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The dentate gyrus (DG) of mammals harbors neural stem cells that generate new
dentate granule cells (DGCs) throughout life. Behavioral studies using the contextual
fear discrimination paradigm have found that selectively augmenting or blocking adult
hippocampal neurogenesis enhances or impairs discrimination under conditions of
high, but not low, interference suggestive of a role in pattern separation. Although
contextual discrimination engages population-based coding mechanisms underlying
pattern separation such as global remapping in the DG and CA3, how adult hippocampal
neurogenesis modulates pattern separation in the DG is poorly understood. Here, we
propose a role for adult-born DGCs in re-activation coupled modulation of sparseness
through feed-back inhibition to govern global remapping in the DG.

Keywords: dentate gyrus, adult hippocampal neurogenesis, pattern separation, interference, discrimination,
generalization, sparseness, feed-back inhibition

Introduction

The dentate gyrus (DG) of all mammals harbors neural stem cells that generate new dentate
granule cells (DGCs) throughout life (Altman and Das, 1965; Kaplan and Hinds, 1977; Cameron
et al., 1993; Kuhn et al., 1996; Eriksson et al., 1998; Seri et al., 2001; Knoth et al., 2010; Spalding
et al., 2013). The differentiation of neural stem cells into mature DGCs is marked by changes in
physiological properties and connectivity (Zhao et al., 2008; Ming and Song, 2011; Aimone et al.,
2014). Whereas young (4–6 weeks old) adult-born DGCs are generally thought to exhibit low input
specificity, heightened synaptic plasticity and excitability, mature 6–8 weeks old adult-born DGCs
are more similar to developmentally generated DGCs with high input specificity, lower excitability
and synaptic plasticity (Schmidt-Hieber et al., 2004; Espósito et al., 2005; Laplagne et al., 2006,
2007; Ge et al., 2007, 2008; Gu et al., 2012). Investigations into the functions of adult hippocampal
neurogenesis have suggested numerous roles including the modulation of interference (Becker,
2005; Wiskott et al., 2006; Becker and Wojtowicz, 2007; Garthe et al., 2009; Deng et al., 2010; Sahay
et al., 2011a; Burghardt et al., 2012), memory resolution (Aimone et al., 2011), input specific re-
activation (Tashiro et al., 2007; Aimone et al., 2011), memory persistence (Arruda-Carvalho et al.,
2011; McAvoy et al., 2014; Wang et al., 2014) and forgetting (Chambers et al., 2004; Deisseroth
et al., 2004; Weisz and Argibay, 2012; Akers et al., 2014). Behavioral studies using the contextual
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fear discrimination paradigm have found that selectively
augmenting or blocking adult hippocampal neurogenesis
enhances or impairs discrimination under conditions of high,
but not low, interference (Sahay et al., 2011b; Kheirbek et al.,
2012; Nakashiba et al., 2012; Niibori et al., 2012; Tronel et al.,
2012). Studies using a delayed non-match to place paradigm and
touch screen based object spacing detection assays have obtained
similar results in some, but not all studies (Clelland et al., 2009;
Pan et al., 2012; Groves et al., 2013; Swan et al., 2014; Zhang
et al., 2014). However, the neural mechanisms by which adult
hippocampal neurogenesis modulates interference in these tasks
are poorly understood (Yassa and Stark, 2011; Piatti et al., 2013;
Lepousez et al., 2015; Wadiche and Overstreet-Wadiche, 2015).

Theoretical and experimental studies have posited a critical
role for the DG in modulating interference between similar
inputs through pattern separation, a process by which similar
inputs are made more distinct during storage (McNaughton
and Morris, 1987; O’Reilly and McClelland, 1994; Gilbert et al.,
2001; Rolls and Kesner, 2006; Bakker et al., 2008; Treves et al.,
2008). At a network level, pattern separation in the DG is
supported by encoding of similar inputs by differential firing
rates of place cells (rate remapping) or the recruitment of non-
overlapping ensembles of neurons (or global remapping; Leutgeb
et al., 2007; Neunuebel et al., 2013; Neunuebel and Knierim,
2014). Although discrimination of similar contexts (Niibori
et al., 2012; Deng et al., 2013; Czerniawski and Guzowski, 2014)
elicits global remapping in the DG and CA3 and blockade
of adult hippocampal neurogenesis impairs population-based
coding in CA3 (Niibori et al., 2012), evidence for how adult-
born DGCs contribute to rate remapping and global remapping
in the DG is absent. One feature of the DG that has long been
recognized as conducive for pattern separation is sparseness of
activity (Treves and Rolls, 1992; Jung and McNaughton, 1993;
McClelland and Goddard, 1996; Chawla et al., 2005; Colgin
et al., 2008; Pernia-Andrade and Jonas, 2014). A sparse coding
scheme is thought to support pattern separation by facilitating
the recruitment of non-overlapping populations of neurons to
encode similar inputs (Treves and Rolls, 1992; McClelland and
Goddard, 1996; Colgin et al., 2008; Faghihi and Moustafa, 2015;
Petrantonakis and Poirazi, 2015). We recently proposed that
adult-born DGCs modulate sparseness of activity in the DG
through recruitment of feed-back inhibition to influence pattern
separation (Sahay et al., 2011a). We hypothesized that young
adult-born DGCs recruit feed-back inhibition via mossy cells and
hilar interneurons to dictate sparseness of activity in the DG and
this in turn, influences global remapping. Here, we discuss two
recent experimental studies that have begun to address this idea
and integrate insights gleaned from these studies to formulate a
proposal for how adult-born DGCs influence global remapping
in the DG.

Experimental Advances Linking Adult
Hippocampal Neurogenesis, Sparseness
and Feed-Back Inhibition

As a first step towards addressing how adult hippocampal
neurogenesis may facilitate global remapping, we sought to

test whether levels of adult hippocampal neurogenesis affect
sparseness of activity in the DG (Ikrar et al., 2013). We used
voltage sensitive dye imaging (VSDI) in combination with
laser photostimulation and electrical stimulation of the granule
cell layer (GCL) to visualize depolarization induced spread
of the voltage sensitive dye (VSD) signal in ex vivo slices
from mice in which either adult hippocampal neurogenesis
was blocked by targeted x-irradiation or enhanced by genetic
deletion of the pro-apoptotic gene Bax in adult neural stem
cells. We found that genetically enhancing the number of
adult-born DGCs (8 weeks of age and younger) engendered a
reduction in spread of VSD signal and strength of neuronal
activation in the DG. Conversely, ablating 14 weeks of age
and younger adult-born DGCs produced a trend towards
increased excitability of the DG. In these experiments the
change in the VSD signal was seen throughout the GCL
suggesting a non-cell autonomous role for adult-born DGCs
in modulating the activation of mature DGCs. Mossy fibers
of DGCs synapse onto hilar interneurons and mossy cells,
both of which can modulate the activity of the DG. Activation
of hilar interneurons and mossy cells is thought to promote
local inhibition and long-range activation and inhibition of
DGCs, respectively (Freund and Buzsáki, 1996; Scharfman
and Myers, 2013; Hu et al., 2014). Changing levels of adult
hippocampal neurogenesis did not appear to affect miniature
inhibitory post-synaptic currents in the DG; but increasing
the number of 4 weeks old adult-born DGCs increased
their connectivity with hilar interneurons (Ikrar et al., 2013).
Together, these observations demonstrate that levels of adult
hippocampal neurogenesis modulate sparseness of activity in
the DG as assessed by changes in excitability and suggest
a role for excitatory drive onto hilar interneurons as an
underlying circuit mechanism (Ikrar et al., 2013). However,
whether expanding or ablating populations of adult-born DGCs
of various ages differentially affects excitability of the DG was
not addressed. In this regard, it is noteworthy to emphasize
that a previous report found that genetic ablation of the
population of 8 weeks and younger adult-born DGCs decreased
sparseness of activity in the DG in vivo only under conditions
of high interference in memory processing (Burghardt et al.,
2012). The use of ex vivo slices in our study precluded
assessment of the contributions of the commissural-associational
pathway that conveys feed-forward excitation and inhibition
onto DGCs (Myers and Scharfman, 2009; Jinde et al., 2012;
Scharfman and Myers, 2013). Finally, our study did not
causally examine whether adult-born DGCs recruit feed-back
inhibition to modulate excitability of the DG and whether adult-
born DGCs of different ages differentially recruit feed-back
inhibition.

Temprana et al. (2015) succeeded in illuminating some
of these key unaddressed questions. The authors employed
retroviruses to express the light activated channelrhodopsin
in adult-born DGCs and examined the impact on activating
4 weeks old or 8 weeks old adult-born DGCs on inhibition of
DGCs in slices ex vivo. The authors found that pre-activation
of 4 weeks old or 8 weeks old adult-born DGCS caused
a reduction in spiking in the GCL, but the reduction after
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pre-activation of 4 weeks old DGCs was half the magnitude of
reduction in spiking after pre-activation of 8 weeks old adult-
born DGCs. However, chemogenetic activation of 8 weeks old
adult-born DGCs, unlike activation of 4 weeks old adult-born
DGCs, activated hilar parvalbumin (PV) interneurons in vivo.
Whether activation of 4 weeks old adult-born DGCs activate
other populations of hilar interneurons that mediate feed-back
inhibition onto the DG was not addressed. These observations
suggest that 4 weeks old adult-born DGCs may exert modest
feed-back inhibition through a potentially different mechanism,
at least ex vivo. As with our study, the use of ex vivo slices
precluded the possibility of addressing the potentially important
contribution of mossy cells to adult-born DGC dependent
recruitment of feed-back inhibition in vivo. Nevertheless, the
findings of this study unequivocally demonstrate that 8 weeks old
adult-born DGCs exert significantly greater feed-back inhibition
onto the DG than 4 weeks old adult-born DGCs ex vivo
(Temprana et al., 2015). Whether 8 weeks old adult-born
DGCs exert different levels of feed-back inhibition from that
recruited by developmentally generated DGCs remains to be
addressed. Although specific features of input connectivity and
physiology are conserved between 8 weeks old adult-born
DGCs and developmentally generated DGCs, not all afferent-
and efferent-connectivity of these populations have been
systematically characterized. Ontogenic analysis of connectivity
of hippocampal neurons has revealed differences in connectivity
with interneurons suggesting that 8 weeks old adult-born DGCs
and developmentally born DGCs may differ in input specificity
and output connectivity (Donato et al., 2015). Importantly,
it will be critical to determine whether DGCs of different
ages are differentially recruited across stimulation intensities
to exert feed-back inhibition and modulate sparseness of
activity in the DG in vivo. Guided by their data and previous
models (Aimone et al., 2011, 2014; Temprana et al., 2015)
developed a computational model proposing how increased
recruitment of feed-back inhibition coupled with increased
input specificity and decreased excitability during maturation,
enables 8 weeks old adult-born DGCs to faithfully respond to
familiar inputs.

Model Linking Adult Hippocampal
Neurogenesis, Sparseness and Feed-Back
Inhibition with Global Remapping in DG

Predictions of how adult hippocampal neurogenesis modulates
global remapping in the DG must take into account the
extent to which adult-born and developmentally generated
DGCs contribute to memory traces or engrams. Cellular and
genetic approaches to tag activated neurons during specific
epochs of encoding such as during exposure to two similar
contexts have found that the vast majority of activated neurons
reside in the outer two-thirds of the GCL (Deng et al.,
2013; Tronel et al., 2015). Deng and Gage found that DGCs
recruited for global remapping during contextual encoding were
probably older than 6 weeks of age and largely located where
developmentally generated DGCs reside (Altman and Bayer,

1990; Espósito et al., 2005; Laplagne et al., 2006; Mathews
et al., 2010; Deng et al., 2013). A second study by Tronel
et al. (2015) found that activation of developmentally generated
DGCs is more sensitive to changes in context than 14 weeks
old adult-born DGCs. Although the contribution of adult-born
DGCs at different stages of maturation to global remapping
has not been directly examined, post-training ablation and
silencing studies suggest that 4 weeks and older adult-born
DGCs are part of the contextual memory trace (Arruda-
Carvalho et al., 2011; Gu et al., 2012; Wang et al., 2014).
Preliminary studies from our laboratory suggest that expanding
the population of 5–8 weeks old adult-born DGCs maintains
long-term contextual fear memory suggesting a role for this
population in maintenance of the contextual memory trace
(McAvoy et al., 2014). Together, these observations predict that
developmentally generated and mature adult-born DGCs are
part of the ensembles recruited in global remapping to generate
engrams.

Current evidence from studies in mice support differential
engagement of feed-back inhibition (Temprana et al., 2015),
modulation of DG excitability and sparseness (Ikrar et al., 2013),
differences in input specificity (Neunuebel and Knierim, 2012,
2014) and excitability (Schmidt-Hieber et al., 2004; Espósito
et al., 2005; Laplagne et al., 2006, 2007; Ge et al., 2007,
2008; Gu et al., 2012) of 4–6 weeks old adult-born DGCs
and mature (>6 weeks old) adult-born DGCs). Based on
these observations and two recently developed models (Aimone
et al., 2011; Kropff et al., 2015; Temprana et al., 2015), we
propose that adult-born DGCs contribute to global remapping
in DG by expanding the capacity of the DG to encode new
information and ensuring high fidelity of re-activation that
is coupled with regulation of sparseness through feed-back
inhibition. Our model is predicated on two central assumptions.
First, the maturation of excitable, immature (4–6 weeks) adult-
born DGCs is accompanied by refinement of their synaptic
inputs through hebbian learning and competition for neural
representation to generate (>4–6 weeks) mature DGCs with
high input specificity. The idea is that increasing the number of
encoding units available for encoding will promote competition
for synaptic inputs and extraction of distinct features to
minimize interference (Aimone et al., 2011, 2014; Neunuebel
and Knierim, 2012; Kropff et al., 2015; Temprana et al., 2015).
Second, limited experimental evidence suggests that adult-born
DGCs once mature (>6 weeks of age) are preferentially re-
activated by inputs to which they were exposed to when
younger (4–6 weeks of age; Tashiro et al., 2007; Aimone et al.,
2011). Because the contextual discrimination task in which
mice are challenged to discriminate between a training context
(Context A) associated with a foot shock and a safe, similar
context (Context B; Figure 1A) has been shown to be sensitive
to levels of adult hippocampal neurogenesis and involves global
remapping in the DG, we will use it to convey our model for
how adult-born DGCs contribute to global remapping in the
DG. We lead the reader through how changing levels of adult
hippocampal neurogenesis affects the engram of context A and
context B to dictate the extent of global remapping in the DG
(Figure 1).
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FIGURE 1 | Model illustrating how levels of adult hippocampal
neurogenesis dictate population-based coding in DG to minimize
interference between engrams of two similar contexts. (A) Context
A is made up of features that are unique to context A (A1, A2) and
common to contexts A and B (A3, A4). Context B is made up of
features that are unique to context B (B1, B2) of which B2 is similar to
A1. (B) High levels of neurogenesis: Exposure to context A (time point
t1) activates 4–6 weeks adult born DGCs (blue circles). The activation of
these 4–6 weeks adult born DGCs recruits feed-back inhibition to
increase sparseness in the DG and promotes encoding of features of
context A in developmentally born DGCs (brown circles). The engram for
context A is made up of adult-born DGCs that have matured (time point
t2) and through Hebbian learning and competition for representation have
acquired high input specificity for features of context A (green circles with
A1 or A2 or A3 or A4) and developmentally born DGCs that encode
features of context A (brown circles with A1 or A2 or A3 or A4).
(C) High levels of neurogenesis: Exposure to context B re-activates
DGCs that have encoded features common to both contexts A and B
(Green and brown circles with ∗A3 or ∗A4). Re-activation of these DGCs
together with activation of 4–6 weeks old adult-born DGCs exerts strong
feed-back inhibition onto DG, increases sparseness and promotes
encoding of features of context B in individual DGCs. Additionally and
importantly, there is lower likelihood that DGCs that have encoded unique

features of context A (A1) that are similar to features of context B (B2)
are re-activated to encode these features. This results in an engram of
context B that has little overlap with engram of context A with the
exception of DGCs that encode features common to contexts A and B.
(D) Low levels of neurogenesis: Exposure to context A (time point t1)
activates a small number of 4–6 weeks adult born DGCs (blue circles).
The activation of this reduced number of DGCs recruits less feed-back
inhibition, decreases sparseness in the DG and promotes encoding of
features of A in many more developmentally born DGCs (brown circles).
The engram for context A is made up of adult-born DGCs that have
matured (time point t2) and have failed to acquired high input specificity
for features of context A (green circles with A1–A2 or A3–A4) and
developmentally born DGCs that encode features of context A (brown
circles). (E) Exposure to context B re-activates DGCs that have encoded
features common to both contexts A and B (Green and brown circles
with ∗A3 or ∗A4). Furthermore, because of reduced feed-back inhibition
recruited by small number of 4–6 weeks old adult-born DGCs and the
re-activated mature adult-born DGCs, sparseness in DG is decreased.
This, in turn, increases the likelihood that developmentally born DGCs
that have encoded features of context A (A1) that are similar to features
of context B (B2) are re-activated. Consequently, the engram of context
B has significantly more overlap with engram of context A relative to
mice with high levels of adult hippocampal neurogenesis.

With high levels of adult hippocampal neurogenesis, features
of a novel context (A) are encoded by 4–6 weeks old adult-
born DGCs (time point t1). Maturation of this population of
4–6 weeks old adult-born DGCs generates a population of
mature adult-born DGCs (>4–6 weeks of age) with high input
specificity for features of context A. In addition, feed-back

inhibition recruited by 4–6 weeks old adult-born DGCs ensures
sparseness of activation in the DG (Figure 1B; time point t2).
The engram of context A (time point t2, when 4–6 weeks old
adult-born DGCs mature) is made up of adult-born DGCs
older than >4–6 weeks of age with high input specificity and
developmentally born DGCs. Conversely, with low levels of adult
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hippocampal neurogenesis, context A is encoded by a smaller
pool of 4–6 weeks old adult-born DGCs which mature into
DGCs with lower input specificity for features of context A
(Figure 1D). Decreased feed-back inhibition (due to a smaller
pool of 4–6 weeks old adult-born DGCs) decreases sparseness of
the DG and this results in many more developmentally generated
DGCs active during encoding of features of context A. Thus,
the engrams of context A is made up of adult adult-born DGCs
older than >4–6 weeks of age with low input specificity and
developmentally born DGCs (Figure 1D, t2).

Upon exposure to a similar context B that shares features
with context A (Figure 1A, A3 and A4 are features shared
by contexts A and B), developmentally generated and mature
(>4–6 weeks of age) adult-born DGCs are re-activated by features
shared by contexts A and B. In addition, developmentally
generated DGCs that encoded features shared by contexts A and
B are also re-activated. With high levels of adult hippocampal
neurogenesis there is greater feed-back inhibition recruited by
re-activated mature (>4–6 weeks of age) adult-born DGCs
and the immature (4–6 weeks old) DGCs that encode novel
features of context B than with decreased adult hippocampal
neurogenesis (Figures 1C,E). Greater sparseness will promote
global remapping since the likelihood of developmentally
generated DGCs that have encoded unique features of A to be
re-activated by context B will be statistically lower. Thus, levels
of adult hippocampal neurogenesis will dictate the overlap in
engrams of contexts A and B.

The predictions of this model are readily testable and
will necessitate addressing the following questions. First, how
does enhancing or silencing populations of adult-born DGCs
at distinct stages of maturation or developmentally generated
DGCs, impact global remapping in the contextual discrimination

paradigm in vivo? Second, do adult-born DGCs at distinct stages
of maturation or developmentally generated DGCs differentially
modulate sparseness and recruit different levels of feed-back
inhibition in vivo? Third, how are mossy cells and specific
populations of interneurons recruited by DGCs to modulate
sparseness and global remapping? The complexity of addressing
this undertaking is underscored by the fact that engagement of
hilar interneurons and mossy cells may be biased by different
neuromodulatory systems that innervate these cell types and
firing patterns of dentate granule neurons (Freund and Buzsáki,
1996; Torborg et al., 2010). Thus, behavioral state or cognitive
demand will dictate the extent to which feed-back inhibition
is effectively recruited to modulate sparseness and global
remapping. Visualizing ensembles of activated DGCs by calcium
imaging in vivo, genetic tagging using immediate early genes,
cellular compartment analysis of temporal activity by fluorescent
in-situ hybridization (catFISH), or place cells recordings in vivo
with concomitant assessment of identity will unequivocally
enable direct assessment of DGC re-activation. Together, these
approaches will permit resolution of how ablating or expanding
populations of adult-born DGCs of different ages influences
global remapping in the DG.
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