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Abstract
Analyses of viral genetic linkage can provide insight into HIV transmission dynamics and

the impact of prevention interventions. For example, such analyses have the potential to

determine whether recently-infected individuals have acquired viruses circulating within or

outside a given community. In addition, they have the potential to identify characteristics of

chronically infected individuals that make their viruses likely to cluster with others circulating

within a community. Such clustering can be related to the potential of such individuals to

contribute to the spread of the virus, either directly through transmission to their partners or

indirectly through further spread of HIV from those partners. Assessment of the extent to

which individual (incident or prevalent) viruses are clustered within a community will be

biased if only a subset of subjects are observed, especially if that subset is not representa-

tive of the entire HIV infected population. To address this concern, we develop a multiple

imputation framework in which missing sequences are imputed based on a model for the

diversification of viral genomes. The imputation method decreases the bias in clustering

that arises from informative missingness. Data from a household survey conducted in a vil-

lage in Botswana are used to illustrate these methods. We demonstrate that the multiple

imputation approach reduces bias in the overall proportion of clustering due to the presence

of missing observations.

Introduction
Targeting HIV prevention interventions to high-risk groups [1] can be aided by analyses of
HIV viral genetic linkage. In particular, investigation of viral genetic sequences of study partici-
pants in community-based studies can reveal the viral strains propagating within and across
communities and the characteristics of people infected with these strains. Numerous studies
have already demonstrated the use of viral sequences from HIV-infected participants to inves-
tigate patterns of phylogenetic linkage, which provides information about patterns of HIV
transmission dynamics [2–22].
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In this paper, we consider data collected from a household survey in a village in Botswana
that was done in conjunction with a pilot study of combination HIV prevention. Nonresponse
is a major concern in these types of studies; contributing factors include work patterns, such as
that of migrant workers and other highly mobile individuals, temporary absence of the individ-
uals, and migration [23]. Because certain demographic groups, especially males, are systemati-
cally under-represented in the sample, methods to control for bias from missing data are
required to make valid inferences about genetic linkage. Missing data may arise by happen-
stance or by design; consideration of the potential for bias in estimation of probabilities of link-
age is especially important when the pattern of missingness may be related to characteristics of
observed and missing observations—a pattern is that is referred to as informative missingness
[24, 25]. We propose methods to adjust for the presence of informatively missing data in viral
genetic linkage analysis.

We investigate viral linkage though examination of clustering, which is a measure of related-
ness among viruses sampled from different people. One metric of interest is the overall propor-
tion of clustering in the community, i.e., the proportion of prevalent HIV cases that are
phylogenetically linked to other residents in the same community. In this study our definition
of clustering is based on the pairwise distance between viral sequences; we define two individu-
als to be linked when this distance is below a specified threshold. Test statistics can help deter-
mine whether certain demographic groups are more likely to be clustered, which aids in
understanding HIV transmission patterns—especially if sampled viral sequences include new
infections. Linkage analyses can also reveal the overall proportion of clustering in the dataset,
which provides information about the extent to which individuals are being infected by strains
circulating inside their community or by strains outside of the community. Information
regarding whether HIV transmissions are mainly occurring within or between communities
can help reveal virus transmission dynamics, as well as identify subgroups of the population
that are driving the epidemic [4, 6, 8, 13–17, 22, 26–30]. In the setting where an intervention is
being provided, changes in the overall proportion of clustering within a village receiving the
intervention over time are informative regarding the efficacy of the interventions; if it is work-
ing, there should be a decrease in virologically linked cases over time.

As mentioned above, a major problem arises in linkage analyses when the sample of viral
sequences is incomplete; this situation may occur because intended subjects cannot be found
or refuse participation. Bias arises even if observations are missing completely at random.
Because viral linkage is based on the clustering of pairs of individuals, random missing links in
the viral transmission chain will cause underestimation in the proportion of clustering. Since
observing a link requires the presence of both linked sequences, removal of a subject removes
all links to that subject. Hence, the number of missing links between sequences can increase
more rapidly than does the number of missing subjects. Therefore, unbiased estimation of the
true proportion of sequences that cluster requires information about both the total population
size (the number of missing subjects plus the number of observed sequences), and characteris-
tics that impact the probability that a sequence is missing.

When observations are informatively missing (i.e. viral genetic information is more likely to
be missing for individuals of certain demographic groups), additional sources of bias are intro-
duced. The fact that the presence of linkage depends on each sequence in the database creates a
challenge for proper handling of missing data. Adjustment for missing data can be at the test
statistic level [31] or at the viral sequence level. Carnegie et al. 2014 showed that the probability
that individual sequences are linked can be consistently estimated using the observed data, and
the probability that groups of sequences are linked can be estimated as well under the assump-
tion that pairs of sequences are uncorrelated. The authors also developed a resampling
approach for estimating the proportions of linkage that accounts for correlation between pairs

Viral Genetic Linkage Analysis in the Presence of Missing Data

PLOS ONE | DOI:10.1371/journal.pone.0135469 August 24, 2015 2 / 14

KF374181, KF374183, KF374184, KF374186,
KF374188, KF374189, KF374191, KF374192,
KF374193, KF374194, KF374195, KF374196,
KF374198, KF374200, KF374201, KF374202,
KF374203, KF374204, KF374205, KF374206,
KF374207, KF374208, KF374209, KF374210,
KF374211, KF374212, KF374213, KF374214,
KF374215, KF374216, KF374217, KF374221,
KF374223, KF374224, KF374252, KF374230,
KF374231, KF374233, KF374234, KF374237,
KF374238, KF374239, KF374241, KF374242,
KF374243, KF374244, KF374245, KF374246,
KF374248, KF374249, KF374250, KF374253,
KF374255, KF374256, KF374257, KF374258,
KF374260, KF374262, KF374264, KF374267,
KF374268, KF374269, KF374270, KF374271,
KF374273, KF374275, KF374276, KF374277,
KF374278, KF374279, KF374282, KF374283,
KF374287, KF374289, KF374291, KF374292,
KF374293, KF374294, KF374295, KF374298,
KF374299, KF374300, KF374301, KF374302,
KF374303, KF374304, KF374305, KF374306,
KF374307, KF374309, KF374310, KF374312,
KF374314, KF374315, KF374318, KF374319,
KF374320, KF374321, KF374322, KF374323,
KF374325, KF374326, KF374327, KF374330,
KF374331, KF374332, KF374335, KF374337,
KF374339, KF374341, KF374343, KF374345,
KF374347, KF374349, KF374350, KF374351,
KF374352, KF374353, KF374354, KF374355,
KF374356, KF374357, KF374358, KF374359,
KF374361, KF374362, KF374363, KF374364,
KF374365, KF374366, KF374367, KF374369,
KF374370, KF374371, KF374372, KF374373,
KF374375, KF374376, KF374377, KF374379,
KF374380, KF374382, KF374383, KF374384,
KF374385, KF374386, KF374387, KF374388,
KF374391, KF374394, KF374397, KF374398,
KF374399, KF374400, KF374404, KF374405,
KF374407, KF374408, KF374409, KF374411,
KF374413, KF374415, KF374419, KF374420,
KF374424, KF374425, KF374428, KF374429,
KF374430, KF374431, KF374432, KF374434,
KF374436, KF374437, KF374438, KF374439,
KF374440, KF374441, KF374442, KF374444,
KF374446, KF374449, KF374451, KF374452,
KF374453, KF374457, KF374463, KF374464,
KF374467, KF374470, KF374474, KF374475,
KF374476, KF374477, KF374478, KF374479,
KF374480, KF374481, KF374485, KF374488,
KF374489, KF374490, KF374492, KF374494,
KF374496, KF374501, KF374502, KF374504,
KF374505, KF374506, KF374507, KF374508,
KF374509, KF374510, KF374511, KF374512,
KF374513, KF374518, KF374521, KF374522,
KF374523, KF374525, KF374526, KF374528,
KF374531, KF374532, KF374533, KF374535,



of individuals. Here, we study a similar problem but use a multiple imputation approach
framework that imputes missing sequences at the translated amino acid level, which is applica-
ble in a very broad array of analyses that require imputed sequences, including phylogenetic
analyses. In our investigation we focus on translated amino acid sequences as we are interested
in non-synonymous mutations; previous research has shown that almost all site mutations
within protein-coding regions are non-synonymous mutations [32]. Our focus here is on the
use of imputed-complete datasets to investigate the proportion of overall HIV clustering in the
targeted population. This paper investigates sensitivity of estimation for incomplete data, and
the extent to which the proposed multiple imputation approach reduces bias in viral linkage
estimates.

Materials and Methods
The data we consider arises from a pilot study that provided information to aid in the design of
a combination prevention cluster-randomized trial in Botswana [33]. The treatment modalities
under investigation include testing of all consenting village subjects, provision of treatment for
patients with viral loads above 10,000 copies/mL, and male circumcision for all HIV-unin-
fected men. The pilot study was undertaken in Mochudi, Botswana in 2011-2013, and provided
household surveys, HIV testing for all consenting household members not previously diag-
nosed with HIV infection, laboratory assessment of viral load and CD4 lymphocyte count for
HIV+ participants, and ascertainment of antiretroviral treatment status. The study was con-
ducted according to the principles expressed in the Declaration of Helsinki, and was approved
by the Health Research and Development Committee (HRDC) of the Republic of Botswana,
and the Office of Human Research Administration (OHRA) of the Harvard School of Public
Health. All adult study subjects provided written informed consent for participation in the
study; all minor study subjects provided written informed assent, and each minor’s guardian
provided written informed consent for their participation in the study. All available data were
used for this paper; the 371 HIV-1 sequences analyzed in this paper are from patients enrolled
in the first phase of the pilot study that was completed in Spring of 2012. HIV-1 subtyping
revealed that 370 sequences were subtype C, and one sequence was HIV-1 subtype A1. Of the
371 subjects in the data, 287 were female and 84 were male, among whom 124 females and 24
males were categorized as young (<35 years). Young females accounted for 43% of females and
young males accounted for 29% of males. For all virological samples, the V1C5 codon-based
alignment was generated as described elsewhere [26] using muscle [34] in MEGA5 [35].

An estimate of the overall proportion of clustering, or the proportion of sequences that link
to at least one other sequence, was calculated using the pairwise distance matrix of translated
amino acid residues from phylogenetic analysis, which quantifies the degree of similarity
between any two sequences. Several methods exist for calculating the distance matrix. These
include Jukes-Cantor [36], Dayhoff [37], and JTT [38], among others. These methods assume
different relationships among transition probabilities and different equilibrium frequencies.
For simplicity of illustration, we define pairwise distance as the number of absolute amino acid
changes between any two sequences divided by the total sequence length, but the viral sequence
imputation method would work for other distance measures. Dij represents the pairwise dis-
tance between individuals i and j, and N is the total number of individuals in the dataset. If Dij

is less than the threshold, then individuals i and j are considered to be clustered. Moreover, if
Dij is less than the threshold for at least one individual j, where i 6¼ j, then individual i is consid-
ered to cluster. We represent this by introducing an indicator variable, Ii, for individual i such
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that:

Ii ¼
(
1 if Dij

is less than the threshold for at least one individual j; where i 6¼ j

0 Otherwise

Overall proportion of clustering: 1
N

PN
i¼1 Ii

We consider two thresholds for illustration of the sequence imputation method: 0.10 and
0.15. These thresholds were chosen based on the distribution of the V1C5 pairwise distances of
the translated amino acids. Our methods apply for any threshold; appropriate choice of a clus-
tering threshold is an active research area and can be affected by many factors, such as sam-
pling density [39].

Our sequence imputation approach follows the multiple imputation statistical paradigm for
dealing with informative missing data [24, 25]. Multiple imputation is a statistical method that
allows for valid inferences from incomplete data, by creating imputed-complete datasets. We
use the following formulas to calculate the mean proportion of clustering across imputed-com-
plete datasets, the variance, standard deviation and standard error of the mean.

Following the notation of Rubin 1996, them imputed-complete datasets have correspond-
ingm estimated statistics [Q.1, . . ., Q.m] and variance-covariance matrices [U.1, . . ., U.m]. The
repeated-imputation estimate is Qm ¼ Pm

l¼1 Q:l=m, the associated variance-covariance of Qm is
Tm = Um + (m + 1)/mBm, where Um ¼ Pm

l¼1 U:l=m is the within-imputation variability, which
is calculated by bootstrap as described in [40]. A collection of bootstrapped alignments is gen-
erated by resampling the sites of the imputed alignment with replacement. Each bootstrapped
alignment has the same number of sequences as the imputed alignment, but the column of
nucleotides representing a given site in the imputed alignment may be present multiple times

or not at all in the bootstrapped alignment. Bm ¼ 1=ðm� 1ÞPm
I¼1ðQ:I � QmÞðQ:I � QmÞ0 is the

between-imputation variability.
The following algorithm illustrates the sequence imputation mechanism, which is illustrated

in Fig 1. Here we assume that demographic categorization is possible for everyone in the popu-
lation, regardless of whether a sequence is available. (1) For each missing sequence, determine
the demographic group, of which there are four: young males, young females, older males or
older females. (2) Use a table of weighted probabilities to select the demographic group with
which the subject whose sequences is missing is clustered. The weighted probabilities are the
probabilities, calculated using observed sequences, that a sequence in one demographic group
has its nearest neighbor in another demographic group. These probabilities are defined by the
distribution of minimum distances, which is the minimum number of absolute amino acid
changes from one sequence to the next. (3) Randomly select a viral sequence from this demo-
graphic group. (4) From the distribution of minimum distances in the observed data between
the demographic groups of a subject with a missing sequence and the randomly selected
sequence, select a distance, n, at random. This distance is the number of absolute amino acid
changes between two sequences. (5) Select n sites from the viral genome of the sequence in (3)
to modify. Site selection is weighted by the variability of each site, based on the marginal fre-
quency of the most common amino acid at each site. Marginal frequencies for each amino acid
site were computed using the Biopython package, which was also used for alignment parsing
[41]. (6) Impute the amino acids for each of the n positions based on assumption that these
amino acids are multi-nomially distributed. (7) Add the imputed sequence back into the pool
of sequences that can be imputed from.
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Applications

Simulation Study
A simulation study demonstrated the ability of the model to reduce the biases arising from
informative missing data. The study was based on incomplete datasets that were created by
deleting sequences from the available data, and then using the multiple imputation procedure
to estimate rates of clustering for the entire observed database of 371 sequences. Deletions ofm
= (10, 20, . . ., 200) subjects were made. We refer to the sample of N = 371 sequences as the
observed data set; the observed data withm deletions that yield N = 371 −m sequences as the
incomplete-observed data; and the incomplete-observed dataset plus the imputed values as the
imputed-complete data.

Fig 1. Schematic of the sequence-imputation method.

doi:10.1371/journal.pone.0135469.g001
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Fig 2 demonstrates that as the number of deleted sequences increases, the proportion of
overall clustering decreases. The sequences were deleted selectively; weighting was by gender,
with sequences of females deleted ten times more often than that of males. Because of the
dearth of young males in the observed dataset, the male:female deletion ratio was chosen to
preserve sequences of young males in the incomplete-observed datasets whenm was large. The
proportion of subjects who cluster with others is naturally larger with a higher threshold (0.15
instead of 0.10).

Table 1 shows that the adjustment using multiple imputation reduces—and in some cases
nearly eliminates—the bias resulting from missing data. We consider incomplete-observed
datasets created by deletingm = 50, 100, 200 sequences from the observed dataset and calculate

Fig 2. Decrease in overall proportion of clustering with deletion of sequences. Clustering at each number of deletions is averaged over 100 different
random deletions of the same number of sequences.

doi:10.1371/journal.pone.0135469.g002
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the mean proportion of clustering for the thresholds of 0.10 and 0.15. The variance was calcu-
lated as described in the Methods section. The table also provides the coverage percentages for
the 95% confidence intervals on estimates from deletion and imputation. The confidence inter-
vals were obtained by bootstrapping standard errors. For each incomplete-observed dataset, in
whichm sequences had been deleted, ten imputed-complete datasets were constructed to cal-
culate the imputed-complete estimates and standard errors. This process was repeated over
100 different subset deletions (incomplete datasets withm deletions) in order to calculate cov-
erage. Coverage was defined as the proportion of times that 100 repetitions over 100 different
subset deletions yielded a 95% confidence interval that included the clustering value obtained
from the complete data. As the amount of missing data increases, the performance of the multi-
ple imputation estimates and the coverage worsens, but the bias is always considerably
decreased and coverage improved compared to the results for the incomplete-observed data.

Fig 3 demonstrates the bias-correcting effect of the multiple imputation. Deleting 100
sequences leads to noticeably lower clustering. For the incomplete-dataset, at the 0.10 thresh-
old, overall proportion of clustering is 0.030 [0.020, 0.039]; at the 0.15 threshold, overall pro-
portion of clustering is 0.10 [0.095, 0.11]. The multiple imputation method substantially
reduces bias and results in larger 95% confidence intervals. For the imputed-complete dataset,
at the 0.10 threshold, the overall proportion of clustering is 0.040 [0.016, 0.064]; at the 0.15
threshold, the overall proportion of clustering is 0.13 [0.094, 0.16].

We investigate the performance of the sequence imputation method for two scenarios for
sampling data missing not at random (MNAR) in Table 2. For the first, sequences are deleted
from the observed-complete dataset in proportion to the number of other sequences with
which they cluster, plus one. If, for example, a sequence clusters with 9 other sequences, it will
be ten times more likely to be deleted than a sequence which did not cluster with any other
sequences. Under the second scenario, sequences are deleted in a manner inversely propor-
tional to their number of clustering partners. For each incomplete-observed dataset, in which
m = 100 sequences were deleted, ten imputed-complete datasets were constructed to calculate
the imputed-complete estimates and standard errors. This process was repeated over 1000 dif-
ferent subset deletions (incomplete datasets withm = 100 deletions) in order to calculate cover-
age. The results demonstrate that serious violation of assumptions regarding the nature of the
missingness process greatly impact results. As expected, clustering estimates from the

Table 1. Estimated overall proportion of clustering for observed, incomplete-observed and imputed-
complete datasets.

Thres Clus, Obs # Del Clus, In-Obs Clus, Impute-Com Cov, In-Obs Cov, Impute-Com

0.1 0.043 50 0.039 0.043 83% 94%

100 0.036 0.043 66% 89%

200 0.024 0.037 30% 61%

0.15 0.13 50 0.11 0.13 48% 91%

100 0.099 0.13 16% 85%

200 0.059 0.10 1.4% 54%

Thres stands for threshold; Clus for clustering; Obs for observed data; # Del for number of deleted

sequences; In-Obs for ncomplete-observed data; Impute-Com for imputed-complete data; Cov stands for

coverage. Clustering assessed at the 0.10 and 0.15 thresholds, with varying number of deleted sequences

(m = 50, 100, or 200).

doi:10.1371/journal.pone.0135469.t001
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Fig 3. Demonstrating the corrective effect of a representative imputation.Deleting 100 sequences leads to noticeably lower clustering. Imputation
substantially improves estimates, and results in slightly larger error bars.

doi:10.1371/journal.pone.0135469.g003

Table 2. Estimated overall proportion of clustering for observed, incomplete-observed and imputed-
complete datasets under MNAR.

Deletion weight Clus,
Obs

Clus, In-
Obs

Clus, Impute-
Com

Cov, In-
Obs

Cov, Impute-
Com

Proportional 0.043 0.018 0.022 8% 42%

Inversely
proportional

0.043 0.053 80% 93%

Clustering assessed at the 0.10 threshold, with m = 100 deletions. Clus stands for clustering; Obs for

observed data; In-Obs for ncomplete-observed data; Impute-Com for imputed-complete data; Cov stands

for coverage.

doi:10.1371/journal.pone.0135469.t002
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imputed-complete dataset under proportional deletions are much smaller than the analogous
estimates under inversely proportional deletions.

Mochudi Pilot Study
We applied our methods to adjust for the fact that the observed Mochudi pilot dataset is an
incomplete, biased sample of the population of interest. The focus of estimation is the true pro-
portion of the clustering in the entire population targeted by the Mochudi pilot study. To
improve estimation, we impute missing sequences to create an imputed-population dataset.
Although we do not have exact information on the number of missing observations, we do
have information about the age-gender structure for Botswana as a whole as well as informa-
tion about HIV-1 prevalence by age and gender in Mochudi. While we cannot be certain that
the age-gender structure for Mochudi resembles that of Botswana as a whole, the former is
likely to be much closer to the structure for the country than is the observed sample from
Mochudi, given its notable under-representation of males. The 2013 CIAWorld Factbook pro-
vides an age-gender breakdown for Botswana [42], which we divide into four categories: young
males/females (15-35 years) and older males/females (> 35 years). In order to obtain the esti-
mated proportion of HIV-1 infected people in each age-gender category in Mochudi, we multi-
ply the proportion of people in each age-gender category for Botswana as a whole by the
estimated prevalence in those categories, obtained from the Mochudi pilot study [43]. From
these calculations we can estimate the proportions of HIV-infected subjects that are in each
age-category in Mochudi. We then add imputed sequences to our observed dataset so that the
proportions of subjects in each age-gender category of our augmented sample matches those
based on our estimates. The estimated proportions are: young males (0.097), older males
(0.292), young females (0.295), older females (0.317). To achieve these proportions, we impute
sequences for 84 older males, 0 older females, 24 young males, and 25 young females; a total of
133 sequences are added to our observed dataset of 371 sequences. We note that while this
database may not be complete, it should be considerably closer to complete than is the observed
sample, as older women were most likely to participate in the Mochudi pilot [43]. Furthermore,
the imputation adjusts for the under-sampling of males.

Fig 4 shows the effect of applying our viral sequence imputation method to the observed
sequence data. In the observed sample (N = 371), the proportion of overall clustering was esti-
mated to be 0.043 [0.034, 0.053] at the 0.10 clustering threshold and 0.13 [0.11, 0.14] at the
0.15 clustering threshold. In the imputed-population dataset (N = 504), the proportions of
overall clustering at the two thresholds were 0.062 [0.038, 0.086] and 0.15 [0.12, 0.18], respec-
tively. We note that for both the 0.10 and 0.15 thresholds, the upper confidence interval for the
clustering in the observed data excludes the point estimate for the imputed-population dataset.
The clustering estimates for the imputed-population data reflect a lower bound as there are
likely more missing sequences than the 133 we imputed; if some older females are missing,
then additional imputed sequences in all categories would be required.

Discussion
To assess clustering and viral linkage in the presence of missing data, we propose an approach
that combines a traditional missing data framework with a model for viral diversification after
transmission. In the setting we consider, our sequence imputation method corrects for biases
in viral genetic linkage analyses in the presence of informatively missing data. The performance
of the multiple imputation approach appears to depend on the proportion of data that are
missing. We implemented simulation studies in which our procedures are used to make
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inferences on the incomplete-observed dataset, and compared the results with those from the
complete-observed dataset.

In our simulation study, the proposed method performed well when the proportion missing
is less than 30%, but underestimated the proportion of sequences that are clustered when the
proportion missing is over 50%. One possible reason for this bias is in the distribution of mini-
mum pairwise distances, from which we randomly select the number of amino acid changes to
impute from the selected sequence. Bias arises from the fact that this distribution is based on
observed distances from an incomplete sample. The distribution of minimum distances is
increasingly shifted to the right with greater number of deletions because of the smaller num-
ber of links in the incomplete data. To investigate this issue, we conducted a sensitivity analysis
as follows: we used the distribution of minimum distances from the full observed dataset rather
than from the incomplete dataset in the sequence imputation approach. This approach, how-
ever, did not significantly reduce the bias. Next, we investigated the sensitivity to use of a kernel
density estimator for estimating the distribution of minimum distances, compared to using the
ad-hoc method. The results in S1 Table do not suggest any major difference in results when
using kernel density estimation compared to the approach described above. We also conducted

Fig 4. Estimating the true proportion of clustering in the Mochudi population. Treating the observed Mochudi data (N = 371) as a biased sample from
the population, and imputing the imputed-population dataset (N = 504) based on Botswana and Mochudi-specific age and gender breakdowns to create a
database with the same demographic structure as Botswana as a whole. Point estimates and error bars for the 0.10 and 0.15 thresholds of clustering.

doi:10.1371/journal.pone.0135469.g004
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a sensitivity analysis to determine if the proportions of sequences deleted by gender affected
the imputed-complete clustering estimates in our simulation study. We simulated male:female
sequence deletion ratios ranging from 1:1 to 1:10 (M:F); the latter was the ratio used in simula-
tion studies throughout the paper. S2 Table does not show a substantial impact of the deletion
ratios on the performance of our method. Bias may also arise from limitations in the model for
viral diversification—future studies based on clonal rather than population sequences may pro-
vide more information for this model. The lower coverage noted when the proportion of data
that is missing exceeds 50% likely reflects not only lower amount of information used to esti-
mate the quantities of importance (distances between genotypes), but also more reliance on
generating sequences that may be several transmissions away from someone with an observed
sequence.

To impute sequences requires a number of assumptions. One regards the covariation
between amino acid positions of the gp120 region; we assumed independence, but other choices
are possible. A second assumption is that the clustered sequences have similar processes of
diversification as those of the sequences of the larger population from which these clustered
sequences are sampled. In addition, we assume that sequences are missing at random given
observed characteristics on the missing sequences (e.g. age and sex of the hosts).

In this paper, we do not provide detailed guidance on choice of clustering threshold. The
sequence imputation method is applicable to a diverse range of distance matrix definitions,
and we present a simple distance matrix definition for ease of illustration. In practice, thresh-
olds will be specific both to the distance matrix definition and the study objective. For example,
in assessing whether two individuals are likely to be fairly closely connected in the same trans-
mission chain, it might be preferable to use a lower threshold. By contrast, assessing whether
two individuals are infected by strains circulating within a given community or by strains cir-
culating only outside of the community, one might prefer a higher threshold. We recommend
investigation at a range of thresholds as shown above, although we selected two thresholds to
demonstrate coverage.

In the simulated imputed-population dataset, in which we apply our method to adjust for
the bias and incompleteness of the observed Mochudi pilot dataset, our estimates of clustering
have limitations that arise from the sampling of the pilot study population in Mochudi [43].
We solely adjust for biases that result when the probability of sampling depends only on age
category and gender. We note that we cannot exclude the possibility that probabilities of sam-
pling depend on other factors as well. Nonetheless, we demonstrate that the sequence imputa-
tion method used to adjust clustering estimates can greatly improve estimation if these
assumptions are met. The method could easily accommodate other factors that impact proba-
bility of sampling, when they are known and measured..

In summary, viral genetic linkage analyses has been shown to be useful in making inferences
about transmission patterns, but analyses can yield biased results unless the impact of incom-
plete sampling of populations of interest is properly taken into account.

Supporting Information
S1 Table. Estimated overall proportion of clustering for observed, incomplete-observed
and imputed-complete datasets using kernel density estimation for the distribution of min-
imum distances. Clustering assessed at the 0.10 threshold, with m = 100 deletions. Coverage is
calculated as described in Table 2. Ratio of male:female deletions was 10:1. Clus stands for clus-
tering; Obs for observed data; In-Obs for ncomplete-observed data; Impute-Com for imputed-
complete data; Cov stands for coverage.
(PDF)
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S2 Table. Estimated overall proportion of clustering for observed, incomplete-observed
and imputed-complete datasets at varying ratios of male:female sequence deletions. Clus-
tering assessed at the 0.10 threshold, with m = 100 deletions. Coverage is calculated as
described in Table 2. Clus stands for clustering; Obs for observed data; In-Obs for ncomplete-
observed data; Impute-Com for imputed-complete data; Cov stands for coverage.
(PDF)
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