen-
eral technology for modeling probabilistic string-to-string
transformations, which generalize hidden Markov models
and other such techniques. Their nice closure properties,
especially closure under composition, make them ideal for
the present application.

vocabulary of the language model (words) into the in-
put language of the following transducer (characters).
The special tokens are preserved in the transduction.

3. A compression model (CMP). This transducer imple-
ments the stipulated abbreviation model, removing the
vowels and doubled consonants.

4. An unknowns model (UNK). This transducer replaces
the special tokens for unknowns and numbers with se-
quences of characters or digits, respectively, according
to a simple generative model.

The composition of these four transducers forms the entire
abbreviation model.

For instance, the string of words “〈an〉 〈example〉 〈of 〉
〈num〉 〈words〉” would be successively assigned a probability
according to the language model (LM); converted to the se-
quence of characters “an example of 〈num〉 words” (SP);
abbreviated to the sequence “an exmpl of 〈num〉 wrds” (CMP);
and completed by instantiation of the special token 〈num〉
to, e.g., “an exmpl of 5 wrds” (UNK). Through this trans-
duction, then, the model associates the word sequence “〈an〉
〈example〉 〈of 〉 〈num〉 〈words〉” as the underlying source for
the abbreviation “an exmpl of 5 wrds”. Of course, other
word sequences may be transduced to the same character se-
quence, for instance, “〈an〉 〈example〉 〈off 〉 〈num〉 〈wards〉”.
The transducer, through the probabilities manifest in the
submodels, assigns different probabilities to the various sources
of the abbreviated string. Viterbi decoding efficiently selects
the maximum likelihood source.

Once the presumed source for the string is computed by
this method, the decoded string can be generated by a sim-
ple post-process. The special tokens 〈num〉 and 〈unk〉 are
replaced by the corresponding tokens from the abbreviated
form, and the capitalization and punctuation found in the
abbreviated form are reapplied to the spellings of the source
tokens. Thus, the string “An Exmpl of 5 WRDS.” decodes
as “An Example of 5 WORDS.” These extra stages of post-
processing could likely be eliminated by extensions to the
channel model; the current approach was taken as a simple
expedient.

3. EVALUATION
As a first study of the potential effectiveness of this input

method, we ran a test to determine the compression ratio
(character reduction) of the stipulated abbreviation method,
along with the error rate of decoding.

On a small held-out test corpus of some 28,045 characters
(5099 words) taken from the Wall Street Journal, this re-
sulted in a compression ratio of 1.36 to 1, or roughly 26.5%
reduction in the number of characters. (As a reference upper
bound, Lempel-Ziv 77 compression on this corpus provides
a 60.4% reduction. Traditional predictive methods, such
as antic, anticipator, pal, and, predict, have reported
maximal keystroke savings of 20 to 50%. See the discussion
by Soede and Foulds [11] and references cited therein.) The
error rate was only 3.0%, that is only 155 of the 5,099 words
were decoded incorrectly.4 In addition, a major source of
incorrect decoding is repeated out-of-vocabulary items. In

4The simpler method of merely dropping all vowels provides
a slightly greater compression ratio, 1.41 to 1, or 28.9% char-
acter reduction, but the error rate of 4.2% is 40% larger.

Model Words incorrectly decoded Error rate

(out of 5099) percent
uniform 2586 50.7
unigram 310 6.1
bigram 177 3.5
trigram 155 3.0

Figure 1: Performance of the disabbreviation

method using a variety of language models.

a scenario in which a user is correcting errors on a sentence-
by-sentence basis, an adaptive language model should be
able to reconstruct later occurrences of words that were ini-
tially unknown, providing a further reduction in error rate.
We expect that a 1.5% error rate should be achievable in
this way.

Processing resources seem potentially practical as well;
our unoptimized implementation requires sub-second per word
processing times on stock hardware. We expect that more
sophisticated implementation techniques should be able to
reduce this by an order of magnitude or more.

The benefits of language modeling can be clearly seen by
comparing performance against cascades using simpler lan-
guage models. Figure 1 provides performance of the system
under increasingly complex language models, from uniform
to unigram, bigram, and trigram. Of particular importance
is the improvement of the bi- and trigram models over the
unigram model, demonstrating that this approach is likely
to have application to any abbreviation method that ignores
context, as prior methods do.

The use of cascaded finite-state transducers to build the
model allows for a modularity that makes changes to the
model, both small adjustments and wholesale modifications,
straightforward. For example, simply by replacing the CMP
submodel by a model of keypad hashing (which replaces let-
ters with their standard digit equivalent on a phone keypad,
that is, the letters ’a’, ’b’, and ’c’ with the digit ’2’, ’e’,
’f’, and ’g’ with ’3’, etc.), we generate a keypad dehasher
that obtains a 5% error rate on the same test corpus. By
inserting the keypad hashing model after CMP, instead of
replacing CMP with it, we obtain a system allowing keypad

input of abbreviated text; this obtains an error rate of some
12%.

It should be emphasized that these experiments are quite
preliminary. We have made no efforts to address important
frailties in the initial implementation, such as limitations
in vocabulary, lack of adaptivity, and so forth, which we
expect could greatly lower error rate. Alternative stipulated
compression models, for instance, ones incorporating a wider
range of abbreviation techniques (such as those adduced by
Stum and Demasco [12]) would be interesting to pursue.

4. REVIEW OF RELATED RESEARCH
As noted above, text input methods based on predicting

what the user is typing have been widely investigated; see
the work by Darragh and Witten [4] and references cited
therein. Such systems can be found in a variety of tools for
the disabled, and some commercial software. Methods based
on static lookup in a fixed dictionary of codes for words or
phrases include Vanderheiden’s Speedkey [14], along with
a wide range of commercial keyboard macro tools that re-

quire user customization. All rely on the user’s memoriza-
tion of the codes, which must be extensive to provide much
compression advantage. Systematic stipulated compression
models can be found hidden in stenographic methods such
as Speedwriting, though there is no provision for automated
decompression.

Some human factors research on the design of command
abbreviations for small vocabularies has been performed.
John et al. [7], for instance, show that vowel-dropping leads
to more easily recalled abbreviations but slower throughput
than abbreviations based on escaped special characters. Ex-
trapolation of such results to abbreviation of arbitrary text
is problematic, but the results are not inconsistent with the
possibility of throughput benefits under reasonable condi-
tions.

Study of the structure of natural abbreviation behavior
has been limited: Rowe and Laitinen [10] describe a system
for semiautomatic disabbreviation of variable names (such
as “tempvar” for “temporary variable”) in computer pro-
grams, based on their analysis of attested rules for construct-
ing such abbreviations. Stum and Demasco [12] investigate
a variety of rules that people seem to use in generating ab-
breviations, but do not place the rules in a system that
allows the kind of automated disabbreviation we are able to
perform.

Abbreviation methods at the sentence level include the
“compansion” method of Demasco, McCoy, and colleagues
[5, 8] and the template approach of Copestake [3]. These
techniques, though bearing their own limitations, are fully
complementary to the character-based disabbreviation tech-
niques proposed here, and the user interface techniques for
error correction developed for our application may be appli-
cable there as well.

5. CONCLUSION
Our approach to reducing the effort for natural-language

text input by using abbreviation as a human-centered com-
pression method, rather than prediction, provides a sim-
ple method to attain both reasonable keystroke (or equiv-
alent) reduction and reduced task-switching cognitive load.
Whether the method provides significant increased through-
put (in contrast to most prediction-based methods) awaits
user studies that we hope to begin shortly.

This work can be extended in various ways. First, the nat-
uralness of abbreviation might be improved by allowing the
user to enter any sort of abbreviation and using a language
model trained on a corpus of such naturally abbreviated text
for decoding. Second, more sophisticated stipulated abbre-
viation methods can be tested, which might provide better
compression ratios at the cost of learnability and fluency of
generation.

6. ACKNOWLEDGEMENTS
The authors are indebted to Winston Cheng, Bryan Choi,

and Reggie Harris for their help in implementation of the
software described herein. This work was supported in part
by grant IRI-9712068 from the National Science Foundation.

7. REFERENCES
[1] T. C. Bell, J. G. Cleary, and I. H. Witten. Text

Compression. Prentice Hall, Englewood Cliffs, NJ,
1990.

[2] P. Clarkson and R. Rosenfeld. Statistical language
modeling using the CMU-Cambridge toolkit. In Proc.

Eurospeech ’97, pages 2707–2710, Rhodes, Greece,
1997.

[3] A. Copestake. Augmented and alternative NLP
techniques for augmentative and alternative
communication. In Proceedings of the ACL Workshop

on Natural Language Processing for Communication

Aids, pages 37–42, Madrid, 1997. ACL.

[4] J. J. Darragh and I. H. Witten. The Reactive

Keyboard. Cambridge Series on Human-Computer
Interaction. Cambridge University Press, Cambridge,
England, 1992.

[5] P. W. Demasco and K. F. McCoy. Generation text
from compressed input: An intelligent interface for
people with severe motor impairments.
Communications of the ACM, 35(5):68–78, May 1992.

[6] C. Goodenough-Trepagnier, M. J. Rosen, and
B. Galdieri. Word menu reduces communication rate.
In Proceedings of the Ninth Annual Conference on

Rehabilitation Technology, pages 354–356,
Minneapolis, MN, June 23-26 1986. RESNA.

[7] B. E. John, P. S. Rosenbloom, and A. Newell. A
theory of stimulus-response compatibility applied to
human-computer interaction. In Proceedings of the

CHI ’85 Conference on Human Factors in Computing

Systems, pages 213–219. ACM Press, 1985.

[8] K. McCoy, P. Demasco, M. Jones, C. Pennington,
P. Vanderheyden, and W. Zickus. A communication

tool for people with disabilities: Lexical semantics for
filling in the pieces. In Proceedings of ASSETS ’94,
Marina del Ray, CA, 1994.

[9] F. C. N. Pereira and M. Riley. Speech recognition by
composition of weighted finite automata. In E. Roche
and Y. Schabes, editors, Finite-State Devices for

Natural Language Processing. MIT Press, Cambridge,
MA, 1997.

[10] N. C. Rowe and K. Laitinen. Semiautomatic
disabbreviation of technical text. Information

Processing and Management, 31(6):851–857, 1995.

[11] M. Soede and R. A. Foulds. Dilemma of prediction in
communication aids and mental load. In Proceedings

of the Ninth Annual Conference on Rehabilitation

Technology, pages 357–359, Minneapolis, MN, June
23–26 1986. RESNA.

[12] G. M. Stum and P. Demasco. Flexible abbreviation
expansion. In J. Presperin, editor, Proceedings of the

RESNA International ’92 Conference, pages 371–373,
Washington, D.C., 1992. RESNA.

[13] K. Tanaka-Ishii, Y. Inutsuka, and M. Takeichi.
Japanese input system with digits: Can Japanese be
input only with consonants? In Proceedings of the

Human Language Technology Conference, San Diego,
CA, March 2001.

[14] G. C. Vanderheiden and D. P. Kelso. Comparative
analysis of fixed-vocabulary communication
acceleration techniques. Augmentative and Alternative

Communication, 3(4):196–206, 1987.

