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Abstract
Multicore main-memory database performance can col-
lapse when many transactions contend on the same data.
Contending transactions are executed serially—either by
locks or by optimistic concurrency control aborts—in
order to ensure that they have serializable effects. This
leaves many cores idle and performance poor. We intro-
duce a new concurrency control technique, phase recon-
ciliation, that solves this problem for many important
workloads. Doppel, our phase reconciliation database,
repeatedly cycles through joined, split, and reconcilia-
tion phases. Joined phases use traditional concurrency
control and allow any transaction to execute. When
workload contention causes unnecessary serial execu-
tion, Doppel switches to a split phase. There, updates
to contended items modify per-core state, and thus pro-
ceed in parallel on different cores. Not all transactions
can execute in a split phase; for example, all modifica-
tions to a contended item must commute. A reconcilia-
tion phase merges these per-core states into the global
store, producing a complete database ready for joined-
phase transactions. A key aspect of this design is deter-
mining which items to split, and which operations to al-
low on split items.

Phase reconciliation helps most when there are many
updates to a few popular database records. Its through-
put is up to 38× higher than conventional concurrency
control protocols on microbenchmarks, and up to 3× on
a larger application, at the cost of increased latency for
some transactions.

1 Introduction
The key to good multicore performance and scalability
is the elimination of serial execution. Cores should make
progress in parallel whenever possible; the implementa-
tion should not force cores to wait for one another.

But serial execution sometimes appears to be an in-
herent feature of a problem. Most databases, for exam-
ple, guarantee serializable results: the effect of executing
a set of transactions in parallel should equal the effect
of the same transactions executed in some serial order.
This requires care when concurrent transactions conflict,
which happens when one of them writes a record that
the other either reads or writes. Database concurrency
control protocols—mostly variants of two-phase lock-

ing (2PL) or optimistic concurrency control (OCC)—
enforce serializability on conflicting transactions by ex-
ecuting them serially: one transaction will wait for the
other, either by spinning on a lock (2PL) or by aborting
and retrying (OCC).

Unfortunately, conflicts are common in some impor-
tant real-world database workloads. For instance, con-
sider an auction web site with skewed item popularity.
As a popular item’s auction time approaches, and users
strive to win the auction, a large fraction of concurrent
transactions might update the item’s current highest bid.
Modern multicore databases will execute these transac-
tions serially, causing huge reductions in throughput.

We present phase reconciliation, a new concurrency
control technique that can execute some highly conflict-
ing workloads efficiently in parallel, while still guar-
anteeing serializability; and Doppel, a new in-memory
database based on phase reconciliation.

Our basic technique is to split logical values across
cores. We were inspired by efficient multicore counter
designs, such as for packet counters, which partition a
logical value into n counters, one per core. To increment
the logical counter, a core updates its per-core value; to
read it, a core reconciles these per-core values into one
correct value by adding them together. This design is less
contentious than a single global counter as long as writes
greatly outnumber reads. But simple value splitting is too
restrictive for general database use; splitting every item
in the database would explode transaction overhead, and
reconciling values on every read is costly. Instead, we dy-
namically shift data between split and reconciled states,
based on observed contention.

A key design decision was to amortize the impact of
value reconciliation over many transactions by execut-
ing different transactions in different phases. In joined
phases, the database’s structures are accessed using
OCC. There are no per-core values and any transaction
can execute (albeit with potentially high contention). In
split phases, in contrast, updates are applied when pos-
sible to split per-core values rather than the global store.
This greatly reduces contention on split data, but for cor-
rectness not all transactions may execute. Inappropriate
uses of split data cause a transaction to block. Finally,
short reconciliation phases reconcile these per-core val-
ues into the global store. When a reconciliation phase
ends, blocked transactions resume and the next joined
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phase begins. Thus, conflicting writes operate efficiently
in the split phase, reads of frequently-updated data op-
erate efficiently in the joined phase, and the system can
achieve high overall performance even for challenging
conflicting workloads.

The workloads that work best with phase reconcilia-
tion are ones with frequently-updated data items where
contentious updates are commutative (they have the same
overall effect regardless of order). Commutativity allows
different cores to update their per-core values without co-
ordination. Applicable situations include maintenance of
the highest bids in the auction example, counts of votes
on popular items, and maintenance of “top-k” lists for
news aggregators such as Reddit [2].

The contributions of this work are the phase reconcil-
iation technique and an implementation of phase recon-
ciliation in Doppel. We show that phase reconciliation
improves the overall throughput of various contentious
workloads by up to 38× over OCC and 19× over 2PL,
and has read throughput comparable to OCC. We port an
auction website, RUBiS, to use Doppel and show Dop-
pel improves bidding throughput with popular auctions
by up to 3× over OCC.

2 Related Work
The idea of phase reconciliation is related to ideas in
transactional memory, executing fast transactions on in-
memory databases, and exploiting commutativity to rec-
oncile divergent values, particularly in multicore operat-
ing systems and distributed systems.

Transactional memory. In designing Doppel we were
inspired by some novel uses of transactional memory.
Several designs have been proposed dividing transac-
tions into phases, or rescheduling transactions to avoid
aborts. Lev et al. propose the idea of using phases to sup-
port executing transactions both on best-effort hardware
transactional memory and software transactional mem-
ory [21]. We leverage a similar idea to run transactions
in different modes which are optimized for the types of
transactions in those modes. Sync-Phase splits transac-
tions up into computation and commit phases [25]. We
do not split a transaction across phases, but assign trans-
actions to different phases, based on the type of data they
access and the operations they perform.

Transactional memory has been used directly for
database transactions [20]. These transactions are of-
ten too large to use hardware transactional memory in
a straightforward manner, so this work develops tech-
niques to split transactions and apply them using times-
tamp ordering [8]. Still, spurious aborts are common in
TM implementations of databases, since some memory
writes to index data structures (which abort TM trans-
actions) are irrelevant to database conflicts. One tech-
nique for addressing this problem on multicore architec-

tures is rescheduling conflicting operations after detec-
tion to avoid continuous retries [7]. On contentious work-
loads with many conflicting writes, transactional mem-
ory would still be forced to abort or run the transactions
one at a time. Our techniques would help in this situation.

Main-memory database concurrency control. Con-
ventional wisdom is that when requests in the work-
load frequently conflict, they must serialize for correct-
ness [16]. Given that, most related work has focused on
improving scalability in the database engine for work-
loads which do not inherently conflict. Several databases
try to leverage multiple cores by partitioning the data
and running one partition per core. Systems like H-
store/VoltDB [28, 29], HyPer [17], and Dora [23] all em-
ploy this technique. It is reasonable when the data is per-
fectly partitionable, but the overhead of cross-partition
transactions in these systems is significant, and finding a
good partitioning can be difficult. In our problem space
(data contention) partitioning won’t necessarily help; a
single popular record with many writes wouldn’t be able
to utilize multiple cores. Hyder [9] uses a technique
called meld [10], which lets individual servers or cores
operate on a snapshot of the database and submit requests
for commits to a central log. Each server processes the
log and determines commit or abort decisions determin-
istically. Doppel also processes on local data copies but
by restricting transaction execution to phases, can com-
mit without global communication.

Multimed [24] also replicates data per core, but does
so for read availability instead of write performance as in
Doppel. The central write manager in Multimed is a bot-
tleneck. Doppel partitions local copies of data amongst
cores for writes and provides a way to re-merge the data
for access by other cores.

Doppel uses optimistic concurrency control, of which
there have been many variants [4, 8, 10, 18, 19, 30].
We use the algorithm in Silo [30], which is very effec-
tive at reducing contention in the commit protocol, but
does not reduce contention caused by conflicting data
writes. Larson et al. [19] explore optimistic and pes-
simistic multiversion concurrency control algorithms for
main-memory databases, and this work is implemented
in Microsoft’s Hekaton [14]. This work presents ideas
to eliminate contention due to locking and latches; we
go further to address the problem of contention caused
by conflicting writes to data. In future work we would
like to implement a version of Doppel using pessimistic
concurrency control. Doppel’s split phase techniques are
related to ideas which take advantage of commutativity
and abstract data types in concurrency control [15, 31].

Multicore scalability. Linux developers have put a
lot of effort into achieving parallel performance on
multiprocessor systems. Doppel adopts ideas from the
multicore scalability community, including the use of
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commutativity to remove scalability bottlenecks [13].
OpLog [11] uses the idea of per-core data structures
on contentious write workloads to increase parallelism,
and Refcache [12] uses per-core counters, deltas, and
epochs. This work tends to shift the performance burden
from writes onto reads, which reconcile the per-core data
structures whenever they execute. Doppel also shifts the
burden onto reads, but phase reconciliation aims to re-
duce this performance burden in absolute terms by amor-
tizing the effect of reconciliation over many transactions.
Our contribution is making these ideas work in a larger
transaction system.

Distributed consistency. Some work in distributed
systems has explored the idea of using commutativity
to reduce concurrency control, usually forgoing serial-
izability. RedBlue consistency [22] uses the idea of blue,
eventually consistent local operations which do not re-
quire coordination and red, consistent operations which
do. Blue phase operations are analagous to Doppel’s op-
erations in the split phase. Walter [27] uses the idea of
counting sets to avoid conflicts. Doppel could use any
Conflict-Free Replicated Data Type (CRDT) [26] with
its update operations in the split phase, but does not limit
data items to specific operations outside the split phase.

One way of thinking about phase reconciliation is
that by restricting operations only during phases but not
between them, we support both scalable (per-core) im-
plementations of commutative operations and efficient
implementations of non-commutative operations on the
same data items.

3 System model
We implemented phase reconciliation in a multicore, in-
memory database called Doppel. Doppel has a low-level
key/value store interface, and clients submit transactions
in the form of procedures. Doppel provides serializable
transactions.

Doppel transactions are one-shot: once begun, a trans-
action runs to completion without communication or disk
I/O. Combined with an in-memory database, this means
threads will not block due to user or disk stalls. One-
shot transactions are used extensively in online transac-
tion processing workloads [5, 28]. Worker threads, one
per core, run transactions.

Our implementation of Doppel does not currently
provide durability. Existing work suggests that asyn-
chronous batched logging could be added to Doppel
without becoming a bottleneck [19, 30].

Doppel records have typed values, and each type sup-
ports one or more operations. Transactions interact with
the database via calls to operations. For example, the
Max(k,n) operation looks up an integer record with key
k, and sets its value to the maximum of its current value
and n. Some operations return values—Get(k), for ex-

ample, returns the value of key k—and others do not;
some operations modify the database and others do not.
Each operation accesses exactly one database record.
This isn’t a functional restriction: users can build multi-
record operations from single-record ones using transac-
tions.

4 Split operations
A phase reconciliation database, such as Doppel, detects
contended database records and, during split and recon-
ciliation phases, marks them as split. For such records,
operations that would normally contend can proceed in
parallel.

1. At the beginning of each split phase, Doppel initial-
izes per-core slices for each split record. There is
one slice per contended record per core.

2. During the split phase, all operations on split
records are applied to their per-core slices.

3. During the reconciliation phase, the per-core slices
are merged back into the global store.

The combination of applying the operation to a slice and
the merge step should have the same effect as the opera-
tion would normally. However, the code required to up-
date a slice may be quite different from the code required
to update a normal record.

To ensure good performance, per-core slices must be
quick to initialize, and operations on slices must be
fast. Most critically, the merging step, where per-core
slices are merged into the global store, must take O(J)
time where J is the number of cores, instead of O(N)
time where N is the number of operations applied. This
precludes some designs. For instance, one might think
that split-phase execution could log updates to per-core
slices, with the reconciliation phase applying the logged
updates in time order; but this would cause those updates
to execute serially, exactly the performance problem we
want to avoid.

To ensure correctness, Doppel must ensure serializ-
ability. Executing transactions concurrently in a split
phase must have the same effects as executing those same
transactions in some serial order. Specifically, consider
the set of transactions that commit in some split phase.
Then there must exist a serial order of those transactions
that satisfies:

1. The result of merging per-core slices with the global
store is the same as if the transactions had executed,
in the serial order, against the global store.

2. Every operation executed on a split record gets the
same return value as if it had executed, in the serial
order, against the global store.
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3. Every operation executed on the global store gets
the same return value as it would in the serial order.

An example of an operation that meets these require-
ments is Max(k,n) on integer records, which assigns
v[k] ← max{v[k],n} and returns nothing. When Dop-
pel detects contention on Max(k,n) operations for some
key k, it marks k as split for Max. When entering the
next split phase, Doppel initializes per-core slices c j[k]
with the global value v[k]. When a transaction on core
j commits an operation Max(k,n), Doppel sets c j[k]←
max{c j[k],n}. Key k is temporarily reserved for Max op-
erations; a transaction that tries to execute another kind
of operation on k will block until the following joined
phase. When the split phase is over, Doppel merges the
per-core slices by setting v[k]←max j c j[k].

This implementation of Max is efficient because per-
core slices are fast to initialize, fast to update, and fast
to merge. If many concurrent transactions call Max(k,n)
during a split phase, Doppel executes them in parallel on
multiple cores with no coordination, getting good par-
allel speedup over the serial execution of conventional
OCC or locking. Another reason for efficiency is that
Doppel avoids expensive cache line transfers relating to
contended data; these can make OCC and locking on
many cores slower than serial execution on a single core.

Doppel’s implementation is also correct. The main
reason is that Max commutes with itself: the effect of a
set of Max(k,n) operations on v[k] is independent of their
order. When operations do not commute, Doppel must
enforce a serial order on those operations using global
coordination. Per-core slices, which avoid coordination
by design, thus work only for commutative operations.
It’s also important that Doppel restricts key k during the
split phase to accept Max operations only. This means
that all split-phase operations on k commute, and it’s
safe to apply them to the per-core slices (even though
the slices suppress information about the global execu-
tion order). Finally, Max returns nothing, which is triv-
ially the same as it would return when executed against
the global store. We extend this argument in §5.6.

Doppel supports several splittable operations beyond
Max. We ensure these operations are both fast and cor-
rect by following some simple guidelines; a more com-
plex implementation could relax these guidelines some-
what, as long as it still achieved the properties above.

1. Every splittable operation must commute with it-
self.

2. Every splittable operation must return nothing.

3. The system selects one splittable operation per split
record per split phase. The selected operation can
change between phases—for example, the operation

operation for key k might be Min in one split phase,
and Max in the next—but within a given phase, any
operation but the selected operation causes the con-
taining transaction to abort (and retry in the next
joined phase).

4. The size of a per-core slice is independent of the
number of operations that executed on that slice.

Doppel’s current splittable operations are as follows.

• Max(k,n) and Min(k,n) replace k’s integer value
with the maximum/minimum of it and n.

• Add(k,n) adds n to k’s integer value.

• OPut(k,o, x) is an operation on ordered tuples. An
ordered tuple is a 3-tuple (o, j, x) where o, the order,
is a number (or several numbers in lexicographic or-
der); j is the ID of the core that wrote the tuple; and
x is an arbitrary byte string. If k’s current value is
(o, j, x) and OPut(k,o′, x′) is executed by core j′,
then k’s value is replaced by (o′, j′, x′) if o′ > o,
or if o′ = o and j′ > j. Absent records are treated
as having o = −∞. The order and core ID compo-
nents make OPut commutative. Doppel also sup-
ports the usual Put(k, x) operation for any type, but
this doesn’t commute and thus cannot be split.

• TopKInsert(k,o, x) is an operation on top-K sets. A
top-K set is like a bounded set of ordered tuples:
it contains at most K items, where each item is a
3-tuple (o, j, x) of order, core ID, and byte string.
When core j′ executes TopKInsert(k,o′, x′), Dop-
pel inserts the tuple (o′, j′, x′) into the relevant top-
K set. At most one tuple per order value is allowed:
in case of duplicate order, the record with the high-
est core ID is chosen. If the top-K contains more
than K tuples, the system then drops the tuple with
the smallest order. Again, the order and core ID
components make TopKInsert commutative.

More operations could easily be added (for instance,
multiply).

5 Design
This section describes phase reconciliation in the context
of Doppel. First, we describe the three phases of phase
reconciliation. Second, we describe how updates are rec-
onciled and how records are marked as either split or rec-
onciled. Next, we describe how the system transitions be-
tween phases. We close with a brief argument that Dop-
pel’s implementation produces serializable results.
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Joined Phase!

Core	  0	  

Split Phase!

Read	  and	  write	  sets	  

Conflict!	  

R	   W

Core	  1	  

R	   W

Core	  0	  

No	  reads	  

R

Core	  1	  

PW	   W	   R PW	   W	  

Figure 1: Concurrent transactions executing on different cores, shown in the joined phase and split phase. In the split phase certain data is split so
that writes don’t conflict.

Data: read set R, write set W

// Part 1
for record, operation in sorted(W) do

lock(record);
commit-tid← generate-tid()
// Part 2
for record, read-tid in R do

if record.tid , read-tid
or (record.locked and record <W)

then abort();

// Part 3
for record, operation in W do

apply(operation, record, commit-tid);
unlock(record);

Figure 2: Doppel’s joined phase commit protocol. Fences are elided.

5.1 Joined phase execution
A joined phase can execute any transaction. All records
are reconciled—there is no notion of split data and there
are no per-core slices—so the protocol treats all records
the same.

Joined-phase execution could use any concurrency
control protocol. However, some designs make more
sense for overall performance than others. If all is work-
ing according to plan, the joined phase will have few con-
flicts; transactions that conflict should execute in the split
phase. This is why Doppel’s joined phase uses optimistic
concurrency control (OCC), which performs better than
locking when conflicts are rare.

The left side of Figure 1 shows two transactions exe-
cuting on different cores in a joined phase, and Figure 2
shows the joined-phase commit protocol, which is based
on that of Silo [30]. Records have transaction IDs (TIDs);
these indicate the ID of the last transaction to write the
non-split record, and help detect conflicts. A read set and
a write set are maintained for each executing transac-
tion. During execution, a transaction buffers its writes
and records the TIDs for all values read or written in

its read set. At commit time, the transaction locks the
records in its write set (in a global order to prevent dead-
lock) and aborts if any are locked; obtains a TID; vali-
dates its read set, aborting if any values in the read set
have changed since they were read, or are concurrently
locked by other transactions; and finally writes the new
values and TIDs to the shared store.

To avoid overhead and contention on TID assignment,
our implementation assigns TIDs locally, using per-core
information and the TIDs in the read set. The resulting
commit protocol is serializable, but the TID order might
diverge from the serial order.

Each transaction executes within a single phase. Any
transaction that commits in a joined phase executed com-
pletely within that joined phase. Doppel thus cannot
leave a joined phase for the following split phase until
all current transactions commit or abort. As we see be-
low, this requires coordination across threads.

5.2 Split phase execution
A split phase can execute in parallel some transactions
that would normally contend. Accesses to reconciled
data proceed much as in a joined phase, using OCC,
but split-data operations execute on per-core slices. Split
phases cannot execute all transactions, however. As we
saw in §4, Doppel selects one operation per split record
per split phase. A transaction that invokes an unselected
operation on a split record will be aborted and stashed
for restart during the next joined phase.

The right side of Figure 1 shows a split phase, with
each transaction writing to per-core slices. For example,
a transaction that executed an Add(k,10) operation on a
split numeric record might add 10 to the local core’s slice
for that record.

When a split phase transaction commits, Doppel uses
the algorithm in Figure 3. It is similar to the algorithm in
Figure 2 with a few important differences. The write set
W contains only un-split data, while SW buffers updates
to split data. The commit protocol applies the SW updates
to the per-core slices. Since these slices are inherently
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Data: read set R, reconciled write set W, split
write set SW

// Part 1
for record, operation in sorted(W) do

lock(record);
commit-tid← generate-tid()
// Part 2
for record, read-tid in R do

if record.tid , read-tid
or (record.locked and record <W)

then abort();

// Part 3
for record, operation in W do

apply(operation, record, commit-tid);
unlock(record);

for slice, operation in SW do
slice-apply(operation, slice, commit-tid);

Figure 3: Doppel’s split phase commit protocol.

Data: per-core slices S for core j

for record, operation, slice in S do
lock(record);
merge-apply(operation, slice, record);
unlock(record);

S ← ∅

Figure 4: Doppel’s per-core reconciliation phase protocol.

invisible to concurrently running transactions, there is no
need to lock them or check their version numbers. (Any
concurrent transaction must be running on another core,
since each core runs transactions to completion one at a
time.)

Any transaction that commits in a split phase executed
completely within that split phase; Doppel does not en-
ter the following joined phase until all of the split-phase
transactions commit or abort.

5.3 Reconciliation phase execution
During a reconciliation phase, each core stops process-
ing transactions and merges its per-core slices with the
global store. For example, for a split record that used
Max, each core locks the global record, sets its value to
the maximum of the previous value and its per-core slice,
and unlocks the record. This involves serial processing of
the per-core slices, but the expense is amortized over all
the transactions that executed in the split phase. The per-
core slices are then cleared and the database enters the
next joined phase.

5.4 Phase transitions
Transitions between phases are managed by a coordina-
tor thread and apply globally, across the entire database.
To initiate a transition from a joined phase to the

next split phase, the coordinator begins by publishing
the phase change in a global variable. Workers check
this variable between transactions; when they notice a
change, they stop processing new transactions, acknowl-
edge the change, and wait for permission to proceed.
When all workers have acknowledged the change, the
coordinator releases them, and workers start executing
transactions in split mode. A similar process transitions
from a split phase to the next reconciliation phase. When
a split-phase worker notices a transition to the recon-
ciliation phase, it stops processing transactions, merges
its per-core slices with the global store, and then ac-
knowledges the phase transition and waits for permis-
sion to proceed. Once all workers have acknowledged the
change, the coordinator releases them to the next joined
phase; each worker restarts any transactions it stashed in
the split phase and starts accepting new transactions. It
is safe for reconciliation to proceed in parallel with other
cores’ split-phase transactions since reconciliation modi-
fies the global versions of split records, while split-phase
transactions access per-core slices. No transactions will
start joined phase operations on formerly split data un-
til the coordinator has received acknowledgements from
all workers for the phase transition, meaning they all fin-
ished their merge.

The Doppel coordinator usually starts a phase change
every 20 milliseconds, but feedback mechanisms allow it
to flexibly adjust to the workload. If, in a joined phase, no
records appear contended—or they contend on unsplit-
table operations—the coordinator delays the next split
phase. A worker can also delay a split phase by refusing
to acknowledge it, and our workers delay acknowledg-
ing a split phase until they have committed or aborted
all previously-stashed transactions. Finally, if, in a split
phase, workers have to abort and stash too many transac-
tions, the coordinator hurries the next joined phase.

5.5 Classification
Doppel automatically decides how records should be
split. During joined execution, Doppel samples transac-
tions’ conflicting record accesses, and keeps a count of
which records are most conflicted (are causing the most
aborts) and by which operations. During the transition
to the split phase, a coordinator thread examines these
counts and marks the most conflicted records as split
data for the next phase. Each core reads this list before
the start of the next split phase in order to know which
records are restricted. Doppel also samples which trans-
actions are stashed due to incompatible operations on
split data during the split phase, and uses this to con-
sider whether to move a split record back to reconciled
or change its assigned operation. Since split records in
the split phase will not cause conficts, Doppel uses write
sampling to estimate if a split record might still be con-
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tended.
Doppel also supports manual data labeling (“this

record should be split for this operation”), but we only
use automatic detection in our experiments.

5.6 Serializability
This section sketches an argument that Doppel transac-
tions are serializable.

Since transactions don’t cross phases—any commit-
ted transaction executes entirely within a single phase—
we can consider phases as units. Joined phases are
clearly serializable since they just implement OCC, but
to show that split and reconciliation phases are serial-
izable, we must consider per-core slices. So consider
a split–reconciliation phase pair that commits a set of
transactions. We will show that there is a serial exe-
cution of those transactions against the global store—
without using per-core slices—that produces the same
output global store and the same operation results as the
concurrent execution. Since the operations produce iden-
tical results, any conditional logic inside the transactions
will make identical decisions in concurrent execution as
in the serial order, so the transactions as a whole will be-
have identically.

Consider the transactions that commit in a split phase.
These transactions can access both split records and
non-split records. The non-split records use OCC, so
the transactions are serializable with respect to non-split
records. It remains to be shown that at least one serial
order valid for non-split records is valid for split records
as well. We show that, in fact, any serial order that works
for non-split records also works for split records. Con-
sider a split record r with currently selected operation Op.
(We can consider one record at a time because each op-
eration affects only one record.) Since it is splittable, Op
commutes with itself and returns nothing. All commit-
ted split-phase operations on r must use Op, since Dop-
pel aborts transactions that use non-selected operations.
So these operations trivially return the same results in
any serial order as in the concurrent execution: Op al-
ways returns nothing! Commutativity shows that the fi-
nal value produced by applying the Op operations to the
global store is the same regardless of the serial order cho-
sen. This value also equals the outcome of applying the
Ops to per-core slices and then merging those slices into
the global store, though the reasons why depend on the
operation. This concludes the argument.

6 Implementation
Doppel is implemented as a multithreaded server written
in Go. Go made thread management and RPC easy, but
caused problems with scaling to many cores, particular-
ity in the Go runtime’s scheduling and memory manage-
ment. In our experiments we carefully managed memory

func max-merge(key Key) {
val := local-get(key)

g-val := global-get(key)

global-set(key, max(g-val, val))

}

func oput-merge(key Key,
phase TID) {

order, coreid, val := local-get(key)

// note that coreid == system.MyCoreID()

g-order, g-coreid, g-val := global-get(key)

if order > g-order ||
(order == g-order && coreid > g-coreid) {

global-set(key, (order, coreid, val))

}

}

Figure 5: Doppel Max and OPut merge functions.

allocation to avoid this contention at high core counts.
Doppel runs one worker thread per core, and one

coordinator thread which is responsible for changing
phases and synchronizing workers when progressing to
a new phase. Doppel uses channels to synchronize phase
changes and acknowledgements between the coordina-
tor and workers. It briefly pauses processing transac-
tions while moving between phases; we found that this
affected throughput at high core counts. Another de-
sign could execute transactions that do not read or write
past or future split data while the system is transitioning
phases.

Workers read and write to a shared store, which is a
set of key/value maps, using per-key locks. The maps are
implemented as hash tables. Clients submit transactions
written in Go to any worker, indicating the transaction
to execute along with arguments. Doppel supports RPC
from remote clients over TCP, but we do not measure
this in §8. All workers have per-core slices for the split
phases.

Developers write transactions in Go with no knowl-
edge of reconciled data, split data, per-core slices, or
phases. They access data using a key/value get and set
interface or using the operations mentioned in §4.

7 Application Experience
We implemented two test applications: a feature of a so-
cial networking site where users can like pages, and a
version of the RUBiS auction site benchmark.

The LIKE application simulates a set of users “liking”
profile pages. Each update transaction writes a record in-
serting the user’s like of a page, and then increments a
per-page sum of likes. Each read transaction reads the
user’s last like and reads the total number of likes for
some page. With a high level of skew, this application
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func StoreBid(bidder, item, amt) (*Bid, TID) {
bidkey := NewKey()

bid := Bid {

Item: item,

Bidder: bidder,

Price: amt,

}

Put(bidkey, bid)

highest := Get(MaxBidKey(item))

if amt > highest {
Put(MaxBidKey(item), amt)

Put(MaxBidderKey(item), bidder)

}

numBids := Get(NumBidsKey(item))

Put(NumBidsKey(item), numBids+1)

tid := Commit() // applies writes or aborts

return &bid, tid
}

Figure 6: Original RUBiS StoreBid transaction.

explores the case where there are many users but only a
few popular pages; thus the increments often conflict, but
the inserts of individual records recording user likes do
not. We expect the per-page sums for the popular page
records to be marked as split data in the split phase, for
use with the Add operation.

We used RUBiS [6], an auction website modeled af-
ter eBay, to evaluate Doppel on a realistic application.
RUBiS users can register items for auction, place bids,
make comments, and browse listings. RUBiS has 7 ta-
bles (users, items, categories, regions, bids, buy now,
and comments) and 26 interactions based on 17 database
transactions. We ported a RUBiS implementation to Go
for use with Doppel.

There are a few notable transactions in the RU-
BiS workload for which Doppel is particularly suited:
StoreBid, which inserts a user’s bid and updates auc-
tion metadata for an item, and StoreComment, which
publishes a user’s comment on an item and updates the
rating for the auction owner. RUBiS materializes the
maxBid, maxBidder, and numBids per auction, and a
userRating per user based on comments on an owning
user’s auction items. We show RUBiS’s StoreBid trans-
action in Figure 6.

If an auction is very popular, there is a greater chance
two users are bidding or commenting on it at the same
time, and that their transactions will issue conflicting
writes. At first glance it might not seem like Doppel
could help with the StoreBid transaction; the auction
metadata is contended and could potentially be split, but
each StoreBid transaction requires reading the current
bid to see if it should be updated, and reading the current
number of bids to add one. Recall that split data cannot

func StoreBid(bidder, item, amt) (&Bid, TID) {
bidkey := NewKey()

bid := Bid {

Item: item,

Bidder: bidder,

Price: amt,

}

Put(bidkey, bid)

Max(MaxBidKey(item), amt)

OPut(MaxBidderKey(item),

([amt, GetTimestamp()], MyCoreID(), bidder))

Add(NumBidsKey(item), 1)

TopKInsert(BidsPerItemIndexKey(item),

amt, bidkey)

tid := Commit() // applies writes or aborts

return &bid, tid
}

Figure 7: Doppel StoreBid transaction.

be read during a split phase, so as written in Figure 6 the
transaction would have to execute in a joined phase, and
would not benefit from local per-core operations.

But note that the StoreBid transaction does not re-
turn the current winner, value of the highest bid, or num-
ber of bids to the caller, and the only reason it needs
to read those values is to perform commutative Max
and Add operations. Figure 7 shows the Doppel version
of the transaction that exploits these observations. The
new version uses the maximum bid in OPut to choose
the correct core’s maxBidder value (the logic here says
the highest bid should determine the value of that key).
This changes the semantics of StoreBid slightly. In the
original StoreBid if two concurrent transactions bid the
same highest value for an auction, the first to commit is
the one that wins. In Figure 7, if two concurrent trans-
actions bid the same highest value for an auction at the
same coarse-grained timestamp, the one with the highest
core ID will win. Doppel can execute Figure 7 in the split
phase.

Using the top-K set record type, Doppel can sup-
port inserts to contended lists. The original RUBiS
benchmark does not specify indexes, but we use top-
K sets to make browsing queries faster. We modify
StoreItem to insert new items into top-K set indexes
on category and region, and we modify StoreBid
to insert new bids on an item into a top-K set index per
item, bidsPerItemIndex. SearchItemsByCategory,
SearchItemsByRegion, and ViewBidHistory read
from these records. Finally, we modify StoreComment
to use Add on the userRating.

These examples show how Doppel’s commutative op-
erations allow seemingly conflicting transactions to be
re-cast in a way that allows concurrent execution. This
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pattern apppears in many other Web applications. For
example, Reddit [2] also materializes vote counts, com-
ment counts, and links per subreddit [3]. Twitter [1] ma-
terializes follower/following counts and ordered lists of
tweets for users’ timelines.

8 Evaluation
This section presents measurements of Doppel’s perfor-
mance, supporting the following hypotheses:

• Doppel increases throughput for transactions with
conflicting writes to split data (§8.2).
• Doppel can cope with changes in which records are

contended (§8.3).
• Doppel makes good decisions about which records

to split when key popularity follows a smooth dis-
tribution (§8.4).
• Doppel can help workloads with a mix of read and

write transactions on split data (§8.5).
• Doppel transactions which read split data have high

latency (§8.6).
• Doppel increases throughput for a realistic applica-

tion (§8.8).

8.1 Setup
All experiments are executed on an 80-core Intel ma-
chine with 8 2.4Ghz 10-core Intel chips and 256 GB of
RAM, running 64-bit Linux 3.12.9. In the scalability ex-
periments, after the first socket, we add cores an entire
socket at a time. We run most fixed-core experiments on
20 cores.

The worker thread on each core both generates trans-
actions as if it were a client, and executes those transac-
tions. If a transaction aborts, the thread saves the transac-
tion to try at a later time, chosen with exponential back-
off, and generates a new transaction. backoff, and gener-
ates a new transaction. Throughput is measured as the
total number of transactions completed divided by to-
tal running time; at some point we stop generating new
transactions and then measure total running time as the
latest time that any existing transaction completes (ignor-
ing saved transactions). Each point is the mean of three
consecutive 20-second runs, with error bars showing the
min and max.

The Doppel coordinator changes the phase every 20
milliseconds. Doppel uses the technique described in
§5.5 to determine which data to split. The benchmarks
omit many costs associated with a real database; for ex-
ample we pre-allocate all the records and do not incur
any costs related to network, RPC, or disk.

In most experiments we measure phase reconciliation
(Doppel), optimistic concurrency control (OCC), and
two-phase locking (2PL). Doppel and OCC transactions
abort and later retry when they see a locked item; 2PL
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Figure 8: Total throughput for INCR1 as a function of the percentage
of transactions that increment the single hot key. 20 cores. The vertical
line indicates when Doppel starts splitting the hot key.

uses Go’s read-write mutexes. Both OCC and 2PL are
implemented in the same framework as Doppel.

8.2 Parallelism versus Conflicts
This section shows that Doppel improves performance
on a workload with many conflicting writes, using the
following microbenchmark:

INCR1 microbenchmark. There are 1M 16-byte
keys, and each transaction increments the value of a
single key. There is a single popular key and we vary
the percentage of transactions which increment that key;
each other transaction randomly chooses from the not-
popular keys.

This experiment compares Doppel with OCC, 2PL,
and a system called Atomic. Doppel without split keys
and OCC read the value of a key, compute the new value,
and try to lock the key and validate that it hasn’t changed
since it was first read. If the key is locked or its version
has changed, both abort the transaction and save it to try
again later. 2PL waits for a write lock on the key, reads it,
and then writes the new value. 2PL never aborts. Atomic
uses an atomic increment instruction with no other con-
currency control. Atomic represents an upper bound for
locking schemes.

Figure 8 shows the throughputs of these schemes with
INCR1 as a function of the percentage of transactions
that write the single hot key.

At the extreme left of Figure 8, when there is little con-
flict, Doppel does not split the hot key, causing it to be-
have and perform similarly to OCC. With few conflicts,
all of the schemes benefit from the 20 cores available.

As one moves to the right in Figure 8, OCC, 2PL, and
Atomic provide decreasing total throughput. The high-
level reason is that they must execute operations on the
hot key serially, on only one core at a time. Thus their
throughputs ultimately drop by roughly a factor of 20,
as they move from exploiting 20 cores to doing useful

9



0M

1M

2M

3M

4M

 0  10  20  30  40  50  60  70  80

T
h

ro
u

g
h

p
u

t 
(t

x
n

s
/s

e
c
/c

o
re

)

number of cores

Doppel
OCC
2PL

Atomic

Figure 9: Throughput per core for INCR1 when all transactions incre-
ment a single hot key. The y-axis shows per-core throughput, so perfect
scalability would result in a horizontal line.

work on only one core. The differences in throughput
among the three schemes stem from differences in con-
currency control efficiency: Atomic uses the hardware
locking provided by the cache coherence and interlocked
instruction machinery; 2PL uses Go mutexes which yield
the CPU; while OCC saves and re-starts aborted transac-
tions. The drop-off starts at an x value of about 5%; this
is roughly the point at which the probability of more than
one of the 20 cores using the hot item starts to be signif-
icant.

Doppel has the highest throughput for most of Figure 8
because once it splits the key, it continues to get paral-
lel speedup from the 20 cores as more transactions use
the hot key. Towards the left in Figure 8, Doppel obtains
parallel speedup from operations on different keys; to-
wards the right, from split operations on the one hot key.
The vertical line indicates where Doppel starts splitting
the hot key. Doppel throughput gradually increases as a
smaller fraction of operations apply to non-popular keys,
and thus a smaller fraction incur the DRAM latency re-
quired to fetch such keys from memory. When 100% of
transactions increment the one hot key, Doppel performs
6.2× better than Atomic, 19× better than 2PL, and 38×
better than OCC.

We also ran the INCR1 benchmark on Silo to com-
pare Doppel’s performance to an existing system. Silo
has lower performance than our OCC implementation at
all points in Figure 8, in part because it implements more
features. When the transactions choose keys uniformly,
Silo finishes 11.8M transactions per second on 20 cores.
Its performance drops to 102K transactions per second
when 100% of transactions write the hot key.

To illustrate the part of Doppel’s advantage that is due
to parallel speedup, Figure 9 shows multi-core scaling
when all transactions increment the same key. The y-
axis shows transactions/sec/core, so perfect scalability
(perfect parallel speedup) would result in a horizontal
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Figure 10: Throughput over time on INCR1 when 10% of transactions
increment a hot key, and that hot key changes every 5 seconds.

line. Doppel falls short of perfect speedup, but neverthe-
less yields significant additional throughput for each core
added. The lines for the other schemes are close to 1/x
(additional cores add nothing to the total throughput),
consistent with essentially serial execution. The Doppel
line decreases because phase changes take longer with
more cores; phase change must wait for all cores to fin-
ish their current transaction.

In summary, Figure 8 shows that when even a small
fraction of transactions write the same key, Doppel can
help performance. It does so by parallelizing update op-
erations on the popular key.

8.3 Changing Workloads
Data popularity may change over time. Figure 10 shows
the throughput over time for the INCR1 benchmark with
10% of transactions writing the hot key, with the iden-
tity of the one hot key changing every 5 seconds. Dop-
pel throughput drops every time the popular key changes
and a new key starts gathering conflicts. Once Doppel
has measured enough conflict on the new popular key, it
marks it as split. The adverse effect on Doppel’s through-
put is small since it adjusts quickly to each change.

8.4 Deciding What to Split
Doppel must decide whether to split each key. At the ex-
tremes, the decision is easy: splitting a key that causes
few aborts is not worth the overhead, while splitting a
key that causes many aborts may greatly increase par-
allelism. Section 8.2 explored this spectrum for a single
popular key. This section explores a harder set of situa-
tions, ones in which there is a smooth falloff in the dis-
tribution of key popularity. That is, there is no clear dis-
tinction between hot keys and non-hot keys. The main
question is whether Doppel chooses the right number (if
any) of most-popular keys to split.

This experiment uses a Zipfian distribution of popu-
larity, in which the kth most popular item is accessed in
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Figure 11: Total throughput for INCRZ as a function of α (the Zipfian
distribution parameter). The skewness of the popularity distribution in-
creases to the right. 20 cores. The vertical line indicates when Doppel
starts splitting keys.

proportion to 1/kα. We vary α to explore different skews
in the popularity distribution, using INCRZ:

INCRZ microbenchmark. There are 1M 16-byte
keys. Each transaction increments the value of one key,
chosen with a Zipfian distribution of popularity.

Figure 11 shows total throughput as a function of α. At
the far left of the graph, key access is uniform. Atomic
performs better than Doppel and OCC, and both better
than 2PL, for the same reasons that govern the left-hand
extreme of Figure 8.

As the skew in key popularity grows—for α values up
to about 0.8—all schemes provide increasing through-
put. The reason is that they all enjoy better cache locality
as a set of popular keys emerge. Doppel does not split
any keys in this region, and hence provides throughput
similar to that of OCC.

Figure 11 shows that Doppel starts to display an ad-
vantage once α is greater than 0.8, because it starts split-
ting. These larger α values cause a significant fraction
of transactions to involve the most popular few keys; Ta-
ble 1 shows some example popularities. Table 2 shows
how many keys Doppel splits for each α. As α increases
to 2.0, Doppel splits the 2nd, 3rd, and 4th-most popular
keys as well, since a significant fraction of the transac-
tions modify them. Though the graph doesn’t show this
region, with even larger α values Doppel would return to
splitting just one key.

In summary, for this workload Doppel does a good job
of identifying which and how many keys are worth split-
ting, despite the gradual transition from popular to un-
popular keys.

8.5 Mixed Workloads
This section shows how Doppel behaves when workloads
both read and write popular keys. The best situation for
Doppel is when there are lots of update operations to the
contended key, and no other operations. If there are other

α 1st 2nd 10th 100th

0.0 .0001% .0001% .0001% .0001%
0.2 .0013% .0011% .0008% .0005%
0.4 .0151% .0114% .0060% .0024%
0.6 .1597% .1054% .0401% .0101%
0.8 1.337% .7678% .2119% .0336%
1.0 6.953% 3.476% .6951% .0695%
1.2 18.95% 8.250% 1.196% .0755%
1.4 32.30% 12.24% 1.286% .0512%
1.6 43.76% 14.43% 1.099% .0276%
1.8 53.13% 15.26% .8420% .0133%
2.0 60.80% 15.20% .6079% .0061%

Table 1: The percentage of writes to the first, second, 10th, and 100th
most popular keys in Zipfian distributions for different values of α, 1M
keys.

α # Moved % Reqs

< 1 0 0.0
1.0 2 10.5
1.2 4 35.9
1.4 4 56.1
1.6 4 70.5
1.8 4 80.1
2.0 3 82.7

Table 2: The number of keys Doppel moves for different values of α in
the INCRZ benchmark.

operations on a split key, such as reads, Doppel’s phases
essentially batch writes into the split phases, and reads
into the joined phases; this segregation and batching in-
creases parallelism, but incurs the expense of stashing
the read transactions during the split phase. In addition,
the presence of the non-update operations makes it less
clear to Doppel’s algorithms whether it is a good idea to
split the hot key. To evaluate Doppel’s performance on a
more challenging, but still understandable, workload, we
use the LIKE benchmark from §7 that simulates users
“liking” pages on a social networking site.

LIKE. The database contains a row for each user and
a row for each page. Each transaction involves a user and
a page. The user is always chosen uniformly at random.
A write transaction chooses a page from a Zipfian distri-
bution, increments the page’s count of likes, and updates
the user’s row; the user’s row is rarely contended, but
the page’s count might be. A read transaction chooses a
page using the same Zipfian distribution, and reads the
page’s count and the user’s row. There are 1M users and
1M pages, and unless specified otherwise the transaction
mix is 50% reads and 50% writes.

Figure 12 shows throughput for Doppel, OCC, and
2PL with LIKE on 20 cores as a function of the frac-
tion of transactions that write, with α = 1.4. This setup
causes the most popular page key to be used in 32% of
transactions.
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Figure 12: Throughput of the LIKE benchmark with 20 cores as a func-
tion of the fraction of transactions that write, α = 1.4.

We would expect OCC to perform the best on a read-
mostly workload, which it does. Until 30% writes Dop-
pel does not split, and as a result performs about the same
as OCC.

Doppel starts splitting data when there are 30% write
transactions. This situation is tricky for Doppel because
the split keys are read even more than they are written,
so many read transactions have to be stashed. Figure 12
shows that Doppel nevertheless gets the highest through-
put for all subsequent write percentages.

This example shows that Doppel’s batching of transac-
tions into phases allows it to extract parallel performance
from contended writes even when there are many reads
to the contended data.

8.6 Latency
Doppel stashes transactions which read split data in the
split phase. This increases latency, because such trans-
actions have to wait up to 20 milliseconds for the next
joined phase. We use the LIKE benchmark to explore la-
tency on two workloads (uniform popularity and skewed
popularity with Zipf parameter α = 1.4), separating la-
tencies for read-only transactions and transactions that
write. To measure latency, we measure the difference be-
tween the time each transaction is first submitted and
when it commits. The workload is half read and half
write transactions.

Table 3 shows the results. Doppel and OCC perform
similarly with the uniform workload because Doppel
does not split any data. In the skewed workload Doppel’s
write latency is the lowest because it splits the four most
popular page records, so that write transactions that up-
date those records do not need to wait for serial access to
the data. Doppel’s read latencies are high because reads
of hot data during split mode have to wait up to 20 mil-
liseconds for the next joined phase. This delay is the price
Doppel pays for achieving almost twice the throughput
of OCC.
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Figure 13: Average read transaction latencies in Doppel with the LIKE
benchmark, varying phase length. A uniform workload, a skewed work-
load with 50% reads and 50% writes, and a skewed workload with 10%
reads and 90% writes. 20 cores.

8.7 Phase Length
When a transaction tries to read split data during a split
phase, its expected latency is determined by the phase
length; a shorter phase length results in less latency, but
potentially lowered throughput. Figures 13 and 14 show
how phase length affects read latency and throughput on
three LIKE workloads. “Uniform” uses uniform key pop-
ularity and has 50% read transactions; nothing is split.
“Skewed” has Zipfian popularity with α = 1.4 and 50%
read transactions; once the phase length is > 2ms, which
is long enough to accumulate conflicts, Doppel moves
either 4 or 5 keys to split data. “Skewed Write Heavy”
has Zipfian popularity with α = 1.4 and 10% read trans-
actions; Doppel moves 20 keys to split data.

Figure 13 shows that the phase length directly deter-
mines the latency of transactions that read hot data and
have to be stashed. Shorter phases are better for latency,
but too short reduces throughput. The throughputs are
low to the extreme left in Figure 14 because phase change
takes about half a millisecond (waiting for all cores to
finish split phase), so phase change overhead dominates
throughput at very short phase lengths. For these work-
loads, the measurements suggest that the smallest phase
length consistent with good throughput is five millisec-
onds.

8.8 RUBiS
Do Doppel’s techniques help in a complete application?
We measure RUBiS [6], an auction Web site implemen-
tation, to answer this question.

Section 7 describes our RUBiS port to Doppel.
We modify six transactions to use Doppel opera-
tions; StoreBid, StoreComment, and StoreItem
to use Max, Add, OPut, and TopKInsert, and
SearchItemsByCategory, SearchItemsByRegion,
and ViewBidHistory to read from top-K set records
as indexes. This means Doppel can potentially mark
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Uniform workload Skewed workload
Mean latency 99% latency Txn/s Mean latency 99% latency Txn/s

Doppel 1µs R / 1µs W 1µs R / 2µs W 11.8M 1262µs R / 4µs W 20804µs R / 2µs W 10.3M
OCC 1µs R / 1µs W 1µs R / 2µs W 11.9M 26µs R / 1069µs W 22µs R / 1229µs W 5.6M
2PL 1µs R / 1µs W 2µs R / 2µs W 9.5M 1µs R / 8µs W 3µs R / 215µs W 3.7M

Table 3: Average and 99% read and write latencies for Doppel, OCC, and 2PL on two LIKE workloads: a uniform workload and a skewed workload
with α = 1.4. Times are in microseconds. OCC never finishes 156 read transactions and 8871 write transactions in the skewed workload. 20 cores.

0M

2M

4M

6M

8M

10M

12M

14M

 0  10  20  30  40  50  60  70  80  90  100

T
h

ro
u

g
h

p
u

t 
(t

x
n

s
/s

e
c
)

phase length (ms)

Uniform
Contentious

Contentious Write Heavy

Figure 14: Throughput in Doppel with the LIKE benchmark, vary-
ing phase length. A uniform workload, a skewed workload with 50%
reads and 50% writes, and a skewed workload with 10% reads and 90%
writes. 20 cores.

RUBiS-B RUBiS-C
Doppel 3.4 3.3
OCC 3.5 1.1
2PL 2.2 0.5

Table 4: The throughput of Doppel, OCC, and 2PL on RUBiS-B and
on RUBiS-C with Zipfian parameter α= 1.8, in millions of transactions
per second. 20 cores.

auction metadata as split data. The implementation
includes only the database transactions; there are no web
servers or browsers.

We measured the throughput of two RUBiS work-
loads. One is the Bidding workload specified in the RU-
BiS benchmark, which consists of 15% read-write trans-
actions and 85% read-only transactions; this ends up pro-
ducing 7% total writes and 93% total reads. We call this
RUBiS-B. In RUBiS-B most users are browsing listings
and viewing items without placing a bid. There are 1M
users bidding on 33K auctions, and access is uniform, so
when bidding, most users are doing so on different auc-
tions. This workload has few conflicts and is read-heavy.

We also created a higher-contention workload called
RUBiS-C. 50% of its transactions are bids on items cho-
sen with a Zipfian distribution and varying α. This ap-
proximates very popular auctions nearing their close.
The workload executes non-bid transactions in corre-
spondingly reduced proportions.

Table 4 shows how Doppel’s throughput compares
to OCC and 2PL. The RUBiS-C column uses a some-
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Figure 15: The RUBiS-C benchmark, varying α on the x-axis. The
skewness of the popularity distribution increases to the right. 20 cores.

what arbitrary α = 1.8. As expected, Doppel provides
no advantage on uniform workloads, but is significantly
faster than OCC and 2PL when updates are applied with
skewed record popularity.

Figure 15 explores the relationship between RUBiS-C
record popularity skew and Doppel’s ability to beat OCC
and 2PL. Doppel gets close to the same throughput up to
α = 1. Afterwards, Doppel gets higher performance than
OCC. When α = 1.8 Doppel gets approximately 3× the
performance of OCC and 6× the performance of 2PL.

Doppel’s techniques make the most difference for the
StoreBid transaction, shown in Figures 6 and 7. Doppel
marks the number of bids, max bid, max bidder, and the
list of bids per item of popular products as split data. It’s
important that the programmer wrote the transaction in a
way that Doppel can split all of these data items; if the
update for any one of the items had been programmed
in a non-splittable way (e.g., with explicit read and write
operations) Doppel would execute the transactions seri-
ally and get far less parallel speedup.

In Figure 15 with α = 1.8, OCC spends roughly 67%
of its time running StoreBid; much of this time is con-
sumed by retrying aborted transactions. Doppel elimi-
nates almost all of this 67% by running the transactions
in parallel, which is why Doppel gets three times as much
throughput as OCC with α = 1.8.

These RUBiS measurements show that Doppel is able
to parallelize substantial transactions with updates to
multiple records and, skew permitting, significantly out-
perform OCC.
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9 Conclusion
Doppel is an in-memory transactional database which
uses phase reconciliation to increase throughput. The key
idea is to execute certain types of conflicting operations
on local per-core data, in parallel, and to reconcile the
per-core states periodically. On workloads with many
writes to a small number of popular records, Doppel can
increase throughput by a factor related to the number of
available cores.
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