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Abstract
Cartilage remodeling is currently among the most popular topics in
osteoarthritis research. Remodeling includes removal of the existing cartilage
and replacement by neo-cartilage. As a loss of balance between removal and
replacement of articular cartilage develops (particularly, the rate of removal
surpasses the rate of replacement), joints will begin to degrade. In the last few
years, significant progress in molecular understanding of the cartilage
remodeling process has been made. In this brief review, we focus on the
discussion of some current “controversial” observations in articular cartilage
degeneration: (1) the biological effect of transforming growth factor-beta 1 on
developing and mature articular cartilages, (2) the question of whether
aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes
in articular cartilage destruction, and (3) chondrocytes versus chondron in the
development of osteoarthritis. It is hoped that continued discussion and
investigation will follow to better clarify these topics. Clarification will be critical
for those in search of novel therapeutic targets for the treatment of
osteoarthritis.
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Cartilage remodeling is a continuous process in which the existing 
cartilage is removed (or degraded) and replaced by new cartilage 
(regenerated). The balance between degradation and regeneration 
has been considered so critical that tipping the scale toward degra-
dation results in osteoarthritis (OA). Therefore, an understanding 
of the molecular basis of the degradation and regeneration proc-
esses will undoubtedly provide valuable information for those in 
search of novel therapeutic protocols for the treatment of OA. In 
this review article, we focus on several recent discoveries on the 
topic of articular cartilage degeneration.

With regard to the remodeling of the extracellular matrix, mature 
articular cartilages are, in general, considered relatively quiescent 
tissues. For example, a study by Verzijl et al. indicates that the half-
life of collagens in human mature cartilages is 117 years1. The long 
half-life of the collagens indicates a slow turnover of the collagens 
in the cartilages. However, the half-life of the aggrecan (the large 
monomer) turnover is about 3.4 years2. This suggests that the rate 
of the turnover may be different in the different parts of the extra-
cellular matrix. For example, the rate of the turnover is high in the 
aggrecan-rich pericellular matrix of chondrocytes and the rate of 
the turnover is low in the collagen-rich interterritorial and territorial 
matrices in articular cartilages3.

Although this review focuses on articular cartilages, we have to 
point out that OA is currently considered the consequence of the 
whole joint failure. In addition to articular cartilages, the subchon-
dral bone, peri-articular cartilage, synovial membrane, ligaments, 
and menisci contribute to the development of OA4.

Biological effect of transforming growth factor-beta 
1 β on developing and mature articular cartilages
Is transforming growth factor-beta 1 (TGF-β1) a culprit or protec-
tor in the development of OA? Currently, numerous pharmaceuti-
cal companies are considering the use of TGF-β1 as a stimulant to 
repair damaged articular cartilage for the treatment of OA. Is this 
the correct choice?

TGF-β1 has been considered an anabolic factor to articular 
chondrocytes, based largely on results from in vitro and ex vivo 
experiments in which TGF-β1 can stimulate chondrocytes to syn-
thesize and release proteoglycans and type II collagens5,6. In addi-
tion, three independent mouse genetic studies7–9 demonstrate that 
Tgf-β1 is required for the formation of articular cartilage at early 
stages of development in mice. Without Tgf-β1, articular cartilage 
is not formed properly, eventually an immature joint becomes an 
OA-like joint in mice. Moreover, a human genetic study reports 
that a two-nucleotide deletion, 741-742del AT (nonsense mutation), 
in SMAD-3 causes early-onset OA in a human family10. All of the 
aforementioned results support the argument that TGF-β1 is a pro-
tector against the development of OA. Unfortunately, the situation 
is not that simple. Numerous other independent investigations sug-
gest that TGF-β1 may, in fact, be a factor in joint destruction. First, 
studies with animal models, by Itayem et al., suggest that intra-
articular injections of TGF-β1 into adult rat knee joints cause early 
onset of OA11,12. Second, a human genetic study reports that a nucle-
otide change, 859C>T or 782C>T in SMAD-3, increases the level 
of TGF-β1 and activity of the TGF-β1 signaling pathway in human 

families is associated with early-onset OA10. This is in agreement 
with the observation from two other studies indicating that the 
level of TGF-β1 is significantly higher in human OA tissues than 
in healthy articular cartilages13,14. Third, we found increases in the 
expression of Tgf-β1 and of p-Smad2/3 in articular chondrocytes of 
knee joints in mouse models of OA15. The increased expression of 
p-Smad2/3 was associated with elevated expression of a serine pro-
tease, high-temperature requirement A1 (HtrA1), in the chondro-
cyte. HTRA1 is capable of degrading extracellular matrix molecules, 
particularly most pericellular components of articular chondro-
cytes16. Another independent research group also demonstrates 
that TGF-β1 induces HTRA1 in human primary chondrocytes17. 
Fourth, we determined whether the removal of Tgf-β type II recep-
tor (Tgfbr2) from the articular cartilage of adult knee joints could 
attenuate the OA progression. We deleted Tgfbr2 in the articular 
cartilage of adult mouse knee joints and then subjected the mice to 
destabilization of the medial meniscus (DMM). We found a signifi-
cant disparity in the progression of articular cartilage degeneration 
in knee joints between mice with or without Tgfbr2 at 8 and 16 
weeks following the surgery. The progression toward OA was sig-
nificantly (P <0.05) delayed in Tgfbr2−/− mice.

Several studies also indicate that the increase in the amount of 
TGF-β1 in other joint tissues has detrimental effects on adult joints. 
A study by Maeda et al. suggests that a high level of TGF-β1 does 
more harm than good to the tendon18. One study by Bakker et al. 
reports that the constitutive overexpression of active TGF-β1 in 
adult mouse knee joints results in OA associated with an increase in 
the production of proteoglycans in articular cartilage, hyperplasia 
of synovium, and chondro-osteophyte formation19. A study by Zhen 
et al. demonstrates that inhibition of TGF-β1 signaling in mesen-
chymal stem cells of subchondral bone delays the development of 
OA in adult mice20.

How can this “conflicting” role of TGF-β1 in the pathogenesis 
of OA be explained? One plausible explanation is that effective 
TGF-β1 signaling acts in a dose-dependent manner. In this scenario, 
an appropriate level of TGF-β1 is required for the development and 
maintenance of articular cartilages. Therefore, TGF-β1 below or 
above this level results in articular cartilage degeneration. How-
ever, results from our study with mice without Tgfbr2 suggest that 
the TGF-β1 dose-dependent manner may not be the case. Another 
plausible explanation is that effective TGF-β1 signaling acts in a 
developmental stage-dependent manner. In this scenario, TGF-β1 
is required for the development of articular cartilage; however, once 
a joint is formed, TGF-β1 is no longer needed. In any case, induc-
tion of TGF-β1 in an adult joint causes articular cartilage degenera-
tion. Therefore, inhibition activity of TGF-β1, not application of 
TGF-β1, may be considered in treatment of OA in mature joints.

Are ADAMTS4 and ADAMTS5 key enzymes in 
articular cartilage destruction?
Proteoglycans are the basic elements of articular cartilage and are 
indispensable in the ability of articular cartilage to resist compres-
sive pressure. Thus, much of the effort in the OA research field is 
focused on the search for an enzyme, or enzymes, that degrades 
proteoglycan. In 1999, two enzymes, ADAMTS-4 and ADAMTS-5, 
were cloned21,22. Both of these aggrecanases degrade aggrecans 
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(proteoglycans). This indicates that both aggrecanases may be 
ideal therapeutic targets in the development of disease-modifying 
OA drugs. In fact, two independent research groups used mouse 
gene-targeting techniques to delete ADAMTS-4 or ADAMTS-5. 
One group found that the deletion of ADAMTS-5 could protect 
aggrecan from being degraded in a mouse model of inflamma-
tory arthritis. With regard to the development of OA, it is not clear 
whether both aggrecanases are involved in cartilage destruction23. 
The results from another group demonstrated that the removal of 
ADAMTS-5 in mice could significantly delay the progressive proc-
ess of articular cartilage degeneration at 4–8 weeks following the 
DMM surgery24. This suggests that ADAMTS-5 may play a role in 
early stages of OA development. However, lack of evidence indicat-
ing elevated expression of ADAMTS-5 at early stages of articular 
cartilage degeneration in any one of the existing mouse models of 
OA raises a question as to how important a role this enzyme has in 
the development of OA.

More importantly, a recent study indicates that the expression of 
ADAMTS-5 is increased in the articular cartilage of knee joints in 
adult mice because of inactivation of Sox925. The elevated expression 
of ADAMTS-5 is associated with the disappearance of aggrecans. 
Surprisingly, there is no progression of articular cartilage degen-
eration in this model. This is contrary to our current understand-
ing that aggrecans are indispensable for articular cartilage health. 
Consistent with this observation, another independent investigation 
indicates that an increase in the expression of bone morphogenetic 
protein 2 (Bmp2) elevates levels of the neo-epitope, VDIPEN341, 
of aggrecan in articular cartilage without inducing an acceleration 
of cartilage degeneration in mice. Furthermore, Davidson et al. 
find that the increased expression of Bmp2 does not exacerbate the 
degenerative condition of articular cartilage that has been induced 
by the DMM in mouse knee joints26.

One plausible explanation for the aforementioned observation is 
that the loss of proteoglycans alone may not be sufficient to initiate 
or accelerate articular cartilage degeneration. Instead, the degrada-
tion of both proteoglycans and type II collagen may be required 
in the development of OA. Interestingly, a study by Karsdal et al. 
demonstrates that articular cartilage degradation is completely 
reversible in the presence of high levels of aggrecanase-mediated 
aggrecan degradation but irreversible after induction of metallo-
protenase (MMP)-mediated aggrecan and collagen type II degrada-
tion27. This study suggests that the aggrecanases may be involved 
with the reversible processes of cartilage degradation (or extracellu-
lar matrix turnover) but MMPs cause the irreversible degeneration 
of articular cartilages.

There is evidence that the removal of ADAMTS-5 may protect 
joints against OA by stabilizing subchondral bone28. Thus, it will 
be important to understand whether aggrecanases play roles in the 
development of OA through other joint tissues.

We discuss the aggrecanases in this brief review. However, other 
enzymes, such as MMPs, elastase, and cathepsins, also play 
important roles in the pathogenesis of OA.

Chondrocytes versus chondron in the development 
of osteoarthritis
Primary chondrocytes and chondrocyte cell lines are the primary 
tools for in vitro experiments in cartilage research and repair. They 
have allowed a wealth of information to be obtained about the 
genetic regulation of chondrocyte function, activation of signaling 
pathways, and gene expression profiles in chondrocyte response 
to chemical or mechanical stimulation. Many investigators use 
chondrocytes in vitro to study physiological and pathophysiological 
events while mimicking in vivo biological conditions. In particu-
lar, researchers almost exclusively use primary chondrocytes as a 
resource to regenerate functional articular cartilage. Regarding this 
method, however, a question remains: are primary chondrocytes 
alone adequate for investigating the role of chondrocytes in OA 
development and articular cartilage repair?

Chondrocytes and their pericellular matrix are considered to be 
the primary structural and functional units, termed chondrons, of 
articular cartilage29–35. This concept was proposed by Benninghoff 
in 1925. About 40 years later, Szirmai further evaluated the struc-
ture of the chondron by a more systematic analysis. At that time, 
however, the chondron was not widely recognized as a functional 
unit. Some 20 years later, C.A. Poole’s research group completed 
additional experiments to physically isolate chondrons from carti-
lage and showed that chondrons are true anatomic and functional 
entities. Chondrons consist of chondrocytes, the pericellular matrix, 
and a capsule surrounding the pericellular matrix. The pericellular 
matrix contains laminin, fibronectin, biglycan, decrin, fibromodu-
lin, matrilin 3, and cartilage oligo matrix protein (COMP). The 
pericellular capsule is composed mostly of type VI and IX collagen 
and proteoglycans. The capsule and the pericellular matrix separate 
chondrocytes from the adjacent interterritorial or territorial matri-
ces containing type II collagen. Clearly, under normal conditions, 
type II collagen is not exposed to chondrocytes. It is conceivable 
that disruption of the pericellular matrix exposes chondrocytes to 
type II collagen and can alter the metabolic events in chondrocytes, 
eventually leading to cartilage destruction. In fact, results from 
human and mouse genetic studies indicate the significant role of 
the pericellular matrix in protecting articular cartilage against the 
development of OA. For example, the deficiency of one or a combi-
nation of two components of the pericellular matrix, such as type VI 
collagen, type IX collagen, matrilin 3, decrin, biglycan, and fibro-
modulin, results in early onset of OA in mice36–40. In human genetic 
studies, mutations in type IX collagen and COMP are associated 
with OA41–46.

In 1998, a study by Lee and Loeser provided evidence that the peri-
cellular matrix of chondrocytes could play critical roles in the main-
tenance of normal metabolic activities of chondrocytes in articular 
cartilage and that the disruption of the pericellular matrix is associ-
ated with articular cartilage degeneration47. Very interestingly, the 
significant role of the pericellular matrix of a cell is also demon-
strated in neural tissue. A study by Gogolla et al. points out that 
the perineuronal net (pericellular matrix of neurons) in the amy-
gdala plays a significant role in protecting the neurons from the 
loss of “fear memory”48. The authors also find that functional and 
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structural changes of sensory systems are caused by the absence of 
a perineuronal net in the visual cortex. The significant role of the 
pericellular matrix of a neural cell in the brain coincides with its 
perceived role within the chondron. If that is the case, maintaining 
the integrity of the pericellular matrix will be one of the key issues 
in protection against OA. We believe that more attention should 
be directed toward the pericellular matrix of chondrocytes for the 
identification of novel biomarkers and therapeutic targets for OA.

Data from a very recent investigation provide more evidence that 
chondrons are not only the functional unit in the maintenance of 
articular cartilage homeostasis but also the basic elements in the 
regeneration of articular cartilage. Chondrons derived from adult 
articular cartilage are more efficient than chondrocytes in the 
regeneration of articular cartilage. This information is particularly 
critical for the articular cartilage repair field49.

Collagen type VI is one of the major components of the capsule of 
the pericellular matrix. Results from one very recent study indicate 
that soluble collagen type VI can be a stimulant for chondrocyte 
proliferation. The soluble collagen type VI may also prevent pro-
liferating chondrocytes from being dedifferentiated in vitro50. It is 
well known that chondrocyte dedifferentiation is one of the major 

obstacles in cartilage tissue repair. A study by Zelenski et al. shows 
that the deletion of type VI collagen alters the mechanical properties 
of the pericellular matrix of chondrocytes51. This, in turn, increases 
the extent of cell swelling and osmotically induced transient recep-
tor potential cation channel subfamily V member 4 (TRPV4) sig-
naling in an age-dependent manner. These findings suggest that 
alterations in pericellular matrix properties can influence mechan-
otransduction via TRPV4 or other ion channels, which eventually 
leads to articular cartilage destruction.

In summary, chondrons, instead of primary chondrocytes or 
chondrocyte cell lines, may be a more appropriate choice for inves-
tigating the biological functions and effects of chondrocytes in the 
development of OA and cartilage repair.
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