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Chamber identity programs drive early functional
partitioning of the heart
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The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and

expands by adding second heart field (SHF) cells. While both lineages exist already in

teleosts, the primordial contributions of FHF and SHF to heart structure and function remain

incompletely understood. Here we delineate the functional contribution of the FHF and SHF to

the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl

reporters initially delineate the lateral plate mesoderm, including heart progenitors.

Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed

this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF

contributions to the heart. High-resolution physiology reveals distinctive electrical properties

of each heart field territory that define a functional boundary within the single zebrafish

ventricle. Our data establish that the transcriptional program driving cardiac septation

regulates physiologic ventricle partitioning, which successively provides mechanical advan-

tages of sequential contraction.
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4 Institute of Molecular Life Sciences (IMLS), University of Zürich, 8057 Zürich, Switzerland. 5 Cardiovascular Division, Brigham and Women’s Hospital,
Harvard Medical School, Boston, Massachusetts 02115, USA. 6 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School,
Charlestown, Massachusetts 02129, USA. * These authors contributed equally to this work. w Present addresses: Max-Delbrück Center for Molecular
Medicine (MDC), 13125 Berlin-Buch, Germany (D.P.); Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New
Zealand (A.J.D.). Correspondence and requests for materials should be addressed to C.A.M. (email: camacrae@bics.bwh.harvard.edu)
or to L.I.Z. (email: zon@enders.tch.harvard.edu).

NATURE COMMUNICATIONS | 6:8146 | DOI: 10.1038/ncomms9146 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:camacrae@bics.bwh.harvard.edu
mailto:zon@enders.tch.harvard.edu
http://www.nature.com/naturecommunications


T
he cardiovascular and haematopoietic lineages arise as
multipotent cells in seemingly dispersed territories of the
embryo. Shared FLK1 expression1 and common regulation

by the transcription factor SCL/TAL1 (ref. 2) suggest that
the synchronous development of the cardiovascular and
haematopoietic lineages results either from exposure to similar
signalling environments in different parts of the embryo or prior
shared specification during gastrulation. Similarly, OSR1 and
HAND2 broadly demarcate bilateral areas within mesoderm with
putative cardiac, endothelial, and renal potential3, while the
adjoining precursors for cardiac muscle and upper limbs express
the T-box transcription factor TBX5 (ref. 4). The lateral plate
mesoderm thus provides a molecular framework for remarkably
distinct, yet intimately connected developmental cell lineages.

The heart forms as a primitive tube derived from cells
migrating in the anterior lateral plate mesoderm (ALPM) that
have been characterized as the first heart field (FHF), before
elongating through the addition of second heart field (SHF) cells
at either pole5,6. In higher organisms, the FHF establishes the left
ventricle that supports systemic circulation, while the SHF forms
the atria and the right ventricle that is central to pulmonary
circulation as well as contributing to the outflow tracts. This
division, demarcated by a physical interventricular septum, has
suggested a later evolutionary origin of the SHF as a part of the
terrestrial vertebrate body plan with a dedicated lung circuit.
Recent findings contest this hypothesis, as the teleost zebrafish
(Danio rerio)7–10 and even the tunicate Ciona (Ciona
intestinalis)11 also feature SHF myocardium, revealing an
ancient evolutionary origin of the two heart field lineages
before the emergence of septation and pulmonary circulation12.
The factors determining the emergence of this complex divide
into FHF and SHF remain elusive as indeed do the factors that
control how these cellular populations migrate and integrate into
the maturing organ. This uncertainty is in part due to the limited
number of genetic FHF markers13–15, the incompletely delineated
developmental relationships of the two myocardial lineages, and
the limited data on their distinct functional repertoires.

Key regulators of septum formation between the left and right
ventricle in mammals, including the transcription factors TXB5
and PITX2, feature loss-of-function phenotypes that affect
development of the two-chambered zebrafish heart4,16,17,
suggesting uncharacterized primordial functions of these
septation regulators before the evolution of any physical
boundaries between heart chambers. Here we used transgenic
zebrafish reporters based on the regulatory element of the
draculin (drl) gene to investigate the interplay between the two
heart fields. We find that the septation regulators tbx5 and pitx2
control the relative contributions of FHF versus SHF to the heart
tube, and that a correct ratio of cells with each of these two fates
and the establishment of a precise physiologic boundary between
these two populations are necessary for normal cardiac function.
Our findings reveal that the fundamental regulatory programs
that drive septation in higher vertebrates already coordinate
regional myocardial coupling within the teleost ventricle.

Results
A zebrafish drl reporter labels the lateral plate mesoderm.
While seeking genetic labels to study the early emergence
of haematopoietic and cardiovascular lineages in zebrafish, we
isolated the regulatory region of the drl gene (Fig. 1a). drl encodes
a zinc-finger protein of unidentified function, yet is (by
messenger RNA (mRNA) in situ hybridization (ISH)) the earliest
haematopoietic marker to delineate the anterior and posterior
haematopoietic territories before becoming undetectable after
24 h.p.f. (hours post fertilization)18 (Supplementary Fig. 1).

Unlike other blood marker genes, drl expression already
initiates during gastrulation and condenses as a band of cells at
the prospective lateral embryo margin (Fig. 1c; Supplementary
Fig. 1). drl:EGFP transgenics recapitulate the drl ISH pattern:
in late epiboly, drl:EGFP is detectable as a band of scattered
enhanced green fluorescent protein (EGFP)-fluorescent cells
(Fig. 1b); after gastrulation, the drl:EGFP-positive cells coalesce
at the embryo margin (Fig. 1c-e) that then in somitogenesis
breaks down into the anterior and posterior lateral plate with
subsequent cell migrations that form the posterior vascular/
haematopoietic stripes and the anterior cardiovascular and
myeloid precursors.

Using zebrafish transgenic for 4-OH-tamoxifen (4-OHT)-
inducible drl:creERT2 crossed to ubiquitous or lineage-specific
loxP lineage tracers (Fig. 1f–l; Supplementary Fig. 2), we
genetically tracked the cell fates of the drl-expressing cells.
4-OHT induction of drl:creERT2 during gastrulation at shield
stage (6 h.p.f.) selectively labelled the proposed lateral plate
mesoderm-derived organs, including the heart, pectoral fin
mesenchyme, blood, endothelium and the kidney (Fig. 1f–l;
Supplementary Fig. 2e–j). Transcriptome analysis of FACS-
isolated drl:EGFP-expressing cells at the two somite stage
corroborated our conclusion that drl marks the entire early
lateral plate mesoderm, as over 90% of fivefold enriched genes
(n¼ 75) and 17 of 19 uncharacterized genes are transcribed in
one or more of the lateral-derived organs (Supplementary Fig. 3).
Consistent with the described refinement of drl expression to
anterior and posterior territories during somitogenesis18, 4-OHT
induction of drl:creERT2 during mid-somitogenesis (12 somite
stage, 15 h.p.f.) confined labelling to cardiovascular lineages,
including haematopoietic stem cell precursors (Fig. 1k,l;
Supplementary Fig. 2k,l). These results establish that our
isolated drl regulatory element recapitulates drl expression and
for the first time reveals pan-lateral plate mesoderm expression of
drl during gastrulation, before expression is confined to
cardiovascular lineages.

Myocardial drl expression restricts to FHF descendants.
The anterior drl:EGFP reporter expression domain in later
somitogenesis encompasses the lmo2-positive precursors for
cranial endothelium, primitive macrophages, and endocardium,
as well as drl-positive, lmo2-negative bilateral foci in the location
of cardiomyocyte and pectoral fin precursors19,20 (Fig. 2a,b).
drl:EGFP reporter expression is thus seemingly broader than
endogenous drl expression, which in the ALPM is traditionally
attributed to myeloid precursors18. Curiously, while endogenous
drl expression becomes undetectable by ISH post 24 h.p.f. (ref. 18),
drl:EGFP remained active. This extended drl:EGFP reporter
expression prompted us to investigate its dynamics during heart
formation. Wild-type embryos expressed drl:EGFP at 26 h.p.f. in
the entire linear heart tube, both endocardium and myocardium
(Fig. 2c–f). In drl:EGFP hearts at 56 h.p.f., stained for EGFP and
myosin, we found that the cardiomyocytes of the distal ventricle,
including the outflow tract, as well as those of the proximal
atrium were drl:EGFP negative, while the central portion of the
heart tube and endocardium remained drl:EGFP positive
(Fig. 2g,h; Supplementary Fig. 4). These observations suggests
that late drl reporter expression in the myocardium might
selectively mark the FHF structures7,9,10.

Consistent with FHF-specific restriction of drl reporter
expression, ltbp3 demarcates cardiomyocytes in the distal
ventricle and outflow tract of the developing zebrafish heart,
including but not restricted to the ventricular SHF population7

that is drl negative in drl:EGFP; ltbp3:TagRFP double-transgenic
hearts (Fig. 2i–k). Of note, the drl negative cardiomyocytes of the
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sinoatrial junction are also negative for ltbp3 (ref. 7), but also arise
from SHF in zebrafish10,21 and mammals22. Both the FHF and
SHF derive from the early, drl-expressing lateral plate mesoderm,
as drl:creERT2 induced during gastrulation lineage-labelled all
myocardium (Fig. 2l,m). Taken together, these findings propose
the drl:EGFP reporter as a marker of the FHF myocardium
after the linear heart tube stage, and extend previous findings
in zebrafish by showing that both major myocardial lineages
derive initially from the lateral plate mesoderm. drl:EGFP
thus establishes a genetic means to investigate the relative
contributions of FHF and SHF to the heart.

SHF addition to the heart also occurs without endocardium. As
drl reporter expression remains active in the endocardium and in
circulating red blood cells (Fig. 3a,b), we sought to genetically
isolate the myocardial expression of our drl reporter. drl:EGFP in
zebrafish mutant for cloche, which has been well-established to
lack all haematopoietic and endothelial lineages from early
somitogenesis onward23, also labelled the beating linear heart
tube at 26 h.p.f. and the few previously reported persisting
angioblast precursors in the tail23 (Fig. 3c,d).

At 56 h.p.f., cloche mutant hearts featured both drl-positive
FHF and drl-negative SHF myocardium territories that did
not mix despite the invariant absence of endocardial tissue

(Fig. 3e,f). This observation suggests that the addition of SHF
cardiomyocytes to the linear heart tube is independent of
endocardial signals and can occur in the absence of endothelial
and haematopoietic lineages.

Septation program genes influence FHF and SHF contributions.
Heart tube elongation through the addition of SHF cardiomyo-
cytes is hypothesized to represent an evolutionary step towards a
multi-chambered heart. In amphibians and reptiles, a partial
septum arises within a single ventricle, while in mammals the
septum completely partitions the ventricle into left (FHF-derived)
and right (SHF-derived) chambers12. A host of transcription
factors influence cardiac septation, among which a steep gradient
of Tbx5 expression between the left and right ventricle is proposed
to drive this septation12, while Pitx2 directs remodelling of the
SHF and chamber asymmetry24–26. Using drl expression to
distinguish FHF from SHF descendants, we revisited tbx5 and
pitx2 loss-of-function phenotypes and asked whether these factors,
as proxy for septation regulators, influence the basic interactions
of FHF and SHF in the two-chambered teleost heart. We
employed morpholino-mediated gene knockdown of tbx5a4,16,27

and pitx2ab (Supplementary Fig. 5) in either drl:EGFP or
drl:EGFP; cloche embryos to specifically monitor the developing
myocardium (the cloche background removes any imaging bias
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mesoderm. (c,d) Bud stage embryos probed for endogenous drl (c, mRNA in situ hybridization, ISH) versus drl:EGFP (d, composite bright-field and EGFP
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red blood cells (RBCs, h; scale bar, 50mm), kidney (asterisks in i,j; scale bar, 50mm), plus vasculature and scattered superficial trunk muscle cells (solid

arrowheads in i). (k,l) 4-OHT induction at 12 somite stage and imaged at 36 h.p.f. refines tracing exclusively to the circulatory system and blood, note
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through endocardium signal) (Fig. 4a–f); both genetic
combinations gave identical results, consistent with our findings
that both FHF and SHF myocardium are established despite the
lack of endocardium in cloche (Fig. 3e,f). Knockdown of tbx5a
caused an expanded FHF and restricted SHF territory, resulting in
a predominantly FHF-derived heart (80% of ventricle versus 50%
of ventricle in controls, P¼ 0.0138, two-tailed unpaired t-test)
(Fig. 4c,d,k). Conversely, pitx2ab knockdown had the opposite
effect, with a markedly diminished FHF contribution (only 25% of
ventricle, Po0.0001, two-tailed unpaired t-test) and a
predominantly SHF-derived heart (Fig. 4e,f,k). Of note, tbx5a
knockdown also decreased EGFP mean fluorescence levels,
suggesting a potential regulatory input of tbx5a on the FHF-
specific regulatory element in the drl reporter.

tbx5a and pitx2ab could influence the differential contribution
of FHF and SHF by altering SHF cardiomyocyte migration to the
heart tube or by specifying the corresponding ALPM cell fates
before the bilateral heart field migration. To explore the rates of
cell recruitment to the developing heart tube, we used targeted
photoconversion of myocardial cells on tbx5a and pitx2ab
perturbation in a myocardium-specific myl7:nlsKikGR transgenic
line9. Using this readout, tbx5a knockdown modestly reduced the
rate of cellular addition to the heart between 27 and 52 h.p.f.,
while pitx2ab impairment increased the rate of accrual of SHF
cells into the heart in the same developmental time period (Fig. 4l;
Supplementary Fig. 6). These data suggest that tbx5a and pitx2ab
affect the effective contributions of FHF and SHF to the
developing heart. In addition, both tbx5a and pitx2ab altered
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the morphology and cell size of ventricular cardiomyocytes, with
tbx5a knockdown resulting in hearts with a morphology akin to
linear heart tube stages4,16 (Supplementary Fig. 7). To resolve to
what extent tbx5a and pitx2ab affect specification of FHF and
SHF cell fates, we attempted to trace the drl-expressing cells on
the same genetic manipulations in drl:creERT2; ubi:loxP-EGFP
-loxP-mCherry transgenics; these efforts remained inconclusive,
as we failed to observe significant loxP recombination following
4-OHT induction at 12 somite stage or later.

Microarray analysis of tbx5a and pitx2ab morphants at
52–56 h.p.f. catalogued complex effects on gene expression that
parallel the effects on FHF and SHF in these experiments. Gene
set enrichment analysis28 revealed a reciprocal effect on genes
involved in ‘homophilic cell adhesion’, with downregulation of
these transcripts in pitx2ab morphants and upregulation in tbx5a
morphants, as compared with wild-type embryos (qo0.005;
Fig. 4n; Supplementary Fig. 8; Supplementary Table 1).
Differentially regulated genes include cadherins, protocadherins,
but also genes encoding cytoskeletal components, whose
modulated expression following knockdown of either pitx2ab or
tbx5a we confirmed using ISH analysis (Fig. 4o; Supplementary
Fig. 8). The regulation of homophilic cell adhesion genes is a key
feature during cardiomyocyte specification29, and our findings
suggest the existence of discrete transcriptional cell adhesion
programs downstream of tbx5a and pitx2ab.

Importantly, the transcription factor mef2ca previously
implicated in SHF specification in mice30 and zebrafish8 was
markedly upregulated in pitx2ab morphants (Fig. 4n). Consistent
with previous findings8,9, reduction of mef2ca levels alone by
morpholino knockdown modestly perturbed the ratio of FHF
versus SHF based on drl:EGFP expression (Fig. 4g,h,m).
Remarkably, in contrast to the increased SHF contribution
defect observed on pitx2ab depletion, the concomitant loss of

pitx2ab and mef2ca led to the proportionate reestablishment of
SHF and FHF, albeit without restoring proper cell positioning
(Fig. 4i,j,m) or physiologic integration (see below). Taken
together, our data reveal reciprocal effects of the septation
regulators tbx5a and pitx2ab on the relative contributions of FHF
and SHF to cardiogenesis, and document a significant role for
increased levels of mef2ca in the expansion of the SHF caused by
pitx2ab loss of function.

Intercellular coupling differences in FHF versus SHF. To
evaluate the downstream impact of tbx5a and pitx2ab on FHF
and SHF specification, we explored the physiology of these
discrete compartments. The evolution from peristaltic to
sequential contraction to support the complex vertebrate body
plan is associated with the specification of physiologic electrical
gradients regulated at least in part by pharyngeal Wnt11 in the
zebrafish cardiac epithelium31. We reasoned that these gradients
might result from fundamental functional differences between
FHF and SHF cardiomyocytes, which our drl:EGFP reporter now
allows us to locate.

In wild-type hearts, cardiomyocytes displayed consistent
regional patterns of intercellular coupling with complex, strong
and multidirectional isotropic cell–cell connections in the
FHF-derived ventricular outer curvature where there is almost
simultaneous activation of this entire region (Fig. 5a,f). In
contrast, the SHF-derived inner curvature and distal outflow tract
exhibit weak and linear anisotropic coupling patterns oriented
along the main axis of depolarization of the heart (Fig. 5a,f).
These findings were confirmed using quantitative polar plots of
vector angle frequency across multiple hearts (Fig. 6a,f). The
frequency angle polar plots as well as comparison of angle
variability (Fig. 6k) not only revealed discrete intensity of
electrical coupling between the drl-positive outer curvature and
the drl-negative distal ventricle and outflow tract, but also
identified almost orthogonal directions of mean connectivity in
these two cellular compartments (blue and red regions of interests
(ROIs) in Fig. 6f). Taken together, our observations reveal distinct
coupling patterns in FHF- versus SHF-derived cardiomyocyte
territories.

Coupling depends on FHF versus SHF contribution. We next
aimed to observe the impact of disrupting tbx5a (hearts with
predominantly FHF-derived myocardium) or pitx2ab (hearts
with predominantly SHF-derived myocardium) on the regional
coupling patterns. Impaired tbx5a resulted in marked slowing of
electrical conduction across the ventricle and the elimination of
all heterogeneity of intercellular coupling, with the entire ventricle
resembling the early heart tube before the addition of SHF
(Figs 5b,f and 6b,g,k). tbx5a knockdown virtually eliminated all
coupling complexity, with impulse propagation almost entirely
restricted to directions along the main axis of the heart tube. We
also observed marked loss of high-speed vectors with conserva-
tion of the low velocity vectors resulting in uniform slow, linear
conduction typical of the more primitive peristaltic phase of
cardiac development31.

pitx2ab knockdown also diminished conduction velocities in
both the inner and outer curvatures of the ventricle (Fig. 5c,f),
and appeared to reorganize the specific complex coupling
patterns observed in the drl-positive regions of wild-type hearts
(Fig. 6c,h,k). Although impaired pitx2ab had a more modest
effect on the overall complexity of intercellular coupling, it
eliminated the orthogonal outer curvature vectors required for
sequential ventricular contraction (compare Fig. 6a,c, and red
ROIs in Fig. 6f,h). Taken together, these data suggest that
the development of physiologic patterns of cardiomyocyte
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connectivity requires a specific proportional interaction between
FHF and SHF compartments, and that with perturbation of either
compartment this nuanced patterning is lost.

To further relate our findings to our previous observations and
to higher vertebrates, we tested the impact of the genetic interplay
between pitx2ab and the SHF regulator mef2ca. Curiously, loss of
mef2ca, which consistent with previous work8,9 and based on
drl:EGFP reporter expression only mildly perturbs FHF versus
SHF contribution (Fig. 4g,h), displayed similar physiological
defects to those resulting from pitx2ab knockdown (Figs 5d,f and
6d,i,k). The joint loss of pitx2ab and mef2ca both rescued
the overall velocity of impulse propagation and re-established the
complex patterning of cardiomyocyte interaction observed in the

normal ventricle, but the orthogonal vectors remained missing
(Fig. 5e,f; Fig. 6e,j,k). This partial recovery reveals that not only is
the correct ratio of FHF to SHF required, but also that there is a
discrete requirement for additional directionally related coupling
to achieve proper myocardial coupling.

Discussion
The SHF is an ancient evolutionary entity of the vertebrate body
plan11, yet its exact contribution to cardiac development,
evolution and physiology remains vaguely understood. Here we
provide data that propose a fundamental contribution of
septation regulators to myocardium physiology before physical
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Figure 4 | tbx5a and pitx2ab affect the relative contribution of FHF versus SHF to the heart tube. (a–j) Top-down 2-mm confocal sections through

zebrafish 54–56 h.p.f. hearts; scale bar, 20mm. (a–d) Hearts mutant for cloche (clo) to enable imaging of myocardium without endocardial and erythrocyte

signal in drl:EGFP transgenics, stained for EGFP expression from drl:EGFP (green, monochrome channel image in right column) and myosin/MF20 (red);

(a,b) cloche-only control, (c,d) morpholino knockdown of tbx5a leads to expansion of FHF. (e,f) Loss of pitx2ab results in diminishing of FHF and expansion of

SHF. (g–j) Genetic interplay of mef2ca with pitx2ab on FHF versus SHF contribution in wild-type hearts. (g,h) Loss of mef2ca leads to only mild reduction of

FHF contribution. (i,j) Concomitant loss of mef2ca and pitx2ab reverts the pitx2ab morpholino (MO)-mediated impact on FHF formation. (k) Graph displaying

the ratio of FHF area labelled by drl:EGFP expression to the whole ventricular area determined by anti-myosin staining in hearts from experiments represented

in a–f. (l) Graph showing percentage of newly added cardiomyocytes to the ventricle after photoconversion of myl7:nlsKikGR at 27 h.p.f. and imaged at

56 h.p.f. (see also Supplementary Fig. 6). (m) Graph showing the restoration of the FHF area labelled by drl:EGFP expression to the whole ventricular area

determined by anti-myosin staining in hearts with combined loss of pitx2ab and mef2ca comparing with the single morphant or control hearts. Error bars in

k–m¼ s.d., asterisks indicate significance, significance tested by two-tailed unpaired t-test, Po0.05. (n) At 54–56 hpf, whole-embryo microarray comparison

of tbx5a versus pitx2ab knockdown reveals cell adhesion genes significantly deregulated (red dots); note the upregulation of the SHF regulator mef2ca on

pitx2ab knockdown (orange dot). (o) mRNA in situ hybridization of acta2a as representative deregulated gene at 52–56 h.p.f.; closeups of heart regions,

anterior to the left, in indicated conditions, dotted outlines indicate heart tube; scale bar, 100mm (see also Supplementary Fig. 8 for more examples).
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chamber delineation in the heart. A central finding is the
modulation of FHF and SHF contributions by key transcription
factors involved in cardiac septation in higher vertebrates when
perturbed during development of the two-chambered heart in
zebrafish. The resulting loss of myocardial coupling suggests a
primordial contribution from the integration of the two heart
fields to the establishment of efficient cardiac physiology, possibly
through source sink mismatch.

The discovery of early drl expression in the entire lateral plate
mesoderm identifies a molecular trait in the mesoderm margin
that is common to the origin of all laterally developing tissues in
the vertebrate embryo, including the FHF and SHF precursors.
Unlike the restricted cardiovascular and hematopoietic expression
of FLK1 (refs 1,32) or the broad mesodermal Brachyury activity33,
the marginal drl domain specifically demarcates the lateral plate
mesoderm and reveals an early, dedicated mesoderm subdivision
before its expression becomes constrained to cardiovascular and
haematopoietic lineages. Our lineage tracing results provide the
first genetic confirmation for previous cell-based linage tracing
efforts that fate mapped the lateral organ precursors34–37, and
suggest the existence of an upstream regulatory program that
demarcates the entire lateral plate mesoderm during gastrulation.
Later drl reporter expression that confines in the myocardium
to the FHF descendants seemingly diverges from endogenous
detected mRNA expression that becomes undetectable after
24 h.p.f. (ref. 18) We hypothesize that, once taken out of genomic
context, the isolated 6.35 kb regulatory element unmasks this
previously unappreciated drl expression domain.

The structural and functional specialization of the four-
chamber mammalian heart is deeply rooted in the discrete

physiologic characteristics of FHF and SHF cardiomyocytes12.
Beyond physical heart chamber separation, proportionate
integration of distinctive cells from both FHF and SHF
results in a polarized and tightly coupled myocardial syncytium
that generates the sequential contraction of the ventricle, an
indispensable step towards higher-pressure vertebrate circulation
systems. Our work reveals that loss or excess of SHF cells
results in the elimination of this balanced polarity and
substantially reduces integration of cardiomyocytes across the
entire ventricular myocardium. Our findings involving the
downstream physiological impact of pitx2ab and mef2ca loss
and their genetic interaction indicate that both the relative
contribution of FHF versus SHF and specific integration of the
SHF myocardium are required to establish subsequent heart
muscle coupling. These findings suggest that additional,
downstream coordination depends initially on SHF addition to
the primary heart tube to properly pattern the myocardial
syncytium. What pathways and which additional cardiac
transcription factors mediate this downstream coupling, and
what molecular differences between the FHF and SHF trigger this
phenomenon, remains unknown. However, our data indicate that
cell adhesion programs and their upstream regulatory pathways
could mediate the proper coupling and topology of FHF and SHF.
To what extent this process was retained in evolution towards
terrestrial animals, particular in mammals, and what additional
cardiac transcription factors fundamentally influence FHF versus
SHF contribution to the heart warrants future experiments.

Altogether, our data suggest that the regional physiology within
the un-septated teleost ventricle is under the control of the same
basal transcriptional programs that support septation in higher
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vertebrates; consequently, these programs define potentially
widely conserved functional myocardial gradients between FHF
and SHF cell populations with distinctive physiological properties
predicted to confer both mechanical advantage and electrical
stability. Our findings propose that the separate systemic and
pulmonary ventricles in higher animals derive from a functional
partitioning that is already present in the more primitive teleost
heart, where it conveys the selected physiological advantages that
define the vertebrate circulation system.

Methods
Vectors and zebrafish strains. Zebrafish were maintained in accordance with
Animal Research Guidelines at Brigham and Women’s Hospital and Boston
Children’s Hospital. All PCR for cloning was performed using the Expand High
Fidelity PCR kit (Roche). All subsequent MultiSite Gateway assemblies were
carried out using LR Clonase II Plus (Life Technologies) according to the manu-
facturer’s manual, if not stated otherwise. Tol2-mediated zebrafish transgenesis was
performed by injecting 25 ngml� 1 transgene plasmid together with 25 ng ml� 1

Tol2 mRNA, followed by subsequent screening of positive F0 founders and
establishment of single-insertion transgenic strains through selection in subsequent
generations. All experiments have been confirmed with at least two independent
transgenic insertions.

The regulatory sequences of zebrafish draculin (ZDB-GENE-991213-3)18

sequence was PCR-amplified from BAC DKEY-261J4 (ZDB-BAC-050218-846) with
primers 50-GTCAGCACCAGATGCCTGTGC-30 (forward) and 50-CCAAGTGTG
AATTGGGATCG-30 (reverse), and TOPO cloned into pENTR50 (Invitrogen) to
create pCM293. pCM293 includes a 6.347-kb genomic fragment (� 6.3drl),
including the non-coding exon 1, first intron, and non-coding sequences of exon 2
(see also Fig. 1a for details).

Tg(� 6.3drl:EGFP) is a MultiSite Gateway assembly of pCM293, Tol2kit #383
(pME-EGFP), #302 (p3E_SV40polyA) and #394 (pDestTol2A2) (in total
pDestTol2pA2_drl:EGFP, referred to as drl:EGFP).

We created two independent transgene vectors for drl:creERT2:
Tg(� 6.3drl:creERT2,cmlc2:EGFP) and Tg(� 6.3drl:creERT2,alpha-crystallin:YFP)
derive from vectors pDestTol2pA2_drl:creERT2; myl7-EGFP (pCM313) and
pDestTol2CY_drl:creERT2, alpha-crystallin:YFP (pCM350), respectively. pCM283
was created by combining pCM293, pENTR/D_creERT2 (ref. 38), and Tol2kit
vectors #302 and #395 (pDestTol2CG); pCM350 was created by combining
pCM293, pENTR/D_creERT2, Tol2kit vector #302 and pDestTol2CY (pCM326,
derived from inserting a Asp718I-flanked PCR product of alpha-crystallin:YFP
(CY)39 into the Asp718I site in Tol2kit #394 in the same orientation as the Multisite
Gateway cassette). Detailed digital plasmid maps of these vectors are available on
request.

Additional transgenic and mutant lines used in this study included
lmo2:loxP-dsRED-loxP-EGFP (used both as red fluorescent lmo2 reporter and loxP
switch)40, ltbp3:TagRFPA2:cre and myl7:loxP-AmCyan-loxP-ZsYellow7, FlEx41,
ubi:loxP-GFP-loxP-mCherry (ubi:Switch)38, cdh17:loxP-EGFP-loxP-mCherry42,
clocheM39 (ref. 23), myl7:nlsKikGR9, and mef2cab1086 (ref. 43).

CreERT2/lox experiments were performed by crossing male creERT2 driver
transgenics with female lox reporter carriers, and the embryos were induced with a
final concentration of 10 mM 4-OH-tamoxifen (4-OHT, Sigma H7904)38,44 in E3
embryo medium (and later washed out) at the time points indicated in the text.

Microscopy was performed on a Zeiss 710 NLO confocal microscope
(whole-mount samples), Leica SP5 or SP8 (fixed samples) a Zeiss SteREO
Discovery V8 with AxioCam HRc camera for stereo microscopy, and a Zeiss
Axioskop 2 plus with Hamamatsu ORCA-ER camera for upright microscopy.

Zebrafish transgenics and morpholinos. The tbx5a morpholino sequence was
adapted as previously reported (MO2-tbx5a)16 and has the sequence 50- CCTGT
ACGATGTCTACCGTGAGGC-30 . Our pitx2ab ATG morpholino with sequence
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50-TGGGAGTCCATTTAGTAGGTTATAT-30 was validated to cause left–right
asymmetry defects, including cardiac phenotypes (Supplementary Fig. 5).

Cell sorting and microarray analysis. For drl:EGFP arrays, three independent
times the same family of homozygous drl:EGFP transgenic zebrafish was mass-
mated and their embryos were collected at 2 somite stage. The embryos were
de-chorionated, homogenized in PBS with 5% FCS with a hand-held motor pistil,
and filtered twice through 40-mm cell strainers (BD Biosciences). Propidium iodide
was added and the cell suspension sorted using a BD LSR II Flow Cytometer
(BD Biosciences) for EGFP positive, propidium iodide negative, and EGFP
negative, propidium iodide negative into Trizol LS (Life Technologies) with sub-
sequent mRNA isolation as per the manufacturer’s protocol and added phenol/
chloroform precipitation. The samples were then processed by the Boston Chil-
dren’s Hospital Molecular Genetics Core Facility for hybridization and analysis
using Affymetrix microarray chips based on zebrafish genome annotation Zv9.

Normalized (MAS background correction and RMA normalization) gene-level
expression data were computed from Affymetrix ZebGene-1_1-st CEL files using
the Affymetrix ExpressionConsole software. Regulated gene lists were computed
from the normalized data using the R/Bioconductor package ‘siggenes’ and an false
discovery rate threshold of 0.09.

To validate candidate gene expression patterns, total RNA was isolated from
bud-24 h.p.f. embryo mix using Trizol LS extraction (Invitrogen), followed by
reverse transcription using the SuperScript III cDNA kit (Invitrogen) to create a
complementary DNA pool. One microlitre of complementary DNA was used
in 50ml PCR reactions using the Expand High Fidelity PCR kit (Roche) and
gene-specific forward plus reverse primers, which contained 50 T7 consensus
sequences. The resulting PCR products were checked for size, purified using the
QiaQuick PCR Purification Kit (Qiagen) and transcribed into Digoxigenin (DIG)-
labelled ISH probes (Roche); primer sequences for individual tested candidate
genes are available on request.

tbx5a versus pitx2ab microarray and analysis. Samples for tbx5a versus pitx2ab
morpholino comparison were collected from three independent experiments of
morpholino-injected siblings and uninjected wild-type controls at 56 h.p.f. by
morphology. RNA was isolated using Trizol LS (Life Technologies) as per the
manufacturer’s protocol. The samples were processed by the Boston Children’s
Hospital Molecular Genetics Core Facility for hybridization and analysis using
Affymetrix Zv9 microarray chips.

Microarray data were normalized and processed using the Oligo package for the
R statistical framework. Following normalization, values for replicates were
averaged and fold change over control was calculated for each gene in both pitx2ab
and tbx5a morphants. For gene set enrichment analysis, genes were pre-ranked
based on fold change in either pitx2ab and tbx5a morphants, and examined for
enrichment of gene sets that included predicted gene phenotypes (only gene
phentoypes predicted above an 80% precision level), GO terms, characterized gene
lists from MSigDB and human tissue-specific expression. For MSigDB and human
tissue expression analysis, the pre-ranked list only included genes with identified
one-to-one human orthologs (Ensemble). To generate the human tissue expression
gene sets, human tissue-specific transcript expression data were obtained through
the gene expression omnibus and mapped through Affymetrix expression tags to
human genes. Average transcript expression of higher than 100 was taken as
indicating expression of a given gene within a given tissue. Only those gene sets
with qo0.05 were reported. Expression patterns of candidate genes were
performed as outlined above for the microarray validation on sorted drl:EGFP cells.

Fluorescence measurements and propagation velocity calculation. The
measurement of action potentials and the estimation of conduction velocities from
isolated zebrafish embryo hearts were performed as we previously described31,45.
In detail, for the measurements of action potentials, hearts isolated from wild-type
zebrafish embryos or morpholino-injected embryos at 54 h.p.f. were stained with
the transmembrane potential-sensitive dye di-8-ANEPPS (Invitrogen).
Fluorescence intensities were recorded using a high-speed CCD camera
(CardioCCD-SMQ, Redshirt Imaging) at 2,000 frames per second. Local activation
times were defined as the times at which action potentials reached 50% of their
amplitude during the depolarization phase. This criterion for defining electrical
activation was found in computer simulations to correlate well with the time at
which the maximum depolarizing Naþ current occurs during propagation46.
Local conduction velocity vectors were estimated by fitting a second-order
polynomial surface to the activation times using an established algorithm47.
Conduction velocities and angles were averaged in ROIs, 16� 16 pixels in size,
covering an area of about 35� 35mm2 within the outer curvatures and inner
curvatures of the cardiac chambers.

Angle vector map analysis. To evaluate local directions of depolarization, the
angles of the conduction velocity vectors were calculated with respect to a unit
vector that was determined by the geometry of each heart. It was defined as a vector
pointing from the inner curvature of the atrium, that is, the region that in most
hearts activated first, towards the outflow tract, which activated last. Thus, the unit
vector could be described as the principal direction of propagation. All angles that

were observed in the outer curvatures or inner curvatures of all hearts for a given
genotype were divided into 22.5� wide-angle intervals (ranging from 0� to 360�)
and presented as frequency polar plots. The radial coordinate was defined (in %) as
the number of velocity vectors that were found within a given frequency interval
divided by the total number of vectors.

Immunostaining, confocal microscopy, and image analysis. Hearts, isolated
from 26, 52–56 and 72 h.p.f. zebrafish embryos, were fixed in Prefer fixative
(Anatech Ltd), stained with primary antibodies: rabbit anti-GFP (G1544, Sigma)
1:100; mouse anti-myosin (MF20; Developmental Studies Hybridoma Bank) 1:50;
mouse zn-8 (Developmental Studies Hybridoma Bank) 1:50; and secondary
antibodies: donkey anti-rabbit or mouse Alexa-Fluor-488 or -555 conjugated
(Invitrogen) 1:1,000 and mounted in the ProLong Gold antifade reagent with
4,6-diamidino-2-phenylindole (Invitrogen). Confocal images were obtained using
Leica SP5, SP8 and Nikon C1, and processed using ImageJ/Fiji, Packing analyser
v2.0, Paint Shop Pro, Photoshop, and CombineZP. Graphs for statistical analysis
were generated in GraphPad Prism 5.
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46. Fast, V. G. & Kléber, A. G. Cardiac tissue geometry as a determinant of
unidirectional conduction block: assessment of microscopic excitation spread
by optical mapping in patterned cell cultures and in a computer model.
Cardiovasc. Res. 29, 697–707 (1995).

47. Bayly, P. V. et al. Estimation of conduction velocity vector fields from epicardial
mapping data. IEEE Trans. Biomed. Eng. 45, 563–571 (1998).

Acknowledgements
We thank C. Lawrence, I. Adatto and K. Maloney for fish husbandry; Dr L. Cameron of
the DFCI Imaging Core facility; Microscopy Core Facility at MDC for key imaging
support; Drs D. Hesselson and D.Y. Stainier for the CY transgenesis marker;
Dr I.C. Scott and Dr S. Abdelilah-Seyfried for providing myl7:nlsKikGR transgenics; and
Dr G. Heffner and R. Mathieu for FACS support. We are grateful to Drs C.K. Kaufman
and S.A. Lacadie for critical comments on experiments and the manuscript.
C.M. received support through an EMBO long-term fellowship, an HFSP long-term
fellowship, an SNSF advanced researcher fellowship, an SNF professorship, and a Marie
Curie CIG; D.P. received support through an HFSP long-term fellowship, a Helmholtz
Young Investigator Program and a Marie Curie CIG; C.A.M. received support from the
March of Dimes and the Harvard Stem Cell Institute; L.I.Z. is supported by HHMI and
NIH 5R01HL048801-19.

Author contributions
C.M. and D.P. designed, performed and analysed the experiments, A.A.W., D.P. and
M.K.S. analysed the physiology experiments, G.M., A.D., and Y.Z. analysed the
transcriptomics experiments, K.R.N. performed experiments in Fig. 2i–m, K.L.L. and
L.A.C. provided invaluable technical support and zebrafish husbandry, A.B. and A.J.D.
performed ISH and imaging; C.E.B. and C.G.B. supervised experiments in Fig. 2i–m;
C.A.M. and L.I.Z. supervised the project. C.M., D.P., C.A.M. and L.I.Z. analysed the data
and wrote the manuscript.

Additional information
Accession codes: Microarray data have been deposited in the GEO database under
accession codes GSE70881 and GSE70750.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: L.I.Z. is a founder and stock holder of Fate, and a
scientific advisor for Stemgent. The remaining authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Mosimann, C. et al. Chamber identity programs drive early
functional partitioning of the heart. Nat. Commun. 6:8146 doi: 10.1038/ncomms9146
(2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9146

10 NATURE COMMUNICATIONS | 6:8146 | DOI: 10.1038/ncomms9146 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	A zebrafish drl reporter labels the lateral plate mesoderm
	Myocardial drl expression restricts to FHF descendants
	SHF addition to the heart also occurs without endocardium
	Septation program genes influence FHF and SHF contributions

	Figure™1drl transgene reporter expression in the early lateral plate mesoderm and cardiovascular development.(a) The zebrafish draculin (drl) locus; blue depicts coding exons (with ATG and Stop codons), yellow are untranslated regions, a DANA retro-transp
	Figure™2drl transgenic reporters track cardiac development and distinguish FHF from SHF myocardium.(a,b) Confocal projection of the anterior lateral plate mesoderm (ALPM) with hatching gland most anteriorly at 16 somite stage (ss) marked by drl:EGFP, dors
	Intercellular coupling differences in FHF versus SHF
	Coupling depends on FHF versus SHF contribution

	Figure™3Lack of endocardial signals does not affect integration of FHF with SHF.(a,b) Anterior (a) and tail region (b) expression of drl:EGFP in wild-type zebrafish at 24-28thinsph.p.f., scale bar, 50thinspmgrm; note the circulating red blood cells. (c,d)
	Discussion
	Figure™4tbx5a and pitx2ab affect the relative contribution of FHF versus SHF to the heart tube.(a-j) Top-down 2-mgrm confocal sections through zebrafish 54-56thinsph.p.f. hearts; scale bar, 20thinspmgrm. (a-d) Hearts mutant for cloche (clo) to enable imag
	Figure™5Myocardial conduction velocity gradient depends on proper integration of FHF with SHF.(a-e) Vector field maps of control (a) hearts revealing the difference in cardiomyocyte connectivity of outer curvature (OC, red square ROI), presumptive FHF and
	Methods
	Vectors and zebrafish strains
	Zebrafish transgenics and morpholinos

	Figure™6Myocardial connectivity depends on proper integration of FHF with SHF.(a-e) Vector polar plots, in which each point represents a vector of the vector field map plotted in respect to its magnitude (velocity) and direction (angle from unit vector), 
	Cell sorting and microarray analysis
	tbx5a versus pitx2ab microarray and analysis
	Fluorescence measurements and propagation velocity calculation
	Angle vector map analysis
	Immunostaining, confocal microscopy, and image analysis

	IshitobiH.Molecular basis for Flk1 expression in hemato-cardiovascular progenitors in the mouseDevelopment138535753682011Van HandelB.Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardiumCell1505906052012WangQ.LanY.ChoE. S.Mal
	We thank C. Lawrence, I. Adatto and K. Maloney for fish husbandry; Dr L. Cameron of the DFCI Imaging Core facility; Microscopy Core Facility at MDC for key imaging support; Drs D. Hesselson and D.Y. Stainier for the CY transgenesis marker; Dr I.C. Scott a
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




