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Abstract

Objectives

Chronic renal disease (CRD) accelerates atherosclerosis and cardiovascular calcification.

Statins reduce low-density lipoprotein-cholesterol levels in patients with CRD, however, the

benefits of statins on cardiovascular disease in CRD remain unclear. This study has deter-

mined the effects of pitavastatin, the newest statin, on arterial inflammation and calcification

in atherogenic mice with CRD.

Methods and Results

CRD was induced by 5/6 nephrectomy in cholesterol-fed apolipoprotein E-deficient mice.

Mice were randomized into three groups: control mice, CRDmice, and CRDmice treated

with pitavastatin. Ultrasonography showed that pitavastatin treatment significantly attenu-

ated luminal stenosis in brachiocephalic arteries of CRDmice. Near-infrared molecular

imaging and correlative Mac3 immunostaining demonstrated a significant reduction in mac-

rophage accumulation in pitavastatin-treated CRDmice. Pitavastatin treatment reduced

levels of osteopontin in plasma and atherosclerotic lesions in CRDmice, but did not pro-

duce a significant reduction in calcification in atherosclerotic plaques as assesses by histol-

ogy. CRDmice had significantly higher levels of phosphate in plasma than did control mice,

which did not change by pitavastatin. In vitro, pitavastatin suppressed the expression of

osteopontin in peritoneal macrophages stimulated with phosphate or calcium/phosphate in

concentrations similar to those found in human patients with CRD.

Conclusion

Our study provides in vivo evidence that pitavastatin reduces inflammation within athero-

sclerotic lesions in CRD mice.
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Introduction
Cardiovascular disease, including atherosclerosis, is the leading cause of mortality and morbid-
ity in westernized societies [1–4]. Patients with chronic renal disease (CRD) are more likely to
die of cardiovascular disease than renal failure [5]. CRD accelerates the development of athero-
sclerosis [6–8]. We and others demonstrated that CRD accelerates atherosclerosis and causes
excessive vascular inflammation and calcification [9–12].

HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitors, or statins, are
commonly used to lower low-density lipoprotein (LDL) cholesterol levels. Pitavastatin, a new
member of statin family, has a unique chemical structure that contributes to multiple pharma-
cological benefits including potent efficacy for treatment of dyslipidemia, minimal drug-drug
interactions, high levels of systemic bioavailability and oral absorption [13, 14]. Cholesterol
lowering by statins reduces vascular inflammation and prevents cardiovascular events [15, 16].
Experimental and clinical studies suggest that statins can reduce atherosclerosis through cho-
lesterol-independent effects including improving endothelial function [17, 18], enhancing the
stability of atherosclerotic plaques [19, 20], and decreasing vascular inflammation [21, 22].
Clinical evidence suggests that some statins improve kidney function, but whether statin
monotherapy reduces atherogenesis in patients with CRD and prevents cardiovascular events
in this patient population remain uncertain [5]. We therefore hypothesized that pitavastatin
can reduce inflammation in atherosclerotic plaques in CRD.

Materials and Methods

Mouse Model of CRD
Male apolipoprotein E-deficient mice (apoE-/- mice; B6/129 background, 10 weeks old) were
purchased from Jackson Laboratory (Bar Harbor, ME, USA). High-fat diet (21% fat and 0.21%
cholesterol) was obtained from Research Diets (D12079B, New Brunswick, NJ, USA). All mice
were fed an atherogenic diet for a total of 22 weeks and randomized into three groups after
10 weeks of feeding: apoE-/- mice (n = 10), apoE-/- CRD mice (n = 20) and apoE-/- CRD mice
treated with pitavastatin (n = 20) (Fig 1A). A two-step procedure was performed to induce
chronic renal disease (CRD): left heminephrectomy at 20 weeks of age followed by right total
nephrectomy 1 week later [9]. One week after nephrectomy, CRD mice were fed a high-choles-
terol diet supplemented with pitavastatin (Kowa Company, Ltd., Tokyo, Japan) at a dose of
100 mg/kg diet (0.01% wt/wt) for 10 weeks (from 22 to 32 weeks of age). To monitor plaque
changes we performed an ultrasound echocardiography of aortic arch and brachiocephalic
artery at 19 weeks and 31 weeks of age. All mice were euthanized by exsanguination while
under deep anesthesia with pentobarbital for ex vivo near-infrared (NIR) fluorescence imaging
of brachiocephalic artery and correlative histological analyses at 32 weeks of age. All animal
experiments were approved by the Institutional Animal Care and Use Committee of the Ani-
mal Research Facility at Beth Israel Deaconess Medical Center (Boston, MA, USA). Animal
Protocol: 010–2013 - "Cardiovascular Inflammation and Calcification".

Blood Biochemistry
Whole blood was drawn from inferior vena cava into heparinized microtubes and centrifuged
at 2000g for 10 min at 4°C. Plasma was collected and frozen at -80°C. Plasma levels of total
cholesterol, creatinine, urea, phosphate and calcium were measured using commercial kits
obtained from BioAssay Systems (Hayward, CA, USA) and BioVision (Milpitas, CA, USA).
Plasma Cystatin C was analyzed using ELISA kit from BioVendor (Brno, Czech Republic).
Plasma osteopontin (OPN) was detected by ELISA kit purchased from R&D systems
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(Minneapolis, MN, USA). Pitavastatin concentration in plasma was measured by HPLC
method as previously described [23].

In Vivo Ultrasound Imaging
All mice were anesthetized with 1.5–2% isoflurane in 2% oxygen, and the anterior chest wall
was shaved using hair removal solution. An ultrasound biomicroscopy system (Vevo 2100,
FUJIFILM VisualSonics, Toronto, Canada) equipped with a 40 MHz mechanical transducer

Fig 1. A: Study design. High-cholesterol-fed apoE-/- mice at 19 weeks of age were randomized into control mice (n = 10) and CRDmice treated or
untreated with pitavastatin (n = 20 per group). Pitavastatin was administered as a food admixture for 10 weeks starting at 22 weeks. Development
of luminal stenosis in brachiocephalic arteries wasmonitored by ultrasonography at 19 weeks (before nephrectomy) and at 31 weeks. Ex vivo
near infrared fluorescence molecular imaging and tissue harvesting for histology were performed at 32 weeks. B: Histological evidence of kidney
insufficiency in CRDmice. Hematoxylin and eosin staining demonstrates normal kidneymorphology in control apoE-/- mice and enlarged
glomeruli in CRD apoE-/- mice treated with or without pitavastatin (Black bar = 50 μm).

doi:10.1371/journal.pone.0138047.g001
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was used to measure the diameter of the brachiocephalic artery. The ascending aorta and bra-
chiocephalic artery were visualized in one plane in the right parasternal long-axis view. The
diameter of the brachiocephalic artery was measured at the narrowest point near the origin,
perpendicular to the axis of blood flow.

Macroscopic Fluorescence Reflectance Imaging
Macrophage accumulation in aorta was monitored ex vivo as described previously [24–26].
Cross-linked iron oxide fluorescent nanoparticle (AminoSPARK 750, PerkinElmer, Boston,
MA, USA) was intravenously injected via tail vein into the mice 24 hours before imaging. After
mice were euthanized, aorta was perfused with saline, dissected and imaged to map the macro-
scopic NIR fluorescent signals elaborated by AminoSPARK 750 (excitation/emission: 750/770
nm) in a fluorescent reflectance system (Image Station 4000MM, Eastman Kodak Co., New
Haven, CT, USA). The sum of the fluorescence intensity in brachiocephalic arteries was sub-
tracted to the background level.

Histopathological Assessment and Morphological Characterization of
Atherosclerotic Plaques and Kidney
Tissue samples were snap-frozen in Frozen Section Compound (VWR International, West
Chester, PA, USA) and 6-μm serial sections were cut and stained with hematoxylin and eosin
for overall morphology. Images were captured with a digital camera (DS-Fi1c, Nikon, Melville,
NY, USA). To assess luminal stenosis, whole lumen diameters and residual lumen diameters
were measured at the origin of the brachiocephalic artery, perpendicular to the axis of blood
flow, using NIS-Elements AR 3.10 (Nikon Instruments, Melville, NY, USA). Residual lumen
was shown as a percentage of the residual lumen diameter compared with the whole lumen
diameter. The sections were stained for the presence of calcium phosphate crystals using von
Kossa method. The black silver staining indicative of calcium phosphate deposition was quan-
tified within atherosclerotic plaques in brachiocephalic arteries using computer assisted
imaging analysis [24]. Immunohistochemistry for macrophages (rat monoclonal antibody
against mouse Mac3, BD Biosciences, San Jose, CA, USA) and osteopontin (goat polyclonal
antibody, ab11503, Abcam, Cambridge, MA, USA) was performed using avidin-biotin peroxi-
dase method. The reaction was visualized with a 3-amino-9-ethylcarbazole substrate (AEC,
Sigma-Aldrich, St Louis, MO, USA). The positive area of red reaction product associated with
macrophage accumulation or osteopontin expression was quantified within atherosclerotic
lesions in brachiocephalic arteries using computer assisted imaging analysis [24].

In Vitro Calcium Deposition in Vascular Smooth Muscle Cells
Mouse smooth muscle cells were cultured in DMEM containing 10% fetal bovine serum (FBS),
3 mM calcium and 2 mM phosphate with or without 50 nM pitavastatin (PTV). After 7 days,
cells were decalcified with 0.6 M HCl for 24 hours. The calcium content in HCl supernatant
was measured colorimetrically by the o-cresolphthalein complexone method (Calcium Colori-
metric Assay Kit, BioVision). The cells were then washed once with PBS and solubilized with
0.1 M NaOH and 0.1% SDS. The protein amount was determined using a BCA protein assay
kit (Thermo Scientific, Rockford, IL, USA). The calcium content was normalized to cellular
protein content.
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Osteopontin Expression in Murine Peritoneal Macrophages
Peritoneal macrophages were prepared as described before [27]. Macrophages were cultured in
RPMI 1640 medium supplemented with 10% FBS and antibiotics (penicillin, streptomycin and
amphotericin B). Cells were preincubated with either DMSO control or pitavastatin at dose of
100 nM or 300 nM for 9 hours, followed by stimulation with either 5 mM phosphate or cal-
cium/phosphate (3 mM calcium and 2 mM phosphate) for another 12 hours. Total RNA sam-
ples were extracted using an Illustra RNAspin Mini kit (GE Healthcare, Piscataway, NJ, USA)
and cDNAs were synthesized using a high capacity cDNA reverse transcription kit (Applied
Biosystems, Carlsbad, CA, USA). Real-time PCR was performed using Taqman probes for
osteopontin and GAPDH on a 7900HT fast real-time PCR system (Applied Biosystems). Rela-
tive expression of osteopontin was normalized by GAPDH.

Statistical Analysis
Statistical significance between multiple groups was analyzed by One-way ANOVA followed
by the Tukey post hoc test using GraphPad Prism 5 (San Diego, CA, USA). Data are presented
as mean ± SEM. P values less than 0.05 were considered significant.

Results

Pitavastatin Does Not Improve Impaired Renal Function in
Nephrectomized Mice
Blood biochemistry was conducted using plasma samples from 32-week-old apoE-/- control
mice or apoE-/- CRD mice. Mice fed with 10 milligram pitavastatin per kilogram diet had the
blood concentration of 5.3 ± 1.0 ng/mL, which was equivalent to the concentration in human
(Fig 2H). Plasma levels of phosphate (P<0.01), creatinine (P<0.05), cystatin C (P<0.01) and
urea (P<0.01) were significantly higher in CRD apoE-/- mice than apoE-/- controls (Fig 2A, 2C,
2D and 2E). These results validate the establishment of the severe CRD model. Pitavastatin
treatment did not improve parameters associated with this CRD condition likely due to irrever-
sability of post-nephrectomy kidney function (Fig 2A, 2C, 2D and 2E). Kidney morphology
assessed by hematoxylin and eosin staining demonstrated no significant difference between
apoE-/- CRD mice and those treated with pitavastatin (Fig 1B). In addition, pitavastatin had no
significant impact on the levels of total cholesterol (Fig 2F) and triglycerides (S1B Fig), which
was consistent with previous studies in murine models of atherosclerosis [28–30]. At 32 weeks,
pitavastatin treatment did not affect body weight of apoE-/- CRD mice (S1A Fig).

Pitavastatin Decreases Pro-inflammatory osteopontin in Plasma of CRD
mice
We determined the expression levels of osteopontin in plasma samples. CRD apoE-/- mice had
higher plasma osteopontin levels compared to control apoE-/- mice (P<0.001). Pitavastatin
treatment reduced plasma osteopontin levels (P<0.05, Fig 2G).

Pitavastatin Reduces Stenosis in Brachiocephalic Arteries
Development of luminal stenosis in brachiocephalic artery was monitored by ultrasonography
in vivo at 19 weeks (before nephrectomy) and at 31 weeks (one week before sacrifice). Luminal
diameter did not differ in all three groups of mice at 19 weeks (Data not shown). Luminal
diameter of the brachiocephalic arteries in CRD apoE-/- mice at 31 weeks of age decreased 14%
(P<0.001) compared with that at 19 weeks, which indicates a progressive development of
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Fig 2. Blood biochemistry and plasma levels of osteopontin and pitavastatin.Mouse plasma was prepared from 32-weeks old apoE-/- mice fed with
high-fat diet. Levels of phosphate (A), calcium (B), creatinine (C), cystatin C (D), urea (E), total cholesterol (F) and osteopontin (G) were measured in plasma
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stenosis. At 31 weeks, CRD apoE-/- mice decreased vessel diameters as compared to apoE-/-

controls (0.67 ± 0.02 mm vs. 0.61 ± 0.01 mm; P<0.01, Fig 3A), while pitavastatin treatment
increased the vessel diameter in CRD apoE-/- mice (0.61 ± 0.01 mm vs. 0.66 ± 0.02 mm;
P<0.01, Fig 3A). Similar results were observed by histological analysis (Fig 3B). Residual
lumen at the origin of the brachiocephalic artery was measured to evaluate luminal stenosis.
CRD apoE-/- mice tended to have smaller residual lumens than control apoE-/- mice (P = 0.23,
Fig 3B). Pitavastatin treatment increased residual lumens in brachiocephalic arteries of CRD
apoE-/- mice (54.5 ± 5.2% vs. 71.2 ± 4.2%; P<0.05, Fig 3B).

Pitavastatin Reduces Vascular Inflammation in Brachiocephalic Arteries
Macroscopic fluorescence reflectance imaging (FRI) was conducted to detect macrophage
accumulation in the aorta and brachiocephalic arteries 11 weeks after the nephrectomy. The
fluorescence intensity in brachiocephalic arteries (ROI shown in Fig 4A) in CRD apoE-/- mice
had a trend to increase compared to that in apoE-/- control mice (P = 0.06, Fig 4A). Pitavastatin
treatment reduced the fluorescence intensity in brachiocephalic arteries of CRD apoE-/- mice
(-42.8 ± 3.5%, P<0.01, Fig 4B), suggesting decreased macrophage accumulation. Immunos-
taining of Mac3 on tissue sections of brachiocephalic arteries concurred these results. Macro-
phage-positive area in brachiocephalic arteries decreased in CRD apoE-/- mice treated with
pitavastatin compared with untreated CRD apoE-/- mice (-36.3 ± 7.1%; P<0.05, Fig 4B).

Pitavastatin Decreases Osteopontin Expression within Atherosclerotic
Lesions in Brachiocephalic Arteries of CRD ApoE-/- mice
Since pitavastatin treatment reduced osteopontin levels in plasma of CRD apoE-/- mice (Fig
2G), we further determined the protein levels of osteopontin in brachiocephalic arteries by
immunohistochemical analysis (Fig 5A). The brachiocephalic arteries of CRD apoE-/- mice had
greater osteopontin expression than control apoE-/- mice (P<0.05). Ten-week pitavastatin
treatment remarkably decreased the osteopontin protein expression in plaques compared with
untreated CRD apoE-/- mice (-59.4 ± 9.8%; P<0.01, Fig 5A).

Pitavastatin Does Not Reduce Calcification in Atherosclerotic Plaques in
Brachiocephalic Arteries and Cultured Vascular Smooth Muscle Cells
Histological analysis demonstrated that von Kossa-positive area associated with advanced cal-
cification in brachiocephalic arteries did not differ in CRD apoE-/- and control apoE-/- mice
(Fig 5B). Quantitative measurement of the levels of calcium and phosphate confirms that pita-
vastatin did not alter the deposition of calcium and phosphate in brachiocephalic arteries (S2A
and S2B Fig), even though a significant correlation was observed between the levels of calcium
and phosphate (S2C Fig). All these data suggest that pitavastatin did not significantly affect cal-
cium deposition in brachiocephalic arteries. We then evaluated the effects of pitavastatin on
calcification in mouse vascular smooth muscle cells (VSMCs) in vitro. We found a 5.5-fold
increase of calcium deposition in VSMCs treated with 3 mM calcium and 2 mM phosphate as
compared to control VSMCs (Fig 6A). Pitavastatin treatment did not affect calcium deposition
in VSMCs induced by calcium/phosphate (Fig 6A).

from apoE-/- mice (n = 10), CRD apoE-/- mice (n = 14) and CRD apoE-/- mice treated with pitavastatin (CRD apoE-/- PTV, n = 18). Data are shown as
mean ± SEM. H: Plasma concentration of pitavastatin given as food admixture in mice. ApoE-/- mice were fed a chow supplemented with pitavastatin at
doses of 30, 100 and 300 mg/kg diet (0.003, 0.01 and 0.03% wt/wt) for 2 weeks. These doses were equivalent to 3, 10 and 30 mg pitavastatin/kg body
weight, respectively. Mice treated with pitavastatin at a dose of 100 mg/kg diet had plasma concentration of 5.3 ± 1.0 ng/mL. Data are shown as mean ± SEM
(n = 5).

doi:10.1371/journal.pone.0138047.g002
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Fig 3. A: In vivo ultrasound imaging of brachiocephalic artery. Luminal vessel diameter of brachiocephalic artery wasmonitored by
ultrasonography at 19 weeks and at 31 weeks. Representative ultrasound imaging of control apoE-/- mice (n = 6), CRD apoE-/- mice (n = 12), and
CRD apoE-/- mice treated with pitavastatin (CRD apoE-/- PTV, n = 13) at 31 weeks. Yellow arrows indicate luminal diameters. Quantitative
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Pitavastatin Significantly Inhibits the Expression of Osteopontin in
Mouse Peritoneal Macrophages
We found that pitavastatin treatment reduced osteopontin levels in plasma and brachioce-
phalic arteries in CRD apoE-/- mice. To further explore the molecular mechanisms, we tested
the effect of pitavastatin on mouse peritoneal macrophages stimulated with an elevated con-
centration of calcium/phosphate or phosphate. Calcium/phosphate (3 mM calcium/2 mM
phosphate or 5 mM phosphate) increased osteopontin mRNA levels, which were attenuated by
300 nM pitavastatin treatment (Fig 6B and 6C).

Discussion
The major findings of this study i) showed that the induction of CRD by 5/6 nephrectomy
promotes vascular inflammation within atherosclerotic lesions in brachiocephalic arteries
of apoE-/- mice; ii) demonstrated the significant reduction of stenosis in brachiocephalic arter-
ies of CRD apoE-/- mice treated by pitavastatin with no substantial changes in cholesterol lev-
els; iii) proved that macrophage accumulation in brachiocephalic arteries decreased by
pitavastatin treatment for 10 weeks; iv) demonstrated that pitavastatin treatment reduces pro-
inflammatory osteopontin in vivo and in cultured primary macrophages; and v) revealed that
pitavastatin does not affect vascular calcification in the animal model of CRD, induced by 5/6
nephrectomy. This study therefore demonstrates that a clinically-achievable concentration of
pitavastatin reduces arterial inflammation within atherosclerotic plaques in the CRD mouse
model through the mechanism independent of its lipid lowering effects.

Pitavastatin treatment significantly reduced pro-inflammatory and pro-osteogenic osteo-
pontin levels in plasma and brachiocephalic arteries in CRD apoE-/- mice. Multifunctional
osteopontin is biosynthesized by many cell types, including macrophages and VSMCs. The
expression of osteopontin can be stimulated by various pro-inflammatory cytokines [31–33],
endotoxin [34] and extracellular inorganic phosphate [35]. Here we first show that pitavastatin
treatment significantly attenuates the expression of osteopontin induced by phosphate/calcium
or phosphate alone in primary peritoneal macrophages. Our finding is consistent with previous
report that pitavastatin (NK-104) treatment reduces osteopontin expression in cultured rat
aortic SMCs and aortic tissue from diabetic rats [36]. Further, a recent study reported that sim-
vastatin reduces plasma levels of osteopontin in patients with CAD [37]. These sets of data
indicate that abnormally high levels of phosphate (5 mM) in the plasma of CRD apoE-/- mice
may induce osteopontin expression in macrophages and VSMCs, which can be attenuated by
pitavastatin treatment. However, the clinical relevance of the inhibitory effect of pitavastatin in
phosphate-induced osteopontin expression warrants further investigation.

Earlier studies have demonstrated that both NF-κB and activator protein-1 (AP-1) path-
ways play important roles in the transcriptional expression of osteopontin induced by cyto-
kines and LPS [33, 34]. We found no difference of osteopontin mRNA expression between
classically activated M1 macrophages induced by IFN-γ and alternative M2 macrophages stim-
ulated by IL-4 (S3 Fig). Two functionally distinct NF-κB activation inhibitors (Bay 11–7802
and JSH-23) have no significant influence of osteopontin mRNA induced by phosphate (S4
Fig). It was previously reported that osteopontin gene promoter contains glucocorticoid

assessment of luminal diameters showed that pitavastatin treatment significantly reduced stenosis in CRDmice at 31 weeks. B: Histological
analysis of brachiocephalic arteries. Hematoxylin and eosin staining was performed on sections of brachiocephalic arteries from control apoE-/-

mice (n = 7), CRD apoE-/- mice (n = 12), and CRD apoE-/- mice treated with pitavastatin (CRD apoE-/- PTV, n = 16). Representative images were
shown (Arch: aortic arch; IA: brachiocephalic artery; L: lumen). Black arrows indicate residual lumen diameters. Quantitative assessment of
residual lumen (%) at the origin of brachiocephalic arteries was shown as mean ± SEM.

doi:10.1371/journal.pone.0138047.g003
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Fig 4. Pitavastatin reducesmacrophage accumulation in brachiocephalic arteries of CRDmice. A: Ex vivo fluorescence reflectance imaging (FRI)
analysis. Representative images of the fluorescence intensity in the entire aorta were shown as red-green-blue (RGB) readout. Quantitative assessment of
the signal intensity in the brachiocephalic artery (ROI) was shown as mean ± SEM. B: Mac3 immunostaining of brachiocephalic arteries. Representative
images of macrophage accumulation within atherosclerotic lesions in brachiocephalic arteries of control apoE-/- mice (n = 9), CRD apoE-/- mice (n = 9), and
CRD apoE-/- mice treated with pitavastatin (CRD apoE-/- PTV, n = 15). L indicates lumen. Quantitative assessment of Mac3-postive area was shown as
mean ± SEM.

doi:10.1371/journal.pone.0138047.g004
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Fig 5. A: Pitavastatin reduces osteopontin expression in brachiocephalic arteries of CRDmice. Representative images of osteopontin
immunostaining within atherosclerotic plaques in brachiocephalic arteries of control apoE-/- mice (n = 8), CRD apoE-/- mice (n = 12), and CRD
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response element and glucocorticoid receptor signaling regulates osteopontin transcription
induced by phosphate in murine cementoblasts [38]. Therefore, pitavastatin may suppress
phosphate-mediated osteopontin transcription by modulating glucocorticoid receptor
signaling.

The beneficial effects of pitavastatin on increased vascular inflammation in CRD mice may
be explained at least partially by reduction of arterial osteopontin expression. High levels of
osteopontin protein was detected in macrophages within atherosclerotic plaques [39]. Pitavas-
tatin treatment could attenuate osteopontin expression within arterial lesions (Fig 5A) through
either lowering macrophage accumulation (Fig 4B) or directly suppressing osteopontin expres-
sion on macrophages (Fig 6B and 6C). Osteopontin has numerous functions, including inhibi-
tion of calcium deposition in early stages, promotion of calcification in advanced plaques, and
induction of atherosclerotic inflammation [40–43]. In a previous study, neutralizing antibodies
directed against osteopontin inhibited rat carotid neointimal thickening after endothelial
denudation [40]. The results from osteopontin and apoE double-deficient mice showed that
osteopontin promotes atherogenesis [41]. More importantly, Shao et al. demonstrated that
osteopontin has multifunctional and stage-specific roles in atherosclerosis in male LDL recep-
tor-deficient mice [42]. Full-length phosphorylated osteopontin is relatively protease resistant
and is an inhibitor of calcification [42]. On the other hand, the N-terminal fragment of osteo-
pontin that is processed by thrombin-mediated proteolysis in chronic inflammatory diseases
including atherosclerosis, promotes vascular inflammation and calcification [42]. Taken
together, these results suggested that osteopontin plays an important role in atherosclerosis.
Thus, pitavastatin treatment could inhibit vascular inflammation through the reduction of
arterial osteopontin expression. Whether osteopontin plays a causal role in the beneficial effect
of pitavastatin on vascular inflammation and luminal stenosis in CRD deserves further
investigations.

In our study, pitavastatin did not improve the impaired renal function by nephrectomy.
Pitavastatin treatment did not improve plasma levels of phosphate, creatinine, cystatin C, and
urea in CRD apoE-/- mice. Among these, phosphate is the most important parameter in blood,
which was increased in our model up to 5 mM corresponding to 3–4 stage of CRD (~50 mg/
dL). Clinical reports further suggest that elevated serum phosphate concentrations are associ-
ated with a substantially greater risk of end-stage CRD, and that risk increased up to 5-fold for
each 1 mg/dL increment in the mean serum phosphate concentration [44]. Furthermore, the
recent reports noted that hyperphosphatemia plays a pivotal role in promoting vascular calcifi-
cation by modifying Klotho-FGF23 axis [45, 46]. In our study, pitavastatin did not attenuate in
vivo calcification in the presence of elevated levels of phosphate, suggesting that the inhibition
of arterial inflammation may not be enough to reduce arterial calcification in late-stage CRD.
However, it is plausible that pitavastatin may have the beneficial effect on vascular calcification
in early-stage CRD as supported by the study by Ivanovski et al. [47]. In their model apoE-/-
mice were fed with normal chow diet and CRD was induced by left total nephrectomy. The
authors demonstrated that simvastatin treatment reduced vascular calcification in the less
severe renal dysfunction characterized by lower levels of urea and no changes in serum
phosphate.

apoE-/- mice treated with pitavastatin (CRD apoE-/- PTV, n = 14). L indicates lumen. Quantitative assessment of OPN-positive area was shown as
mean ± SEM. B: Pitavastatin has no significant effect on calcification in brachiocephalic arteries of CRDmice. Representative images of advanced
calcification within atherosclerotic lesions in brachiocephalic arteries of control apoE-/- mice (n = 6), CRD apoE-/- mice (n = 11), and CRD apoE-/-

mice treated with pitavastatin (CRD apoE-/- PTV, n = 15). Quantitative assessment of von Kossa-positive area was shown asmean ± SEM. L
indicates lumen.

doi:10.1371/journal.pone.0138047.g005
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Previous preclinical evidence demonstrated that some statins, including pitavastatin,
improves renal function [48, 49]. However, in our mechanical nephrectomy model with irre-
versible kidney function corresponding to the CRD stage 4 from the parameters including
urine creatinine, plasma creatinine, and body surface area estimated from body weight, pitavas-
tatin did not change the renal function. Our findings in a mouse model of late-stage CRD was
consistent with the latest clinical study (SHARP), which reported that lowering LDL choles-
terol with combined simvastatin and ezetimibe therapy has no significant effect on the progres-
sion of kidney disease in patients with late stage CRD [50]. Nevertheless, pitavastatin reduced
vascular inflammation. Our study did not attempt to examine whether pitavastatin attenuates
renal function, but to test the specific biological hypothesis that pitavastatin can reduce vascu-
lar inflammation in mice induced by CRD. The present study provides the evidence of a
preventive role of pitavastatin in vascular inflammation in CRD through the mechanism inde-
pendent of its lipid lowering effects. But the study did not establish that anti-inflammatory
effects of pitavastatin also reduce arterial calcification in late-stage CRD. These results may
indicate that statin administration in the earlier stages of CRD may be required to prevent cal-
cification, and may also suggest that, in addition to anti-inflammatory treatment, therapies
focusing more specifically on the processes of ectopic mineralization can retard or regress arte-
rial calcification. This area deserves further preclinical and clinical investigations.

Supporting Information
S1 Fig. Mouse body weight and plasma levels of triglycerides.
(TIF)

S2 Fig. Pitavastatin has no significant effect on the deposition of calcium and phosphate in
brachiocephalic arteries.
(TIF)

S3 Fig. Osteopontin mRNA expression in M1 and M2 macrophages.
(TIF)

S4 Fig. NF-κB activation inhibitors have no effect on the osteopontin mRNA expression
induced by phosphate in peritoneal macrophages.
(TIF)

S1 File. Mouse body weight and plasma levels of triglycerides.
(DOCX)

S2 File. Quantification of Calcium and Phosphate in Brachiocephalic Arteries.
(DOCX)

S3 File. Osteopontin Expression in Polarized M1 or M2Macrophages.
(DOCX)

Fig 6. A: Pitavastatin has no significant effect on calcification in vascular smoothmuscle cells.
Mouse vascular smoothmuscle cells were treated with or without 50 nM pitavastatin (PTV) in the
presence of calcium/phosphate (Ca/P, 3 mM calcium and 2mM phosphate) for 7 days. Calcium
deposition was determined by o-cresolphthalein complexonemethod and normalized by cellular
protein content. Data are shown asmean ± SEM (n = 3 each group). B and C: Pitavastatin reduces
osteopontin mRNA expression in peritoneal macrophages. Macrophages were preincubated with
either DMSO control or pitavastatin (100 nM or 300 nM) and followed by stimulation with calcium/
phosphate (Ca/P, 3 mM calcium and 2mM phosphate or 5 mM phosphate). mRNA levels of
osteopontin (B,C) were determined by real-time PCR and normalized by mRNA levels of GAPDH. Data
are shown as mean ± SEM (n = 6 each group).

doi:10.1371/journal.pone.0138047.g006
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