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Marc Gunter22, Elio Riboli22, Augustin Scalbert2, Isabelle Romieu2, Benedicte Elena-Herrmann1*† and Mazda Jenab2*†

Abstract

Background: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and
has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high
alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease
and little progress in identification of early risk biomarkers.

Methods: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was
applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched
controls (n = 222) identified from amongst the participants of a large European prospective cohort.

Results: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino
acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous
origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential
liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.

Conclusion: Our results show clear metabolic alterations from early stages of HCC development with application for
better etiologic understanding, prevention, and early detection of this increasingly common cancer.

Keywords: Epidemiology, European Prospective Investigation into Cancer and Nutrition, Hepatocellular carcinoma,
Liver cancer, Metabolomics, Nuclear magnetic resonance

Background
Liver cancer is the sixth most commonly diagnosed
cancer and the second leading cause of cancer death
worldwide [1]. Hepatocellular carcinoma (HCC), the
most frequent type of liver cancer, is primarily associated
with chronic hepatitis B (HBV) and C (HCV) infections

and aflatoxin exposure [2], while other major risk factors
include obesity, type 2 diabetes, tobacco smoking, and
heavy alcohol drinking [3–5]. HCC is highly malignant,
usually diagnosed at late stages, and often has a poor
prognosis with limited treatment options [6]. The late
diagnosis and consequent poor survival associated with
the disease are often attributed to its lack of pathogno-
monic symptoms and limitations of diagnostic modal-
ities. Improving both the understanding of HCC etiology
and the early detection of the disease is an important
first step towards the design of effective prevention strat-
egies aimed at early diagnosis and reduction of HCC
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incidence. A valuable tool toward these goals is the ana-
lysis of bio-samples from prospective cohort studies,
where healthy participants are enrolled and followed
over time for the appearance of various diseases. Since
HCC development implies alterations in the metabolic
functions of the liver and, in a majority of cases, pro-
gresses from pre-cancerous lesions through to cirrhosis
and cancer, it is conceivable that metabolic changes may
be detected from the very early stages of the disease,
long prior to clinical diagnosis. Thus, metabolomics may
serve as a valuable tool for the identification of bio-
markers for early detection of HCC.
Metabolomics is a powerful high-throughput approach

that relies on state of the art analytical methods, such as
nuclear magnetic resonance (NMR), to identify meta-
bolic signatures or biomarkers associated with homeo-
stasis perturbations [7]. Metabolomic strategies play an
increasingly important role in clinical and observational
studies, in the hope that they will offer new perspectives
not only in understanding the processes of disease devel-
opment, but also for identification of diagnostic/prog-
nostic markers and targeted healthcare [8]. Indeed,
several recent studies have leveraged metabolite profiling
to provide new insights into pathological processes
pertaining to cancer, heart disease, or diabetes melli-
tus [9–15]. Although a number of metabolomic-based
approaches have been applied to HCC, they have either
been largely based on traditional case–control designs,
high risk patient groups (e.g. hepatitis infection, cirrhosis,
or other chronic liver diseases), non-Western populations
where traditional HCC risk factors predominate, or on
tumor tissues [16–31]. However, there is currently very lit-
tle information derived from prospective settings where
biological samples have been collected prior to disease
diagnosis [32–34].
In this study, we investigated whether metabolic dif-

ferences could be detected between HCC cases and
matched controls derived from a prospective cohort
study using serum samples collected prior to diagnosis.
A NMR-based metabolomic approach was applied to a
case–control study nested within a large, multi-center
prospective cohort.

Methods
Study design
The present study is based on a case–control study
nested within the European Prospective Investigation
into Cancer and Nutrition (EPIC) cohort, a multicenter
prospective study designed to investigate the association
between diet, lifestyle, and environmental factors and
the incidence of various types of cancer and other chronic
diseases. The rationale, detailed study design, and methods
have been previously detailed [35]. Briefly, diet and lifestyle
data were collected at recruitment from approximately

520,000 men and women aged 35–85 years enrolled
between 1992 and 2000 in 23 centers from 10 Western
European countries (Denmark, France, Germany, Greece,
Italy, Norway, Spain, Sweden, the Netherlands, and the
United Kingdom) [35]. The study subjects were recruited
from the general population, except for France (women
who were members of a health insurance scheme for state
school employees), Naples and Norway (women only),
Utrecht and Florence (women attending breast cancer
screening), and subsamples of the Oxford “Health Con-
scious” sub-cohort (vegetarians) and the Italian and Spanish
cohorts (mainly members of blood donor associations).

Ethics
The EPIC cohort in general, and this study in particular,
have received approval from the Ethics Committee of
the International Agency for Research on Cancer as well
as the ethics review boards of individual EPIC centers.
EPIC participants provided written consent for the use
of their blood samples and all data.

Blood sample collection
Blood samples were collected using standardized methods
at recruitment from most participants and are stored at
IARC (Lyon, France) in liquid nitrogen at –196 °C for all
countries except Denmark (−150 °C, nitrogen vapor)
and Sweden (−80 °C, freezers) where samples are stored
locally [35].

Cancer and vital status assessment
Vital status during follow-up (98.5 % complete) was
assessed by record linkage with regional and/or national
mortality registries in all countries except Germany and
Greece, where follow-up was actively reported by study
subjects or their next-of-kin. Cancer incidence was
determined through record linkage with population-
based regional cancer registries (Denmark, Italy, the
Netherlands, Norway, Spain, Sweden, and the United
Kingdom) or via a combination of methods, including
the use of health insurance records, contacts with cancer
and pathology registries, and active follow-up through
study subjects and their next-of-kin (France, Germany,
Greece). For the present study, the dates of follow-up
for cancer incidence and vital status are complete up to
end of 2006.

The HCC nested case–control study
Ascertainment of cases
HCC cases were defined as tumor in the liver (C22.0)
according to the 10th Revision of the International
Statistical Classification of Diseases, Injury and Causes
of Death. For each HCC case identified, the histology,
methods used to diagnose the cancer, and α-fetoprotein
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(AFP) levels were reviewed to exclude metastatic cases or
other types of primary liver cancers.

The nested case–control study
The design of the nested case–control study has been
previously described in detail [36]. Briefly, 125 HCC
cases with available blood samples at baseline were identi-
fied between participants’ recruitment and 2006. For each
case, two controls were selected by incidence density
sampling from all cohort members alive and free of cancer
(except non-melanoma skin cancer), and matched by
age at blood collection (±1 year), sex, study center,
date (±2 months) and time of the day at blood collec-
tion (±3 h), and fasting status at blood collection (<3/
3–6/>6 h). Women were additionally matched by me-
nopausal status (pre-/peri-/postmenopausal) and hormone
replacement therapy use at time of blood collection (yes/
no). Participants with insufficient remaining blood sam-
ple for NMR analyses were excluded (Ncases = 11). For
six cases, only one eligible control was available for
each case. Therefore, the final sample size for the
present analysis included 114 HCC cases and 222
matched controls.

Serum sample analysis
Laboratory assays: HBV/HCV infection, biomarkers of liver
function and AFP
HBV and HCV seropositivity were detected in serum sam-
ples using the ARCHITECT HBsAg and anti-HCV chemi-
luminescent microparticle immunoassays (CMIAs; Abbott
Diagnostics, France): HBsAg-positive when ≥0.05 IU/mL
and HCV-positive when the ratio of sample relative light
units to cutoff relative light units was ≥1 in two mea-
surements [36]. Biochemical markers of hepatic injury,
including albumin, total bilirubin, alanine aminotransfer-
ase (ALT), aspartate aminotransferase (AST), gamma-
glutamyltransferase (GGT), and liver-specific alkaline
phosphatase (AP) were measured on the ARCHITECT c
Systems™ (Abbott Diagnostics) using standard protocols.
The normal ranges were: albumin, 35–50 g/L; total biliru-
bin, 3.4–20.5 mmol/L; ALT, <55 U/L; AST, 5–34 U/L;
GGT, 12–64 U/L (men) and 9–36 U/L (women); and AP,
40–150 U/L. A liver function score was calculated from
concentrations of albumin, total bilirubin, ALT, AST,
GGT, and AP, each contributing 1 point when outside of
the normal range [37]. The liver score was categorized as
no liver damage (liver score 0), probable liver damage
(liver score 1–2), and likely liver damage (liver score ≥3).
Additionally, the concentration of serum AFP, which is
currently a pre-diagnostic biomarker for HCC, was mea-
sured in blood using the ARCHITECTAFP kit. The labora-
tory analyses were performed at the Centre de Biologie
République, Lyon, France [36].

NMR metabolomic data acquisition
Serum samples (200 μL) were processed according to
standard procedures for NMR metabolomic measure-
ment [38]. One-dimensional 1H Carr-Purcell-Meiboom-
Gill (CPMG) and Nuclear Overhauser effect spectros-
copy (NOESY) NMR spectra were recorded for each
serum sample on a Bruker Avance III spectrometer op-
erating at 800.15 MHz 1H NMR frequency. Additional
two-dimensional NMR spectra were recorded on a set of
representative samples (one control and one case) to
achieve assignment of the NMR signals observed in the 1H
one-dimensional fingerprints to metabolites. The measured
chemical shifts were compared to reference shifts of pure
compounds using the HMDB [39], MMCB [40], and
ChenomX NMR Suite (Chenomx Inc., Edmonton, Canada)
databases. Figure 1 shows the mean CPMG spectrum
with metabolite assignments. The detailed list of the
44 annotated metabolites is provided in Additional
file 1: Table S1. NMR signals arising from lipids en-
abled the quantification of unsaturated lipids in the
serum (signal at 5.28 ppm, resonance of -CH = CH-
from unsaturated lipids) as well as terminal lipids methyls
corresponding to several classes of lipoproteins: very-low-
density lipoproteins (VLDL; δ 0.86 ppm), low-density lipo-
proteins (LDL; δ 0.84 ppm), and high-density lipoproteins
(HDL; δ 0.82 ppm). After processing and calibration, each
1D NMR spectrum was reduced into bins of 0.001 ppm
width over a chemical shift range of 0.5–9 ppm using the
AMIX software (Bruker GmbH, Rheinstetten, Germany),
giving a total number of 8,500 NMR variables.
All NMR analyses were performed blindly with respect

to case/control status. Further details on sample prepar-
ation, NMR data acquisition, and spectra processing are
available in Additional file 1.

Statistical analysis
Orthogonal partial least-square (O-PLS)
O-PLS [41] analyses were conducted in order to build
predictive sample classification models based on whole
CPMG or NOESY NMR spectra to discriminate between
HCC cases and controls, by relating the 8,500 NMR var-
iables to case/control status. Results were visualized on
score plots corresponding to sample projection onto the
predictive axis and the first orthogonal component of
the model. The metabolic signature discriminating HCC
cases from controls was visualized by the corresponding
loading plot. The optimal number of orthogonal com-
ponents for building O-PLS models was selected using a
7-fold cross validation procedure. The associated R2 and
Q2 parameters were calculated as a measure of the
“goodness of fit and prediction”, i.e. the explained and
predicted variances, respectively. The robustness of
O-PLS models was further validated using permuta-
tions (1000 times) under the null hypothesis; for each
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permutated case/control labels, R2 and Q2 values were
obtained and compared to the original ones, their de-
crease indicating the good quality of the model [42].

Metabolite paired difference analysis
The statistical recoupling of variables [43] procedure
was first applied to reduce the 8,500 NMR variables into
285 intelligent buckets, or clusters of NMR variables,
that correspond to reconstructions of peak entities.
ANOVA models were then carried out on each of the
285 clusters of variables by modelling the case–control set
by means of a random effect variable to account for the
matching design of the study in ANOVA mixed-effect
models. To correct for multiple testing, q values were de-
termined using the Benjamini-Hochberg procedure [44]
to control the false discovery rate with a threshold of 0.05.
In this way, 96 clusters of NMR variables were found to
be significantly associated with HCC outcome. Significant
clusters of variables corresponding to different peaks of
the same metabolite (based on the metabolite identifica-
tion reported above) were combined into a single variable
by summing up the bins intensities taking into consider-
ation the number of homolog protons in the signal reson-
ance. This procedure resulted in a list of 23 combined

clusters of variables, 16 of which corresponded to distinct
metabolite or lipid classes and were retained for further
analyses, while five corresponded to other signals from
mixed classes of lipids and two corresponded to the super-
imposition of signals from different metabolites.

Conditional logistic regression (CLR)
CLR models were used to quantify the associations
between the 16 metabolites selected as described above
and HCC risk by computing odds ratios (OR) and 95 %
confidence intervals (95 % CIs). The metabolites were
modeled as continuous variables with the OR corre-
sponding to one standard deviation increase in meta-
bolic intensity. CLR models were run conditioned on the
matching factors (referred to as crude), and after adjust-
ment for potential confounding variables (referred to as
multivariable), i.e. body mass index (continuous), smoking
status (current smokers, non-smokers, former smokers, un-
known), lifetime alcohol drinking pattern (never drinkers,
former drinkers, drinkers only at recruitment, lifetime
drinkers), level of alcohol consumption at recruitment (g/d;
continuous), serum-clot contact time (≤1 d or >1 d; a value
that corresponds to the time between blood collection
and blood centrifugation [45]), physical activity (inactive,

Fig. 1 Mean 1H Carr-Purcell-Meiboom-Gill NMR spectrum of serum samples with metabolite assignment. 1, CH3 bond of lipids, mainly VLDL; 1’, CH3

bond of lipids, mainly LDL; 1”, CH3 bond of lipids, mainly HDL; 2, CH2 bond of lipids; 3, CH2-CH2-COOC bond of lipids; 4, CH2-CH = bond of lipids; 5,
CH2-CH2-COOC bond of lipids; 6, =CH-CH2-CH = bond of lipids; 7, Lipid O-CH2; 8, CH = CH bond of lipids
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moderately inactive, moderately active, active, missing),
educational status (primary school, secondary school, pro-
fessional school, longer education, unknown; as a proxy
variable for socioeconomic status), and waist circumfer-
ence (cm). The multivariable models for serum ethanol
concentration were not adjusted for level of alcohol con-
sumption at recruitment. For all metabolites, an additional
CLR model with further adjustment for liver function
score was also run.

Receiver operating characteristics (ROC)
ROC curves and corresponding area under the curve
(AUC) were generated for several models including the
AFP concentration, the liver function score, the multi-
variate metabolic profile using both the score values
from the O-PLS classification model (referred as O-PLS
score), and the cross-validated predicted-Y values (referred
as O-PLS CV status) as well as a combination between the
O-PLS CV status and AFP or the liver score. Combina-
tions of the variables were obtained by summing up the
O-PLS CV status with either AFP or the liver score after
normalization of each variable to one unit variance. The
specificity, sensitivity, and accuracy were obtained from
the optimal cut-off point that corresponded to the min-
imal distance to the ideal point.

Subgroup analyses
Analyses stratified by hepatitis infection status (37 HCC
cases Hep+, 77 HCC cases Hep–), by liver function score
(34 HCC cases with no liver damage, 80 HCC cases with
probable to certain liver damage), by years between blood
collection and cancer diagnosis with a cut-off at 2 years
(22 HCC cases diagnosed <2 years, 92 HCC cases diag-
nosed ≥2 years from blood collection) were also conduc-
ted. In the grouping of cases diagnosed <2 years, the small
sample size prevented model stability upon multivariable
adjustment. Thus, only crude CLR models were run for
this subgroup.
The analyses were performed using SIMCA-P 12

(Umetrics, Umeå, Sweden), MATLAB (The MathWorks
Inc., Natick, MA) routines developed in-house, and R
software [46] using the packages ‘splines’ and ‘survival’.

Results
Baseline characteristics of the study participants are
summarized in Table 1. The median follow-up time be-
tween blood collection and HCC diagnosis (lag time)
was 4.8 years. Serum blood samples of HCC cases were
more likely to test positive for HBV or HCV infections
(32.5 % vs. 3.2 % in the controls), and to have altered
liver function as indicated by high liver function score
(36.8 % vs. 14.4 % for probable liver damage and 33.3 %
vs. 0.9 % for likely liver damage for cases vs. controls,
respectively).

The O-PLS analysis presented in Fig. 2a shows a meta-
bolic profile discriminating between HCC cases and the
matched controls (R2 = 35 %, Q2 = 21 %). The metabolic
signature (Fig. 2b) associated with HCC occurrence pre-
sented (1) higher levels in the aromatic amino acids
(AAA) tyrosine and phenylalanine, glutamate, acetate,
citrate, glucose, propylene glycol, and ethanol; (2) lower
levels in unsaturated lipids and VLDL, N-acetyl glyco-
proteins, choline, glutamine, acetone, mannose and the
branched-chain amino-acids (BCAA) valine, leucine, and
isoleucine levels, compared to the control group. The
corresponding P values, q values, and fold changes of
the metabolites are presented in Table 2. The ROC ana-
lyses (Fig. 2c) of the metabolic signature (O-PLS score)
and of the cross-validated data (O-PLS CV status) pre-
sented an AUC of 85 % and 74 %, respectively (Table 3).
The ROC parameters obtained from AFP compared to
the combination of O-PLS CV status with AFP were
increased after combining the variables (AUC 73 % vs.
75 %, specificity 65.3 % vs. 80.6 %, sensitivity 71.9 % vs.
75.4 %, accuracy 67.5 % vs. 78.9 %). Multivariable ad-
justed CLR models showed that AAA (per 1-SD),
tyrosine (OR = 2.46; 95 % CI, 1.65–3.6), phenylalanine
(OR = 2.07; 95 % CI, 1.40–3.06), glutamate (OR = 2.44;
95 % CI, 1.54–3.87), citrate (OR = 1.76; 95 % CI, 1.22–
2.54), glucose (OR = 1.67; 95 % CI, 1.19–2.35), and pro-
pylene glycol (OR = 2.20; 95 % CI, 1.06–4.60) were associ-
ated with a statistically significant higher HCC risk. In
contrast, BCAA, leucine (OR = 0.60; 95 % CI, 0.43–0.85),
isoleucine (OR = 0.72; 95 % CI, 0.53–0.98), choline (OR =
0.45; 95 % CI, 0.31–0.65), N-acetyl glycoproteins (OR =
0.46; 95 % CI, 0.32–0.67), unsaturated lipids (OR = 0.36;
95 % CI, 0.21–0.63), and VLDL (OR = 0.52; 95 % CI, 0.36–
0.74) were inversely associated with HCC risk (Table 4).
The O-PLS analyses stratified by hepatitis infection sta-

tus of the cases (Fig. 3a,b) presented distinct metabolic
signatures from hepatitis-infected HCC cases (R2 = 45 %,
Q2 = 34 %) and hepatitis-free HCC cases (R2 = 28 %, Q2 =
12 %). Hepatitis-infected HCC cases presented (1) higher
levels of AAA, glucose, and citrate and (2) lower VLDL
and unsaturated lipids levels, while on the other hand
HCC hepatitis-free cases were characterized by (1) higher
levels in ethanol and glutamate and (2) lower levels in
glutamine, BCAA, and choline. In hepatitis-free HCC
cases, the risk associations of glutamine (OR = 0.56; 95 %
CI, 0.34–0.92) and glutamate (OR = 2.06; 95 % CI, 1.18–
3.61) were significantly different from matched controls
(Table 4).
Figure 3c shows O-PLS subgroup analysis of HCC

cases with abnormal liver function (score ≥1). A robust
model was obtained (R2 = 58 %, Q2 = 43 %) and the
metabolic signature was similar to that including all
samples (Fig. 2b). However, no significant model was ob-
tained from HCC cases with a normal liver function
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(score = 0) only (data not shown). Table 4 shows results
of multivariable CLR additionally adjusted for liver func-
tion score for which only citrate (OR = 1.88; 95 % CI,
1.14–3.11) and phenylalanine (OR = 1.75; 95 % CI, 1.04–
2.94) remained significantly associated with HCC risk.
Figure 4 presents the O-PLS and ROC analyses strati-

fied by lag time between blood collection and diagnosis.
The metabolic signature of HCC cases diagnosed within
2 years after blood collection is characterized by (1)
higher levels in AAA and glutamate, and (2) lower levels
in unsaturated lipids and choline while in addition, the
metabolic signature of HCC diagnosed later (≥2 years)
presented (1) higher levels in glucose, ethanol, and pro-
pylene glycol and (2) lower levels in BCAA and N-acetyl
glycoproteins. Among the cases diagnosed <2 years from
recruitment, the AUC of ROC curves from the O-PLS
metabolic signature and from O-PLS CV data were 93 %
and 82 %, respectively (Fig. 4c).
Higher ROC parameters (Table 3) were found for

O-PLS CV status compared to AFP and the liver
score (O-PLS CV status vs. AFP, liver score: AUC
82 % vs. 81 %, 79 %; specificity 100 % vs. 79 %,
88.4 %; sensitivity 63.6 % vs. 77.3 %, 68.2 %; accuracy
87.7 % vs. 78.5 %, 81.5 %). However, the parameters
did not improve after combining O-PLS CV status
with AFP while they were slightly improved after
combining O-PLS CV status with the liver score
(AUC 84 %; specificity 86 %; sensitivity 77.3 %; accur-
acy 83 %). ROC analysis of the cases diagnosed
≥2 years from recruitment showed an AUC of 79 %
for the O-PLS metabolic signature and 71 % for the
O-PLS CV status. Combining the O-PLS CV status
with AFP improved the ROC parameters in compari-
son to AFP alone or O-PLS CV alone (O-PLS CV sta-
tus + AFP vs. AFP, O-PLS CV: AUC: 73 % vs. 71 %,
71 %; specificity: 70.9 % vs. 60.9 %, 68.7 %; sensitivity:
70.6 % vs. 74 %, 67.4 %; accuracy: 70.8 % vs. 65.3 %,

Table 1 Characteristics of study participants in the EPIC study.
Values refer to either median (minimum – maximum range) or
number (percentage)

HCC cases Matched
controls

Characteristics (n = 114)a (n = 222)

Gender

Men 79 (69.3 %) 153 (68.9 %)

Women 35 (30.7 %) 69 (31.1 %)

Age at blood collection (years) 60.6 (46.1–77) 60.2 (45.7–77)

Age at diagnosis (years) 65.3 (47.6–86.4)

Lag time (years)b 4.8 (0.01–13.3)

Body mass index (kg/m2) 27.7 (19.5–43.4) 26.5 (17.2–40.2)

Waist circumference (cm) 95 (68.5–140) 92.2 (64–130)

Smoking status

Never 30 (26.3 %) 94 (42.3 %)

Former 39 (34.2 %) 86 (38.7 %)

Current smoker 44 (38.6 %) 41 (18.5 %)

Unknown 1 (0.9 %) 1 (0.5 %)

Serum-clot contact timec

≤1 day 84 (73.7 %) 169 (76.1 %)

>1 day 30 (26.3 %) 53 (23.9 %)

Educational status

Primary school/None 61 (53.5 %) 106 (47.7 %)

Secondary school 4 (3.5 %) 23 (10.4 %)

Technical/professional school 30 (26.3 %) 45 (20.3 %)

Longer education 18 (15.8 %) 44 (19.8 %)

Unknown 1 (0.9 %) 4 (1.8 %)

Physical activity

Inactive 10 (8.8 %) 29 (13.1 %)

Moderately inactive 36 (31.6 %) 71 (32 %)

Moderately active 57 (50 %) 100 (45 %)

Active 11 (9.6 %) 22 (9.9 %)

Lifetime alcohol drinking pattern

Never drinkers 10 (8.8 %) 17 (7.7 %)

Former drinkers 17 (14.9 %) 3 (1.4 %)

Drinkers only at recruitment 17 (14.9 %) 43 (19.4 %)

Lifetime drinkers 70 (61.4 %) 159 (71.6 %)

Alcohol intake at recruitment (g/day) 7.5 (0–141.3) 8.8 (0–108.6)

HBV/HCV status

No 77 (67.5 %) 215 (96.8 %)

Yes 37 (32.5 %) 7 (3.2 %)

Table 1 Characteristics of study participants in the EPIC study.
Values refer to either median (minimum – maximum range) or
number (percentage) (Continued)

Liver function scored

No 34 (29.8 %) 188 (84.7 %)

Probable 42 (36.8 %) 32 (14.4 %)

Likely 38 (33.3 %) 2 (0.9 %)

AFP (ng/mL) 5.3 (0–18780) 3.25 (0–20.8)
aDistribution of HCC cancer cases across EPIC countries was 29 for Denmark,
20 for Germany, 11 for Greece, 19 for Italy, 4 for the Netherlands, 7 for Spain,
16 for Sweden, and 8 for the United Kingdom
bFollow-up time between blood collection and HCC diagnosis
cSerum-clot contact time refers to the time between blood collection and
blood centrifugation for serum isolation
dA categorical liver function score describing liver damage was constructed
based on values of albumin (<35 g/L), total bilirubin (>20.5 μmol/L), AST
(>34 U/L), ALT (>55 U/L), GGT (men >64 U/L, women >36 U/L), and AP
(>150 U/L), each contributing 1 point when outside of the normal range
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68.3 %). However, the best model was obtained from
the liver score (AUC 80 %, specificity 83.8 %, sensitivity
70.6 %, accuracy 79.3 %).
Findings for subgroup CLR analyses of individual me-

tabolites by lag time of diagnosis from recruitment show
a significant HCC risk association for citrate in cases
diagnosed <2 years from recruitment (OR = 2.19; 95 %
CI, 1.10–4.35), while for cases diagnosed ≥2 years from
recruitment significant HCC risk associations were ob-
served for glucose (OR = 1.47; 95 % CI, 1.10–1.96), acetate
(OR = 1.32; 95 % CI, 1.01–1.75), N-acetyl glycoproteins
(OR = 0.43; 95 % CI, 0.31–0.60), BCAA (valine OR = 0.68;
95 % CI, 0.52–0.89); leucine (OR = 0.47; 95 % CI, 0.34–

0.66); isoleucine (OR = 0.59; 95 % CI, 0.44–0.80), and glu-
tamine (OR = 0.67; 95 % CI, 0.51–0.88) (Table 4).

Discussion
This study is, to the best of our knowledge, the first
NMR metabolomic analysis based on subjects from a
prospective cohort study on Western European popula-
tions for epidemiology of liver cancer. We have identi-
fied a number of metabolites that differed between HCC
cases and corresponding matched controls. As concerns
the specificity of these associations, we note that an analo-
gous study was conducted in parallel on extrahepatic/
intrahepatic bile duct carcinomas without providing any

Fig. 2 NMR Metabolomic discrimination between HCC cases (n = 114) and matched controls (n = 222) based on 1H Carr-Purcell-Meiboom-Gill
NMR data. (a) Orthogonal partial least-square (O-PLS) score plot of NMR spectra, R2 = 35 %, Q2 = 21 %. (b) O-PLS metabolic signature colored
according to the correlation between NMR variables and case–control status after significance to ANOVA tests followed by Benjamini-Hochberg
multiple correction (non-significant NMR variables are colored in grey). The validation of the model is presented in Additional file 1: Figure S1a. 1,
CH3 bond of lipids mainly very-low-density lipoproteins; 2, Leucine; 3, Isoleucine; 4, Valine; 5, Propylene glycol; 6, Ethanol; 7, CH2 bond of lipids; 8,
CH2-CH2-COOC bond of lipids; 9, Acetate; 10, CH2-CH = bond of lipids; 11, N-acetyl glycoproteins; 12, Acetone and CH2-CH2-COOC bond of lipids;
13, Glutamate; 14, Glutamine; 15, Citrate; 16, =CH-CH2-CH = bond of lipids; 17, Choline; 18, Glucose; 19, Lipid O-CH2; 20, Mannose and lipids; 21,
CH = CH bond of lipids; 22, Tyrosine; 23 Phenylalanine. An equivalent metabolic signature obtained from 1H NOESY NMR data is presented in
Additional file 1: Figure S1b. (c) ROC analyses including AFP, liver function score, O-PLS score, O-PLS cross-validated (CV) status, and a combination
between O-PLS CV status and AFP or liver function score. The ROC of O-PLS CV status and the combination of O-PLS CV status and AFP overlap.
The characteristics of each model are presented in Table 3
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significant results (data not shown). We also note that
the impact of long-term storage of EPIC samples as
well as other potential sources of systematic varia-
tions of the metabolic profiles has been thoroughly
detailed earlier [45].
O-PLS analysis showed a clear discrimination between

cases and controls with somewhat different metabolomic
profiles with respect to the length of time from blood
collection to diagnosis, hepatitis infection status, and
liver function. Importantly, this study showed that consid-
eration of metabolomic profiles can improve HCC diagno-
sis beyond that provided by AFP and liver enzyme levels,
which are currently the most common HCC biomarkers
often applied in clinical practice.
The liver is central for the metabolism of carbo-

hydrates, fats and proteins, and also plays key roles in
detoxification and hormone production. Thus, a degree
of metabolic dysregulation would be expected with liver
diseases, particularly HCC. For this reason, the applica-
tion of metabolomic technologies may be able to provide
some insight into the etiology and mechanisms of HCC
and, possibly, the identification of early diagnostic bio-
markers or biomarker patterns characteristic of cancer
at this anatomical site.
To date, three NMR or NMR/mass spectrometry,

serum-based metabolomic studies have been conducted
looking specifically at HCC [20, 23, 24]. All three case–
control studies were based on sera collected from HCC
cases post-diagnosis. The comparison group in one of
the studies was hepatitis-infected subjects [20], while
that of the others were cirrhotic patients [23, 24]. The
studies identified potential (1) impairment of the tricarb-
oxylic acid cycle, increased lipid catabolism, and elevation
of essential amino acids [20], and (2) defects on ammo-
nium detoxification and increased fatty acid beta-oxidation
[24] in HCC. The fundamental design differences with the
present study are that the latter is based on prospectively
identified HCC cases, such that metabolomic profiles are

Table 2 P values, q values, and fold differences of metabolites
observed to be statistically significantly different between HCC
cases (n = 114) and matched controls (n = 222)

HCC cases vs. matched controls

Metabolites P valuea q valueb Fold difference

Lipids = CH-CH2-CH= 9 × 10-11 3 × 10-08 0.84

N-acetyl glycoproteins 3 × 10-10 4 × 10-08 0.90

Unspecificc,d 4 × 10-10 4 × 10-08 0.82

Glutamate 4 × 10-09 3 × 10-07 1.22

Tyrosine 1 × 10-08 7 × 10-07 1.24

Choline 2 × 10-08 7 × 10-07 0.82

Lipids O-CH2 1 × 10-07 3 × 10-06 0.84

Phenylalanine 2 × 10-07 5 × 10-06 1.23

Unspecificc,e 4 × 10-07 9 × 10-06 0.84

Leucine 2 × 10-06 3 × 10-05 0.91

Lipids CH2-CH2-COOC 2 × 10-06 3 × 10-05 0.82

Unsaturated lipidsf 2 × 10-06 3 × 10-05 0.86

Isoleucine 2 × 10-05 2 × 10-04 0.90

Lipids CH2-CH= 2 × 10-05 2 × 10-04 0.94

CH3 bond of lipids (VLDL)g 2 × 10-05 2 × 10-04 0.87

Propylene glycol 7 × 10-05 6 × 10-04 1.45

Lipids (CH2)n 1 × 10-04 8 × 10-04 0.88

Ethanol 3 × 10-04 2 × 10-03 1.65

Glutamine 7 × 10-04 4 × 10-03 0.90

Glucose 8 × 10-04 4 × 10-03 1.10

Valine 3 × 10-03 1 × 10-02 0.93

Acetate 5 × 10-03 2 × 10-02 1.24

Citrate 1 × 10-02 4 × 10-02 1.08
aP value was obtained from ANOVA mixed-effects models
bq value corresponds to the value obtained after Benjamini-Hochberg correction
for multiple testing
cMultiple assignments for the same cluster of variables due to spectral overlap
dAcetone and CH2-CH2-COOC of bound lipids
eMannose and glyceride of lipids
fUnsaturated lipids as estimated from the CH = CH signal of lipids
gPart of terminal lipids methyl signal corresponding to VLDLs

Table 3 AUC, specificity, sensitivity, and accuracy of the ROC models (in %)

All Cases diagnosed <2 years Cases diagnosed ≥2 years

AUC Spe Sen Acc AUC Spe Sen Acc AUC Spe Sen Acc

AFPa 73 65.3 71.9 67.5 81 79 77.3 78.5 71 60.9 74 65.3

Liver function scoreb 80 84.7 70.2 79.8 79 88.4 68.2 81.5 80 83.8 70.6 79.3

O-PLS scorec 85 81.5 71.1 78.1 93 83.7 86.4 84.6 79 74.9 68.5 72.7

O-PLS CV statusd 74 68 68.4 68.1 82 100 63.6 87.7 71 68.7 67.4 68.3

O-PLS CV status + AFPe 75 80.6 75.4 78.9 82 100 63.6 87.7 73 70.9 70.6 70.8

O-PLS CV status + liver scoref 82 68 68.4 68.1 84 86 77.3 83 80 83.8 70.7 79.3

AUC, Area under the curve; Spe, Specificity; Sen, Sensitivity; Acc, Accuracy of the model
aModel based on the serum AFP concentration
bModel based on the liver function score
cModel based on the score of the O-PLS analysis
dModel based on the cross-validated (CV) case/control status of the O-PLS analysis
eCombination between the CV status of the O-PLS and the AFP variable
fCombination between the CV status of the O-PLS and the liver function score
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Table 4 Odds ratios [OR (95 % confidence intervals)] of HCC risk by serum metabolites

Crudea Multivariableb Multivariable + liver
function scorec

Multivariable for non-hepatitis
infected casesd

Crude <2 years follow-upe Crude ≥2 years
follow-upf

Multivariable ≥2 years
follow-upg

114 cases 114 cases 114 cases 77 cases 22 cases 92 cases 92 cases

N-acetyl glycoproteins 0.47 (0.36–0.62)*** 0.46 (0.32–0.67)*** 0.76 (0.49–1.17) 0.74 (0.49–1.14) 0.64 (0.39–1.05) 0.43 (0.31–0.60)*** 0.35 (0.21–0.59)***

Glutamate 2.37 (1.64–3.41)*** 2.44 (1.54–3.87)*** 1.46 (0.80–2.63) 2.06 (1.18–3.61)* 4.87 (1.26–18.82)* 2.05 (1.43–2.94)*** 2.13 (1.30–3.49)**

Tyrosine 2.00 (1.51–2.65)*** 2.46 (1.65–3.66)*** 1.58 (0.98–2.56) 1.42 (0.83–2.43) 3.90 (1.50–10.14)** 1.83 (1.36–2.47)*** 2.23 (1.41–3.54)***

Choline 0.37 (0.27–0.51)*** 0.45 (0.31–0.65)*** 0.83 (0.52–1.32) 0.68 (0.42–1.12) 0.30 (0.13–0.66)** 0.39 (0.27–0.56)*** 0.45 (0.29–0.71)***

Phenylalanine 1.83 (1.37–2.44)*** 2.07 (1.40–3.06)*** 1.75 (1.04–2.94)* 1.59 (0.94–2.67) 3.59 (1.29–10)* 1.62 (1.20–2.19)** 1.64 (1.07–2.54)*

Leucine 0.54 (0.41–0.71)*** 0.60 (0.43–0.85)** 0.67 (0.43–1.05) 0.68 (0.43–1.09) 0.80 (0.48–1.33) 0.47 (0.34–0.66)*** 0.51 (0.33–0.80)**

Unsaturated lipids 0.29 (0.18–0.46)*** 0.36 (0.21–0.63)*** 0.77 (0.41–1.44) 0.59 (0.29–1.23) 0.16 (0.04–0.60)** 0.33 (0.20–0.53)*** 0.46 (0.24–0.84)*

Isoleucine 0.64 (0.49–0.83)*** 0.72 (0.53–0.98)* 0.84 (0.56–1.26) 0.76 (0.50–1.15) 0.84 (0.50–1.42) 0.59 (0.44–0.80)*** 0.66 (0.45–0.96)*

VLDL 0.58 (0.45–0.76)*** 0.52 (0.36–0.74)*** 0.77 (0.51–1.15) 0.74 (0.45–1.20) 0.30 (0.12–0.72)** 0.64 (0.49–0.85)** 0.58 (0.39–0.87)**

Propylene glycol 3.07 (1.58–5.97)*** 2.20 (1.06–4.60)* 1.00 (0.59–1.69) 1.27 (0.73–2.21) 727.9 (1.56–340468)* 2.11 (1.24–3.58)** 1.46 (0.83–2.55)

Ethanolh 1.76 (1.13–2.74)* 1.46 (0.97–2.21) 1.02 (0.69–1.51) 1.10 (0.74–1.65) 126.1 (1.3–12227)* 1.66 (1.09–2.53)* 1.40 (0.95–2.08)

Glutamine 0.66 (0.51–0.84)** 0.75 (0.54–1.03) 0.96 (0.64–1.44) 0.56 (0.34–0.92)* 0.60 (0.30–1.15) 0.67 (0.51–0.88)** 0.74 (0.51–1.07)

Glucose 1.53 (1.18–1.99)** 1.67 (1.19–2.35)** 1.28 (0.86–1.92) 1.24 (0.80–1.92) 1.95 (0.98–3.88) 1.47 (1.10–1.96)** 1.77 (1.16–2.69)**

Valine 0.69 (0.54–0.88)** 0.82 (0.61–1.11) 0.90 (0.61–1.34) 0.78 (0.51–1.18) 0.75 (0.44–1.27) 0.68 (0.52–0.89)** 0.79 (0.55–1.13)

Acetate 1.40 (1.08–1.82)* 1.20 (0.90–1.60) 0.92 (0.58–1.46) 1.01 (0.63–1.61) 3.04 (0.45–20.69) 1.32 (1.01–1.75)* 1.12 (0.76–1.63)

Citrate 1.36 (1.06–1.76)* 1.76 (1.22–2.54)** 1.88 (1.14–3.11)* 1.15 (0.65–2.01) 2.19 (1.10–4.35)* 1.22 (0.93–1.61) 1.37 (0.91–2.06)

*P value <0.05; **P value <0.01; ***P value <0.001
aModel 1, Crude OR based on logistic regression conditioned on matching factors (sex, age, date and time of blood collection, fasting status, and menopausal status and use of hormones)
bModel 2, OR based on multivariable CLR adjusted for smoking status, ethanol at recruitment, lifetime alcohol, educational status, physical activity, body mass index, serum-clot contact time, and waist circumference
cModel 3, as in model 2 and additionally adjusted for liver function score
dModel 4, as model 2 but obtained on HCC cases free of HBV/HCV infection and their matched controls (n = 224)
eModel 5, Crude OR obtained on HCC cases diagnosed <2 years after blood collection and their matched controls
fModel 6, Crude OR obtained on HCC cases diagnosed ≥2 years after blood collection and their matched controls
gModel 7, as in model 2 but obtained on HCC cases diagnosed ≥2 years after blood collection and their matched controls
hOR of ethanol from multivariable CLR model are obtained after adjustment for variables as mentioned for model 2 expect for lifetime alcohol
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likely indicative of pre-diagnostic changes, and that the
matched control subjects were cancer-free cohort partici-
pants. The key metabolic alterations observed are related
to changes in amino acid, polyunsaturated lipid, acetate,
and citrate metabolism, among the 16 individual metabo-
lites highlighted here. Because our study is nested within
the prospective EPIC cohort, which has detailed informa-
tion on dietary and lifestyle factors and measured anthro-
pometry, we were able to make statistical adjustments for

many important confounding variables such as smoking
status, alcohol consumption and habits, physical activity,
educational attainment (as a proxy marker for socioeco-
nomic status), body mass index, and waist circumference.
Of particular note is our observation of a 0.82-fold re-

duction in choline in HCC cases (Table 2), meaning a
significant inverse HCC risk association for this com-
pound (Table 4; OR = 0.45; 95 % CI, 0.31–0.65). In ani-
mal studies, choline deficiency has been shown to cause

Fig. 3 Stratification of the analysis by hepatitis infection status and liver function score. (a) O-PLS score plot including HCC cases infected by HBV
or HCV (n = 37) and matched controls (n = 72), R2 = 45 % and Q2 = 34 %, and the metabolic signature. (b) O-PLS score plot including HCC cases
with HBV/HCV free (n = 77) and matched controls (n = 150), R2 = 28 % and Q2 = 12 %, and the metabolic signature colored for correlation after
significance to ANOVA tests (Benjamini-Hochberg multiple corrected). (c) O-PLS score plot including HCC cases with liver function score ≥1
(n = 80) and matched controls (n = 155), R2 = 58 % and Q2 = 43 %, and the metabolic signature colored for correlation after significance to ANOVA
tests (Benjamini-Hochberg multiple corrected). The validations of the O-PLS models are presented in Additional file 1: Figure S2. 1, CH3 bond of
lipids mainly VLDL; 1’, CH3 bond of lipids, mainly LDL; 2, Leucine; 3, Isoleucine; 4, Valine; 5, Propylene glycol; 6, Ethanol; 7, CH2 bond of lipids; 8,
CH2-CH2-COOC bond of lipids; 9, Acetate; 10, CH2-CH = bond of lipids; 11, N-acetyl glycoproteins; 12, Acetone and CH2-CH2-COOC bond of lipids;
13, Glutamate; 14, Glutamine; 15, citrate; 16 = CH-CH2-CH = bond of lipids; 17, Choline; 18, Glucose; 19, Lipid O-CH2; 20, mannose and lipids; 21,
CH = CH bond of lipids; 22, Tyrosine; 23 Phenylalanine. Phc, Phosphocholine
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liver damage, oxidative stress, and spontaneous liver
cancer [47–49]. In human studies, HCC has been associ-
ated with a down regulation in choline metabolism [25].
Also interesting is our identification of circulating

ethanol as a strong HCC risk factor, alcohol being a
major lifestyle risk factor for this disease. We also ob-
served a shift, in terms of fold difference between HCC
cases and their matched controls, from glutamine to glu-
tamate, indicating a possible defect in ammonium

detoxification [50], as also observed in the study by
Nahon et al. [24]. It is of interest that Nahon et al. [24]
observed this shift comparing HCC cases to cirrhotic
controls, while our findings indicate that this important
change may actually be present for some time prior to
diagnosis. In the study by Gao et al. [20], higher levels of
AAA were associated with liver cirrhosis and HCC, to-
gether with lower levels of BCAA, choline, and unsatur-
ated lipids. The same changes were observed suggesting

Fig. 4 Analyses stratified by the interval between recruitment into the EPIC cohort and clinical diagnosis of HCC (<2 years after recruitment
vs. ≥2 years after recruitment). (a) O-PLS score plot including HCC cases that were diagnosed <2 years (n = 22) after blood collection and
matched controls (n = 43), R2 = 45 % and Q2 = 33 %, and the metabolic signature colored for correlation after significance to ANOVA tests
(Benjamini-Hochberg multiple corrected). (b) O-PLS score plot including HCC cases that were diagnosed ≥2 years after blood collection (n = 92)
and their matched controls (n = 179), R2 = 27 % and Q2 = 16 %, and the metabolic signature colored for correlation after significance to ANOVA
tests (Benjamini-Hochberg multiple corrected). (c) ROC analyses for each stratified group including AFP, liver function score, O-PLS score, O-PLS
cross validated (CV) status, and a combination between O-PLS CV status and AFP or liver function score. The ROC curves of the O-PLS CV status
and the O-PLS CV status + AFP are almost overlapped for the ROC analysis performed on cases diagnosed <2 years. The characteristics of each
model are presented in Table 3. The validations of the O-PLS models are presented in Additional file 1: Figure S3. 1, CH3 bond of lipids mainly
VLDL; 2, Leucine; 3, Isoleucine; 4, Valine; 5, Propylene glycol; 6, Ethanol; 7, CH2 bond of lipids; 8, CH2-CH2-COOC bond of lipids; 9, Acetate; 10,
CH2-CH = bond of lipids; 11, N-acetyl glycoproteins; 12, Acetone and CH2-CH2-COOC bond of lipids; 13, Glutamate; 14, Glutamine; 15, Citrate;
16 = CH-CH2-CH = bond of lipids; 17, Choline; 18, Glucose; 19, Lipid O-CH2; 20, Mannose and lipids; 21, CH = CH bond of lipids; 22, Tyrosine;
23, Phenylalanine
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an important alteration of amino acid and lipid metabol-
ism in the progression to HCC.
An interesting observation in the present study was a

strong, significant positive HCC risk association for the
exogenous metabolite propylene glycol. Identification of
propylene glycol in human serum is not uncommon
[51], and it is thought to derive largely from pharma-
ceutical use since it is widely used as a solvent in many
intravenous, oral, and topical pharmaceutical prepara-
tions (as well as in other general products including cos-
metics, food, and toothpastes). The liver of an adult with
normal liver and kidney functions will metabolize pro-
pylene glycol into lactate, acetate, and pyruvate within
several hours [52]. Therefore, high levels of propylene
glycol could be reflective of medication use, possibly in
participants with liver damage or due to its simple accu-
mulation resulting from impaired liver function. Despite
the prospective nature of our study, it may be speculated
that HCC cases may have encountered some symptoms,
which may have prompted medical surveillance and/or
alteration of dietary/lifestyle habits (e.g. reduced alcohol
intake or smoking cessation). Yet, such changes would
likely bias risk estimates towards the null or be unrelated
to the disease outcome.
In addition to its prospective design, availability of

detailed pre-diagnostic lifestyle/dietary data, and an-
thropometric measures, additional strengths of our study
include the ability to consider liver function parameters
based on a score developed from clinically relevant liver
enzyme concentrations. The assumption is that de-
creased liver function is associated with a greater degree
of liver damage. From our findings, it is apparent that
the metabolic pattern associated with HCC may be re-
flective of liver dysfunction, as suggested by the stratified
analysis on the liver function score. These results sup-
port the fact that HCC largely arises from a background
of increasingly severe liver damage. Indeed, the process
ending with HCC is considered to be gradual, involving
infection by hepatitis viruses or the development of fatty
liver diseases or cirrhosis [53]. Each part of the process
may be characterized by alterations in metabolic factors,
which may be detectable by metabolomic approaches
[54–58]. Due to this gradual process, we note that lon-
ger follow-up time would be required in order to thor-
oughly assess, prior to any liver damage, the specificity
of the identified HCC risk associations. Our study was
composed of a large number of HCC cases that were not
infected with either hepatitis B or C. Thus, we attempted
to determine whether metabolomic differences could be
observed in the absence of these predominant HCC risk
factors. Although exclusion of hepatitis-positive cases
attenuated some of our findings and resulted in loss of
significance for specific metabolites, strong associations
were observed for glutamate and glutamine. This is

indicative of a potential defect in ammonium detoxifica-
tion in non-hepatitis HCC. This observation deserves
further in-depth investigation.
In our study, we were also interested in comparing

metabolic changes preceding cancer diagnosis by several
years. Thus, we conducted stratified analysis by lag time
between blood collection and diagnosis, which showed
specific metabolic changes according to follow-up time.
However, a key limitation of the present study is the lack
of any clinical data, assessment of any medication usage,
or subgroup analyses based on pathways of HCC devel-
opment. The metabolite changes associated with the
later cases are more likely to be informative on the eti-
ology and/or risk exposure (e.g. dietary components, en-
vironmental, lifestyle, and pollutants), while metabolic
changes in cases diagnosed <2 years after recruitment
likely reflect a direct influence of the tumor.

Conclusion
For the first time, a metabolic pattern based on serum
samples was identified to be associated with HCC risk
within a large prospective study. Several metabolites asso-
ciated with either an increased or decreased HCC risk have
been highlighted. The majority of associations remained
significant after controlling for potential confounders and
consideration of correction for multiple testing. The results
suggest that metabolic patterns can provide meaningful
etiologic insight into HCC development and can poten-
tially be used to detect this cancer in its early stages, even
several years prior to clinical diagnosis.
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Additional file 1: Supplementary methods for NMR metabolomics
data acquisition, additional table (Table S1. Metabolites identified
in serum samples) and additional figures (Figure S1. Validation
(1000 resampling) of the O-PLS model based on 1H CPMG spectra
and O-PLS metabolic signature obtained from the analysis of 1H
NOESY NMR spectra. Figure S2. Validation (1000 resampling) of the
O-PLS models stratified by hepatitis infection status of the cases, and
liver function score. Figure S3. Validation (1000 resampling) of the O-PLS
models stratified by lag time between blood collection and diagnosis).
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