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Abstract

Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and

subfertility, and has been associated with decreased body mass index (BMI). Genetic variants

contributing to the heritable component have started to emerge from genome-wide association studies

(GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus

on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution

(waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European

ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying

the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated

significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 ×

10−3), which was stronger when we restricted the investigation to more severe (Stage B) cases (P =

4.5 × 10−4). However, no genetic enrichment was observed between endometriosis and BMI (P =

0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of

involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14);

two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2

are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically

significant (P = 6.41 × 10−4) overrepresentation of shared associations in developmental processes/

WNT signalling between the two traits. Our results demonstrate an example of potential biological

pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci

and further cross-phenotype comparisons to assess how fat distribution and endometriosis

pathogenesis research fields can inform each other.

INTRODUCTION

Endometriosis is a common condition in premenopausal women characterized by chronic

pelvic inflammation causing pain and subfertility (1), and has an estimated heritability of 51%

(2). The International Endogene Consortium (IEC) performed the largest endometriosis GWAS

to date in 3194 surgically confirmed cases (including 1364 moderate–severe—Stage B—cases)

and 7060 controls of European ancestry, with replication in a further 2392 cases and 2271

controls (3). One genome-wide significant locus was observed in an intergenic region on

chromosome 7p15.2 (rs12700667), primarily associated with Stage B disease (P = 1.5 ×

10−9, OR = 1.38, 95% CI 1.24–1.53). A second locus near WNT4 (rs7521902) was found after

meta-analysis with published results from a Japanese GWAS of 1423 cases and 1318 controls

(4); a genome-wide meta-analysis confirmed the two loci and found a further five (5).

Rs12700667 on 7p15.2 also marked 1 of 16 reported genome-wide significant loci associated

with waist-to-hip ratio adjusted for BMI (WHRadjBMI) in an independent GWAS meta-

analysis by the GIANT Consortium involving 77 167 individuals of European ancestry with

replication in a further 113 636 individuals (rs1055144: discovery P = 1.5 × 10−8; meta-analysis

P = 1.0 × 10−24; r2 = 0.5 with rs12700667 in 1000G pilot CEU data) (6,7). This was surprising,

as prospective epidemiological studies have suggested consistently that reduced BMI—a

measure of overall adiposity—is associated with increased risk of endometriosis, but there is
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relatively limited evidence for an association with WHRadjBMI—a measure of fat distribution

(8,9). We conducted a logistic regression analysis in the IEC dataset of rs1055144 on

endometriosis disease status, conditioning on rs12700667, which demonstrated that the SNPs

reflected the same association signal (unpublished data; conditional P = 0.65).

The epidemiological evidence of an association between endometriosis and BMI, together with

the observed GWAS locus in common between endometriosis and WHRadjBMI, led us to

conduct a systematic investigation of overlap in association signals between the IEC

endometriosis GWAS and GIANT Consortium WHRadjBMI (N = 77 167) (6,7) and BMI (N

= 123 865) (7,10) meta-GWAS datasets through genetic enrichment analyses.

RESULTS

Genetic enrichment analysis of endometriosis with overall adiposity and fat distribution

Using independent, imputed (1000 Genomes pilot reference panel) GWAS datasets of

endometriosis (IEC; 3194 cases including 1364 Stage B cases, 7060 controls), BMI (GIANT;

123 865 individuals) and WHRadjBMI (GIANT: 77 167 individuals), we first considered loci

genome-wide significantly associated with endometriosis, BMI or WHRadjBMI in each of the

individual GWAS. The two genome-wide significant endometriosis loci (intergenic 7p15.2

and WNT4) had significantly lower P-values of association than expected by chance in the

WHRadjBMI GWAS (Table 1: rs12700667, P = 4.4 × 10−5 and rs7521902, P = 1.3 × 10−3;

binomial P = 1.0 × 10−4), while 2 of the 16 genome-wide significant WHRadjBMI loci

(intergenic 7p15.2 and GRB14) had P < 0.01 in the endometriosis GWAS (binomial P = 0.011).

No enrichment between genome-wide significantly associated loci was observed for

endometriosis versus BMI (Supplementary Material, Table S1: rs12700667, P = 0.27 and

rs7521902, P = 0.92).

To investigate whether statistical enrichment extended beyond genome-wide significant loci,

we investigated the most significant (P < 1 × 10−3) independent (r2 < 0.2) endometriosis GWAS

signals for enrichment of WHRadjBMI or BMI signals with P < 0.05 and vice versa (number

of lookup SNPs per dataset: n = 717 to 748; see Supplementary Material, Methods). We

observed statistically significant enrichment between variants associated with endometriosis

(particularly Stage B) and WHRadjBMI (all endometriosis versus WHRadjBMI: P = 3.7 ×

10−3; Stage B endometriosis versus WHRadjBMI: P = 4.5 × 10−4), but not between

endometriosis and BMI (all endometriosis versus BMI: P = 0.79; Stage B endometriosis versus

BMI: P = 0.85) (Fig. 1; Supplementary Material, Table S2). Results were similar when using

female-limited WHRadjBMI (N = 42 969 women) and BMI (N = 73 137 women) GWAS

summary statistics (7); to optimize power, in the remainder of the paper we therefore focus on

sex-combined WHRadjBMI and BMI datasets (Supplementary Material, Fig. S1). Empirical

testing of statistical enrichment through permutation (see Supplementary Material, Methods)

provided near-identical results (Fig. 1; Supplementary Material, Fig. S1).

The choice of significance thresholds in the discovery and lookup datasets was based on a

balance between applying a sufficiently stringent significance threshold in the discovery

dataset that would minimize the proportion of false-positive association signals, while still

having sufficient numbers of loci in each of the phenotypic association strata to investigate
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statistical enrichment, and allow the pursuit of meaningful biological pathway analyses

subsequently. We considered the effect of different significance thresholds, for both discovery

and lookup, which confirmed results showing enrichment of association signals between

endometriosis and WHRadjBMI (Supplementary Material, Table S3), but no enrichment

between endometriosis and BMI (Supplementary Material, Table S4).

To investigate potential genome-wide sharing of loci between endometriosis and WHRadjBMI

or BMI, we performed polygenic prediction analyses (11) evaluating whether the aggregate

effect of many variants of small effect in the WHRadjBMI and BMI GWAS could predict

endometriosis status in the IEC GWAS (see Supplementary Material, Methods). There was no

significant association between the WHRadjBMI- or BMI-derived profile scores (overall or

female limited) and all/Stage B endometriosis (Supplementary Material, Tables S5–S8),

suggesting no evidence for a directionally consistent en masse, genome-wide, shared common

genetic component.

We next investigated the variants with most significant evidence for association with both

endometriosis (P < 1 × 10−3) and WHRadjBMI (P < 0.05) for predominance in direction of

phenotypic effects (Supplementary Material, Tables S9 and S10 and Fig. S2). No statistically

significant directional consistency was observed for these variants (P > 0.47), nor for the 17

loci (Table 1) that were genome-wide significantly associated with either trait (Fig. 2, P >

0.44). Intergenic 7p15.2 and WNT4 showed discordant directions of effect, while the effect of

GRB14 was concordant (Fig. 2). This could suggest the presence of multiple biological

pathways through which the variants influence the two phenotypes. We next set out to

investigate the common biology suggested by genetic variants associated with both

endometriosis and WHRadjBMI.

Biology of the loci shared between endometriosis and fat distribution

Our analysis showing significant enrichment between SNPs associated with all or Stage B

endometriosis (P < 1 × 10−3) and WHRadjBMI (P < 0.05) shown in Figure 1 involved 1284

independent (r2 > 0.2) loci. We explored the biological function of the loci most strongly

associated with WHRadjBMI, at nominal P < 0.005 (n = 16, Table 2; see Supplementary

Material, Tables S11 and S12 for all variants associated at P < 0.05). Two novel loci, rs560584

near KIFAP3 (all endometriosis) and rs11619804 in CAB39L (Stage B endometriosis), were

significantly associated with WHRadjBMI after Bonferroni correction allowing for 1284

independent tests (P < 3.89 × 10−5).

The endometriosis risk allele T of rs560584 (OR = 1.14 (1.07–1.22), P = 1.42 × 10−4) was

associated with lower WHRadjBMI (β = −0.021, P = 1.47 × 10−5), and located in an intergenic

region 46 kb downstream of KIFAP3 (Kinesin-associated protein 3). Together with KIF3A

and KIF3B, KIFAP3 forms a kinesin motor complex, KIF3, that mediates cellular transport of

N-cadherin and β-catenins (12), which are involved in cell adhesion, the Wnt canonical pathway

and cell cycle progression (13). The Wnt/β-catenin signalling pathway acts as a molecular

switch for adipogenesis (14) and has multiple suggested roles in endometriosis through sex

hormone homeostasis regulation (15), its role in development of female reproductive organs

(16), molecular mechanisms of infertility (17) and mediation of fibrogenesis (18).
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The Stage B endometriosis risk allele C of rs11619804 (OR = 1.17 (1.07–1.28); P = 4.88 ×

10−4), located in CAB39L (Calcium-Binding Protein 39-Like), was associated with increased

WHRadjBMI (β = 0.022, P = 1.06 × 10−5; Table 2). The function of this gene is not well

characterized but the encoded protein interacts with a serine threonine kinase (STK11) that

functions as a tumour suppressor (19).

Rs12700667 in the intergenic region 7p15.2 remained among the strongest associated shared

signals, with the endometriosis risk allele A associated with reduced WHRadjBMI (β =

−0.023, P = 4.4 × 10−5). The association maps to an intergenic high LD region of 48 kb (r2 >

0.8) of unknown functionality. Further interesting nearby loci include the miRNA hsa-

mir-148a, with a purported role in Wnt/β-catenin signalling (14); NFE2L3 (nuclear factor

(erythroid-derived 2)-like 3), a transcription factor suggested to be involved in cell

differentiation, inflammation and carcinogenesis (20). The WNT signalling pathway was

further highlighted by the nominal association of two independent (r2 = 0.06) endometriosis

risk variants near WNT4 (wingless-type MMTV integration site family), rs3820282 (genic)

and rs2807357 (22.4 kb downstream), with reduced WHRadjBMI (β = −0.019, P = 5.0 ×

10−3; β = −0.015, P = 3.7 × 10−3; Table 2). Of note is that all shared variants implicated in

WNT signalling (in/near intergenic 7p15.2, WNT4, KIFAP3) showed consistent—discordant

—phenotypic directions of effect.

Risk variant rs10195252, 34.6 kb downstream of GRB14 (growth factor receptor-bound protein

14) was the third locus with significant evidence for association with both overall (not Stage

B) endometriosis and WHRadjBMI (Table 1). GRB14 has an inhibitory effect on insulin

receptor signalling (21), may have a role in signalling pathways that regulate growth and

metabolism and has been shown to interact with fibroblast growth factor receptors (22). This

shared variant is also in high LD (r2 = 0.93 and = 0.87, respectively) with a type 2 diabetes

risk variant rs13389219 (23) and fasting insulin risk variant rs6717858 (24).

Other loci of interest include rs2921188 in PPARG and rs6556301 near FGFR4 (Table 2). The

endometriosis risk allele A of rs2921188 (OR = 1.13, 95% CI: 1.05–1.21), P = 5.9 × 10−4) in

PPARG (peroxisome proliferator-activated receptor gamma) is associated with increased

WHRadjBMI (β = 0.017; P = 1.1 × 10−3). PPARG is a nuclear hormone receptor that regulates

fatty acid storage and glucose metabolism. Synthetic ligands, such as insulin sensitizing drugs,

target PPARG in treatment of diabetes to lower serum glucose levels (25) and are also

documented to have anti-inflammatory, anti-angiogenic and anti-proliferative effects on

endometrium, with baboon models suggesting a role in targeting endometriotic disease (26).

Stage B endometriosis risk allele G of rs6556301 near FGFR4 (fibroblast growth factor

receptor, OR = 1.17 [1.07–1.28], P = 7.4 × 10−4) is associated with reduced WHRadjBMI (β

= −0.021, P = 1.9 × 10−4). FGFR4 interacts with fibroblast growth factors, which have roles

in angiogenesis, wound healing and cell migration (27).

Expression quantitative trait loci analysis of the shared endometriosis and fat distribution

loci

We investigated the potential impact of the described 16 genes (Table 2) shared between

endometriosis and WHRadjBMI on transcriptional function using three public expression data
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resources: (i) the Mammalian Gene Expression Uterus database (MGEx-Udb) (28) containing

published information on transcriptional activity of specific genes in human endometrial tissue

from individuals with and without endometriosis; (ii) the MuTHER study which collected

expression and eQTL data from 776 abdominal fat tissues (29); and (iii) the MOLOBB dataset

of differential expression levels between abdominal and gluteal fat from 49 individuals (30).

Based on the limited available evidence in the MGEx-Udb database, two genes are transcribed

in endometrial tissue of women with endometriosis but dormant in those without

endometriosis: PPARG and FGFR4 (Supplementary Material, Table S13). Of the 16 genes, 15

had probes present within 1 Mb either side of the SNP in the MuTHER database; however,

none showed significant association with nearby transcripts in abdominal fat tissue

(Supplementary Material, Table S14). The MOLOBB study data showed cis-eQTL evidence

for differential expression of two genes; KIFAP3 (rs560584; fold change = 0.14, adjusted P =

0.04) (Supplementary Material, Table S15). Additional transcriptional evidence relevant to the

intergenic 7p15.2 locus includes the presence of an expression QTL associated with a transcript

of unknown function, AA553656, in subcutaneous abdominal fat tissue (6), and the differential

expression of nearby hsa-miR-148a between gluteal and abdominal fat tissue samples (31).

Pathway analysis

To identify potential common biological pathways involved in the aetiology of endometriosis

and the variability of fat distribution, we conducted pathway analyses using genes with

evidence for enrichment between the traits using (i) the PANTHER database (32) and (ii)

GRAIL (33). For the PANTHER analysis, we selected the 91 and 108 genes located in a 1 Mb

interval surrounding each independent SNP associated with all endometriosis (P < 1.0 ×

10−3) and WHRadjBMI (P < 0.05), and Stage B endometriosis (P < 1.0 × 10−3) and

WHRadjBMI (P < 0.05), respectively (see Supplementary Material, Methods). This excluded

intergenic loci without a gene within 1 Mb, such as our top shared locus at 7p15.2. We tested

whether the two sets of genes showed significant overrepresentation of a particular pathway,

for each of 176 curated pathways and 241 biological processes. The top enriched pathways

were ‘developmental processes’ (all endometriosis: P = 1.2 × 10−5; Stage B: P = 1.25 ×

10−4), ‘WNT signalling’ (all endometriosis: P = 1.07 × 10−4), ‘gonadotropin-releasing hormone

receptor’ (all endometriosis: P = 1.48 × 10−3), ‘cadherin signalling’ (Stage B: P = 6.42 ×

10−4), ‘FGF signalling’ (Stage B: P = 2.96 × 10−3) and ‘TGF-beta signalling’ (Stage B: P =

1.48 × 10−3) pathways (Supplementary Material, Tables S16 and S17). Bonferroni correction

for the number of pathways tested (see Supplementary Material, Methods) rendered ‘WNT

signalling’, ‘developmental processes’, ‘cellular processes’ and ‘cell communication’

significantly enriched; however, this adjustment is conservative, as exemplified by ‘cadherin

signalling’ genes being a subset of those in the ‘WNT signalling’ pathway. Sensitivity analyses

exploring the effect of different endometriosis association thresholds on pathway analyses

showed very consistent results for threshold P < 1.0 × 10−2, with the same top three enriched

pathways—WNT signalling, Cadherin signalling and Gonadotropin-releasing hormone

receptor pathway. No meaningful pathway analyses could be conducted on the limited number

of genes passing association threshold P < 1 × 10−4 (Supplementary Material, Table S18).

We used GRAIL (33) to search for connectivity between the 91 and 108 genes all/Stage B

endometriosis and WHRadjBMI-associated genes and specific keywords from the published
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literature that describe potential functional connections. We identified 17 genes with nominal

significance (P < 0.05) for potential functional connectivity for ‘all’ endometriosis and

WHRadjBMI and six genes for Stage B endometriosis and WHRadjBMI (Supplementary

Material, Fig. S3 and Tables S19 and S20). The keywords associated with these connections

included ‘cadherin’, ‘differentiation’, ‘development’ and ‘insulin’ for ‘all’ endo, and

‘development’ and ‘embryos’ for Stage B endometriosis, marking again developmental

processes and cadherin signalling as biological pathways shared in the origins of endometriosis

and fat distribution.

DISCUSSION

In this study, we have investigated the overlap in genetic association signals from the largest

GWA studies to date of endometriosis, overall adiposity (BMI) and fat distribution

(WHRadjBMI). Our results demonstrated that there is a shared genetic basis between

endometriosis and fat distribution that extends over and above the single genome-wide

significant locus that has been reported in GWAS of the separate traits. Our analyses highlight

novel loci in/near KIFAP3 and CAB39L, which together with intergenic 7p15.2, WNT4 and

GRB14, showed significant evidence of trait association sharing. The strength of evidence of

enrichment was similar for overall versus female-limited WHRadjBMI loci, which may be

unexpected, given that endometriosis is a female condition. However, the lack of a stronger

enrichment between female-specific WHRadjBMI GWAS results and endometriosis,

compared with all WHRadjBMI results should be considered against the effects of a reduced

sample size used for female-specific WHRadjBMI analyses on power of association detection.

The enrichment of associated variants was generally stronger when the endometriosis cases

were restricted to moderate–severe (Stage B) disease, despite the smaller sample size. Indeed,

the association of the top intergenic GWAS locus on 7p15.2, also genome-wide significantly

associated with WHRadjBMI, is limited to Stage B endometriosis. Stage B—or ASRM Stages

III/IV disease (34)—is typically characterized by ovarian (endometrioma) or deep infiltrating

(rectovaginal) lesions, which were shown to have a substantially greater underlying genetic

contribution than milder, peritoneal disease (ASRM Stage I/II) (3). The particular enrichment

between WHRadjBMI and Stages III/IV endometriosis is intriguing, and another reason for

further functional work to concentrate on this endometriosis sub-type. There are, however,

specific loci that show enrichment of association with WHRadjBMI and overall endometriosis,

the analysis of which therefore remains of interest. An example is GRB14, which did not show

significant association with Stage B disease, displayed a concordant direction of effect between

endometriosis and WHRadjBMI, and the biological function of which also seems to suggest

an entirely different contribution to the origins of both phenotypes than the 7p15.2 and

WNT4 loci.

The limited available eQTL data showed significant evidence for differential expression of

KIFAP3 between different fat depots. The variants with most evidence for enrichment between

the traits, in/near intergenic 7p15.2, KIFAP3 and WNT4, were all implicated in WNT signalling

and had consistent—discordant—directions of effect, with endometriosis risk alleles

associated with a decreased WHRadjBMI. Indeed, biological pathway analyses showed

significant evidence for the involvement of developmental processes and WNT signalling in
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endometriosis aetiology and regulation of fat distribution, a potential pleiotropic connection

that has not been reported to date.

The relatively limited epidemiological evidence of phenotypic correlation between

endometriosis and WHRadjBMI (8,9) is consistent with the absence of strong directional

consistency of phenotypic effects of genetic variants underlying both traits at a genome-wide

level. Most studies of genetic pleiotropy between traits to date have focused on genome-wide

directional consistency between epidemiologically or clinically (postulated) correlated traits,

such as different metabolic traits (6,35) or psychiatric conditions (36). However, genome-wide

consistency in directionality of phenotypic effects would most likely apply to traits that share

a large proportion of causality, and that epidemiologically lie on the same causal pathway(s)

and are thus more likely to be examples of mediated (genetic variants influencing one

phenotype indirectly through association with a second phenotype) rather than biological

(genetic variants exerting a direct biological influence on more than one phenotype) pleiotropy

(37). Thus, our results of genetic enrichment between endometriosis and WHRadjBMI

demonstrate an example of the biological complexity of aetiological associations between

complex traits, and suggest that the underlying shared loci are potentially biologically

pleiotropic, given the absence of phenotypic correlation between endometriosis and

WHRadjBMI and absence of en masse directional consistency of shared genetic variants on

the phenotypes (37,38). It also demonstrates more generally how potential perturbation of a

causal pathway through, for example, drug treatment targeting one trait could have unexpected

effects on another, even when there is no clear evidence that these traits are associated clinically

or epidemiologically—a problem often encountered in drug development. Systematic

exploration of biological pleiotropy of genetic variants marking potential drug targets may help

in highlighting the potential of such unwanted or unexpected effects.

While the observed genetic enrichment between endometriosis and WHRadjBMI presents new

avenues for exploring common biology, the total absence of any genetic enrichment between

endometriosis and BMI (within the limits of power presented by these large datasets) is

intriguing given the consistent, prospective, observational epidemiological evidence of

phenotypic association between reduced BMI and endometriosis risk (8). Our analyses

represent an adaptation of Mendelian randomization analyses (39,40), in which genetic variants

robustly associated with BMI in the largest GWAS analyses to date (10) are investigated for

association with endometriosis. The total lack of genetic enrichment suggests that reduced BMI

is not causally related to endometriosis risk. Rather, it suggests that the observed phenotypic

association (8) is either driven by shared environmental factors, or is due to confounding factors

related to BMI affecting, for example, diagnostic opportunity for endometriosis.

These novel findings present an entirely new opportunity for functional targeted follow-up of

pleiotropic loci between endometriosis and WHRadjBMI in relevant disease tissues such as

endometrium and fat tissue, cellular systems, animal models and further cross-trait

comparisons, to uncover their biological functions and to assess how studies in the fat

distribution research field can inform research into endometriosis pathogenesis, biomarker

identification and drug target discovery and validation.
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MATERIALS AND METHODS

Genome-wide association studies

IEC endometriosis GWAS—This GWAS included 3194 surgically confirmed

endometriosis cases and 7060 controls from Australia and the UK. Disease severity of the

endometriosis cases was assessed retrospectively from surgical records using the rAFS

classification system and grouped into two phenotypes: Stage A (Stage I or II disease or some

ovarian disease with a few adhesions; n = 1686) or Stage B (Stage III or IV disease; n = 1364).

We previously showed an increased genetic loading among 1364 cases with Stage B

endometriosis compared with 1666 with Stage A disease (3), which led to two GWA analyses,

including (i) 3194 ‘all’ endometriosis case and (ii) 1364 Stage B cases (Table 3). The genotyped

data were imputed up to 1000 Genomes pilot reference panel (B36, June 2010) and the GWAS

was performed again, using a missing data likelihood in a logistic regression model including

a covariate representing the Australian and the UK strata, with the imputed data (N = 12.5

million SNPs). The enrichment analysis we present is from this set of results.

GIANT Consortium

WHR GWAS: A total of 77 167 subjects of European ancestry informative of body fat

distribution measurement WHR from 32 GWAS were included (6). The genotype data were

imputed up to HapMap 2 CEU reference panel. The associations of 2.85 million SNPs with

WHR were examined in a fixed-effects meta-analysis, after inverse normal transformation of

WHR and adjusting for BMI and age within each study in an additive genetic model; analyses

were conducted for males and females combined (6) and limited to females only (7) (Table 3).

BMI GWAS: A total of 123 865 subjects with overall adiposity measurement BMI from 46

GWAS were included (10). The genotype data were imputed up to HapMap two CEU reference

panels. The associations of 2.85 million SNPs with BMI were tested in an inverse-variance

meta-analysis, after inverse normally transformation of BMI and adjusting for age and other

appropriate covariates in an additive genetic model within each study; analyses were conducted

for males and females combined (10) and limited to females only (7) (Table 3).

Genetic enrichment analysis

With one test of association conducted for each SNP, the GWAS analyses produced a genome-

wide distribution of P-values of individual SNP associations. Prior to testing enrichment: (i)

the overlap of SNPs present in endometriosis GWAS versus WHRadjBMI and BMI GWAS

was taken, (ii) all SNPs with MAF ≤ 0.01 were removed, (iii) all SNPs with A/T and C/G base

pairs were removed, (iv) correlated SNPs (r2 > 0.2) were removed as previously reported

(41) by taking the most significantly associated SNP and eliminating all SNPs that have a

HapMap CEU pairwise correlation coefficient (r2) > 0.2 with that SNP, then processing to the

next strongly associated SNP remaining. This resulted in 173 157 independent SNPs in

endometriosis versus WHRadjBMI and 173 223 in endometriosis versus BMI enrichment

analyses.

The independent SNPs in the tails (P < 1 × 10−3) of the association results distribution of the

two endometriosis GWAS (all endometriosis and ‘Stage B’ cases) were investigated for
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enrichment of WHRadjBMI or BMI low P-value (P < 0.05) association signals; in reversal,

SNPs in the tails of WHRadjBMI and BMI GWAS (P < 1 × 10−3) were investigated for

evidence of nominal association (P < 0.05) in the two endometriosis GWAS. The threshold of

P < 1 × 10−3 corresponded to the point at which endometriosis GWAS results started to deviate

from the null distribution (evidence for association) in the overall and Stage B endometriosis

Q–Q plots (Supplementary Material, Fig. S4). Enrichment was assessed in R by means of

Pearson’s χ2 tests with Yates’ continuity correction, testing for the difference in proportion of

SNPs with association P < 0.05 in the lookup dataset according to association in the discovery

dataset (P < 1 × 10−3 versus P ≥ 1 × 10−3). To test for consistency in directionality of phenotypic

effects of the SNPs with evidence of enrichment, linear regression analysis was performed on

the effect (β) of each SNP for WHRadjBMI as predictor variable and the effect (β) of

endometriosis risk as the outcome variable (35). In addition, a two-sided binomial test was

performed with null hypothesis P = 0.50.

Permutation-based enrichment analysis

For those results that showed nominally significant (P < 0.10) evidence for enrichment in χ2

tests of contingency tables, we performed permutation-based analyses to obtain empirical

estimates of significance of enrichment. We (i) randomly picked the same number of

independent SNPs ‘associated’ with the discovery trait at P < 1 × 10−3 (e.g. the number of

SNPs associated with all endometriosis at P < 1 × 10−3 was n = 717) from the WHRadjBMI

dataset; (ii) counted how many of the randomly selected SNPs had P-values of association with

WHRadjBMI <0.05; (iii) repeated Steps (i) and (ii) 10 000 times; (iv) determined the number

of instances among the 10 000 draws in which the number of SNPs associated at P < 0.05 with

WHRadjBMI was greater or equal to the number we observed in our original analysis (e.g.

≥52/717). For example, for overall endometriosis and overall WHRadjBMI, we observed this

in 26/10 000 instances, corresponding to a P-value of 2.6 × 10−3, which was very similar to

the P-value obtained from the χ2 test (P = 3.7 × 10−3).

Polygenic prediction analysis

The independent SNPs in both WHRadjBMI and endometriosis datasets were used to conduct

a polygenic prediction analysis (11). The aim of this analysis was to evaluate the aggregate

effects of many SNPs of small effect and assess whether subsets of SNPs selected in this manner

from one disease/trait GWAS predict disease/trait status in another, thus providing a measure

of a common polygenic component with concordant directions of effect underlying the traits.

Briefly, subsets of SNPs were selected from the WHRadjBMI GWAS data based on their

association with WHRadjBMI using increasingly liberal thresholds, that is, P < 0.01, P < 0.05,

P < 0.1, P < 0.2, P < 0.3, P < 0.4, P < 0.5 and P < 0.75. Using these thresholds, we defined

sets of allele-specific scores in the WHRadjBMI dataset to generate risk profile scores for

individuals in the endometriosis dataset. For each individual in the endometriosis dataset, we

calculated the number of score alleles they possessed, each weighted by their effect size (β-

value) of association in the WHRadjBMI dataset. To assess whether the aggregate scores were

associated with endometriosis risk, we tested for a higher mean score in cases compared with

controls. Logistic regression was used to assess the relationship between endometriosis disease

status and aggregate risk score.
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Expression analyses

MGEx-Udb—The mammalian gene expression uterus database (MGEx-Udb) is a manually

curated uterus-specific database created using a meta-analysis approach from published papers

(28) that provides lists of transcribed and dormant genes for various normal, pathological (e.g.

endometriosis, cervical cancer and endometrial cancer) and experimental (e.g. treatment and

knockout) conditions. Each gene’s expression status is indicated by a reliability score, derived

based on the consensus across multiple samples and studies which highly variable (http://

resource.ibab.ac.in/MGEx-Udb/).

MuTHER—The MuTHER resource includes LCLs, skin and adipose tissue-derived

simultaneously from a subset of well-phenotyped healthy female twins (29). Whole-genome

expression profiling of the samples, each with either two or three technical replicates, was

performed using the Illumina Human HT-12 V3 BeadChips (Illumina, Inc.) according to the

protocol supplied by the manufacturer. Log2 transformed expression signals were normalized

separately per tissue as follows: quantile normalization was performed across technical

replicates of each individual followed by quantile normalization across all individuals.

Genotyping was conducted using a combination of Illumina arrays (HumanHap300,

HumanHap610Q, 1M-Duo and 1.2MDuo 1 M). Untyped HapMap2 SNPs were imputed using

the IMPUTE software package (v2). In total, there were 776 samples with genotypes and

expression values in adipose tissue. Association between all SNPs (MAF > 5%, IMPUTE info

score > 0.8) within a gene or within 1 Mb of the gene transcription start or end site, and

normalized expression values, were performed with the GenABEL/ProbABEL packages (42)

using polygenic linear models incorporating a kinship matrix (GenABEL) followed by the mm

score test with imputed genotypes (ProbABEL). Age and experimental batch were included as

cofactors in the analysis. Benjamini Hochberg corrected P-values are reported.

MolOBB—We performed differential cis-eQTL analysis to compare the expression levels in

gluteal and abdominal fat tissue from 49 individuals in the MolOBB dataset (24 with and 25

without metabolic syndrome—MetSyn) (30). We first checked for the presence of the SNP in

the MolOBB genotype data and, in the case of absence, selected any proxies (r2 > 0.8) available.

We then searched for nearby genes (±500 kb) covered by the expression data using the

bioconductor R package GenomicRanges (43) and tested for association at each pair using a

linear model with the expression level as an outcome and the SNP allelic dosage as a predictor,

adjusting for age, gender and MetSyn case–control status. This analysis was carried out for

both abdominal and gluteal subcutaneous adipose tissue. To investigate whether genes were

differentially expressed between the two tissues, we applied a linear mixed model with tissue,

MetSyn case–control status, gender and plate were as fixed effects, and subject as a random

effect using MAANOVA (44), as previously described in Min et al. (30). We report the

uncorrected and genome-wide FDR corrected Fs test P-values (30).

Biological pathway analysis

PANTHER—We conducted analyses using the PANTHER 8.1 database containing pathway

information on 20 000 genes (Homo sapiens) (32). We selected independent SNPs, which had

association P-values < 1 × 10−3 in the endometriosis datasets and an association P-value of
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<0.05 in the WHRadjBMI dataset, resulting in (i) 91 SNPs for all endometriosis and

WHRadjBMI and (ii) 108 SNPs for Stage B endometriosis and WHRadjBMI. Each SNP was

mapped to the closest gene within 1 Mb; 88 of 91 and 103 of 108 genes were present in the

PANTHER database, and these subsets were tested for correlation with 241 biological

processes and 176 pathways classified in the database (32). For each biological process/

pathway, the difference between the observed fraction of genes in that pathway and the number

expected by chance was tested using Fisher exact test. A Bonferroni correction was used as a

conservative method for adjusting for the maximum number of biological processes (n = 278;

P = 1.80 × 10−4) and pathways (n = 78; P = 6.41 × 10−4) tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Genetic enrichment analyses between endometriosis, BMI and WHRadjBMI GWAS datasets,

using independent (r2 < 0.2) SNPs. The panels show (i) The proportion of SNPs nominally

associated (P < 0.05) with WHRadjBMI (A) or BMI (B) by significance of overall and Stage

B endometriosis association (P < 1.0 × 10−3 versus P ≥ 1 × 10−3); (ii) The proportion of SNPs

nominally associated (P < 0.05) with overall and Stage B endometriosis by significance of

WHRadjBMI (C) and BMI (D) association (P < 1.0 × 10−3 versus P ≥ 1 × 10−3). P-values of

χ2 tests assessing statistical difference between proportions are shown above each set of bars,

and 95% confidence intervals of the proportions are given on each bar. For differences with

Pchisq < 0.2, empirical P-values are given in brackets (see Supplementary Material, Methods).
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Figure 2.

Directions of effect of 17 independent SNPs genome-wide significantly associated with all

(A) or Stage B (B) endometriosis, or WHRadjBMI. Intergenic 7p15.2, WNT4, and GRB14 are

shown in red. Linear regression R2 and P-values used to test for significant directionality of

effects (35) are shown.
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Table 3

Summary description of the GWAS used in the genetic enrichment analysis

GWAS Consortium Sample size No. of SNPs (million) References

Endometriosis—all cases IEC 3194 cases, 7060 controls ~12.5 Painter et al. (3)

Endometriosis—Stage B cases IEC 1363 cases, 7060 controls ~12.5 Painter et al. (3)

WHRadjBMI GIANT 77 167 ~2.85 Heid et al. (6)

Female-limited WHRadjBMI GIANT 42 969 ~2.85 Randall et al. (7)

BMI GIANT 123 865 ~2.85 Speliotes et al. (10)

Female-limited BMI GIANT 73 137 ~2.85 Randall et al. (7)

IEC, International Endogene Consortium; GIANT, Genetic Investigation of Anthropometric Traits Consortium; BMI, body mass index adjusted for

age; WHRadjBMI, waist to hip ratio adjusted for BMI and age.
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