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Introduction

Frontotemporal dementia (FTD) and amyotrophic lateral 
sclerosis (ALS) share many pathological, genetic, and 
molecular features [23, 25, 32]. Indeed, in both disor-
ders, GGGGCC (G4C2) repeat expansion in the noncoding 
region of C9ORF72 is the most common genetic mutation 
[10, 16, 31]. G4C2 sense and antisense transcripts form 
RNA foci in patient brains, fibroblasts, induced pluripo-
tent stem cells (iPSCs), and iPSC-derived neurons [1, 10, 
13, 15, 22, 27, 34, 42], which may contribute to disease 
pathogenesis through an RNA-mediated mechanism. For 
instance, some RNA-binding proteins are sequestered in 
these foci [29]. However, it is not known which of these 
proteins shows compromised function that may play a 
key pathogenic role. On the other hand, abnormal dipep-
tide repeat proteins (DPRs) arising from repeat-associated 
non-AUG (RAN) translation—a process discovered in spi-
nocerebellar ataxia type 8 and myotonic dystrophy type 1 
[41]—form mostly cytoplasmic inclusions in the brain and 
spinal cord of patients with C9ORF72 repeat expansion 
[3, 30, 42]. Six DPRs can be translated from both sense 
and antisense expansion transcripts and adjacent intronic 
sequences of C9ORF72 [9]. However, the specific roles and 
mechanisms of each DPR in disease pathogenesis in vivo 
are largely unknown.

To address these important questions, we generated 
DNA constructs containing 80 copies of GGXGCX, GGX-
CGX, or CCXCGX (with X being randomly any one of 
the four nucleotides) and corresponding transgenic flies 
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that express individual DPRs, such as (GA)80, (GR)80, and 
(PR)80. When expressed in a cell-type-specific manner, 
(GR)80 and (PR)80, but not (GA)80, were toxic in neuronal 
and non-neuronal cells in Drosophila. In contrast to a pre-
vious report [21], (GR)80 was mostly localized throughout 
the cytosol and did not accumulate in the nucleolus in neu-
rons and wing disc cells. (GR)80 suppressed Notch sign-
aling, resulting in cell loss in the wing, a phenotype that 
was largely suppressed by ectopic expression of Notch. 
Consistent with these findings, we found lower expression 
levels of some Notch target genes in iPSC-derived corti-
cal neurons and brain tissues of C9ORF72 patients. (GR)80 
toxicity was partially suppressed by co-expression of 
(GA)80, which recruited (GR)80 into cytoplasmic inclusions 
in Drosophila cells, HeLa cells, and iPSC-derived human 
neurons. Thus, the Notch pathway, one of many receptor 
signaling pathways, is a target of poly(GR) toxicity that in 
turn can be suppressed by poly(GA) likely through inclu-
sion formation.

Materials and methods

Generation and maintenance of transgenic fly lines

Artificial DNA sequences were designed to express 80 
repeats of GA, GR, and PR following a Flag tag at the 
N-terminus. As a control, a stop codon TAA was intro-
duced instead of the ATG codon at the beginning of the 
open reading frame of GA. The DNA sequences were 
synthesized (Genewiz) and subcloned into pUASTattB 
vector between the BglII and XhoI sites. The UAS-
(GR)80 control construct was generated by site-directed 
mutagenesis (QuikChange II Site-Directed Mutagen-
esis Kits, Agilent Technologies), in which the first two 
nucleotides of the start codon ATG were mutated to TA 
to form the stop codon TAG (the a5263t_t5264a muta-
tions primer: TCGTTAACAGATCTCCAC CTAG-
GATTACAAGGACGACGAC). Transgenic flies were 
made with transgenes UAS-(GA)80 control, UAS-(GA)80, 
UAS-(GR)80 control, UAS-(GR)80, and UAS-(PR)80 pre-
sent on the second or third chromosome. The presence 
of transgenes in the fly was confirmed by sequencing 
the genomic region amplified by RT-PCR. Primers used 
were CTGCAACTACTGAAATCTGCCA (forward) and 
TGTCACACCACAGAAGTAAGGT (reverse). CTG-
CAACTACTGAAATCTGCCA (forward) was used for 
sequencing. All flies were raised at 25 °C on a standard 
diet. GMR-Gal4, OK371-Gal4, UAS-GFP/CyO, Vg-
Gal4, and w1118; P{NRE-EGFP.S}5A flies were from the 
Bloomington Drosophila Stock Center. Notch5419 mutant 
and UAS-NotchFL7 flies were kindly provided by Dr. S. 
Artavanis-Tsakonas.

Quantifying the adult wing notching phenotype

Wings were arbitrarily classified into four groups according 
to the strength of the phenotype (absent, weak, medium, 
and strong), as judged from the number of notches and the 
size of wing area lost.

Climbing assay and quantification of dendritic 
branching

UAS-(GA)80 control, UAS-(GA)80, UAS-(GR)80, and UAS-
(PR)80 flies were crossed with OK371-Gal4, UAS-GFP/
CyO flies at 18 °C to obtain flies expressing dipeptides in 
motor neurons. For the climbing assay, individual 3-day-
old adult flies were placed into a 15-ml polypropylene 
centrifuge tube (CellTreat Scientific Products). After 
1 min, each fly was lightly taped to the bottom of the tube 
and allowed to climb for 10 s. The climbing distance was 
scored as the average of five tests for each fly. For quanti-
fication of dendritic branching, ddaE sensory neurons were 
labeled with mCD8-GFP driven by 221-Gal4. The number 
of dendritic ends was counted at the third-instar larval stage 
even though the mCD8-GFP signal was reduced by (GR)80 
and (PR)80.

Immunohistochemistry

Third-instar larval wing imaginal discs, brains or salivary 
glands were dissected in PBS and fixed in 4 % paraformal-
dehyde for 20 min at room temperature. After three washes 
in PBS, samples were permeabilized in PBS containing 
0.5 % Triton X-100 (PBT) for 30 min at room temperature 
and then blocked in 0.5 % goat serum in PBT for 1 h at 
room temperature. Samples were then incubated with the 
primary antibody overnight at 4 °C, washed three times 
with PBT, and incubated with secondary antibody for 2 h 
at room temperature. The primary antibodies were mouse 
anti-Flag (Sigma; 1:500) and mouse anti-Wingless (Wg) 
(Developmental Studies Hybridoma Bank; 1:50). The sec-
ondary antibodies were goat anti-mouse Alexa 488 and 
Alexa 594 (Invitrogen; 1:200). DNA staining was carried 
out by incubating salivary glands with Quant-iT OliGreen 
ssDNA reagent (Life Technologies; 1:1000) at room tem-
perature for 5 min. Alternatively, samples were loaded on 
slides with Vectashield containing 4′,6-diamidino-2-phe-
nylindole (DAPI, Vector laboratories).

Neuronal cultures and human brain samples

Published iPSC lines from two control subjects and three 
C9ORF72 carriers [1, 2, 34] were differentiated into corti-
cal neurons as described [2]. Neuronal cultures were aged 
for 8 weeks before RNA extraction. For (GA)80 and (GR)80 
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expression experiments, neuronal cultures from one con-
trol line were aged for 4 weeks before transfection. Mid-
dle frontal gyrus brain samples from three healthy control 
subjects and eight C9ORF72 repeat expansion carriers 
were obtained from the UCSF Memory and Aging Center. 
Another three control subjects were from the Mayo Clinic 
Jacksonville and were used in a recent study [14]. The 
mean age at death was 78 ± 8 years in six control sub-
jects and 64 ± 7 years in eight C9ORF72 repeat expansion 
carriers.

Quantitative RT‑PCR

Total RNA from patient neurons and brain tissues was 
extracted with the RNeasy kit (Qiagen) according to 
the manufacturer’s instructions. Total RNA (1000 ng) 
was reverse transcribed to cDNA with random hexam-
ers and TaqMan reverse transcription reagents (Applied 
Biosystems). Real-time quantitative PCR was performed 
with SYBR Green Select Master Mix (Applied Bio-
systems) on a StepOnePlus system (Applied Biosys-
tems); cyclophilin was used as internal control. Prim-
ers used were CGGACATTCTGGAAATGACA (HES1 
forward), CATTGATCTGGGTCATGCAG (HES1 
reverse), TATCGGAGTTTGGGATTTCG (HEY1 for-
ward), GGGTGATGTCCGAAGACG (HEY1 reverse), 
TGCCATCGCCAAGGAGTAG (cyclophilin forward), 
TGCACAGACGGTCACTCAAA (Cyclophilin reverse), 
cctggatgactcttgggaaa (NFKB1 forward), and tcagccagct-
gtttcatgtc (NFKB1 reverse). For DPR mRNA analysis, 
total RNAs were extracted and purified from third-instar 
larvae tissue with the RNeasy Mini Kit. Ct values for each 
gene were normalized to Actin42A (primers are 5′-TCT 
TACTGAGCGCGGTTACAG-3′ and 5′-ATGTCGCG 
CACAATTTCAC-3′). Relative mRNA expression was 
calculated using the delta–delta Ct method. One pair of 
primers targeting UAST-attB 3′ UTR (5′-TTCCAAC 
CTATGGAACTGATGA-3′ and 5′-GGTTTTCCTCATTA 
AAGGCATTC-3′) was selected to detect different dipep-
tide transcripts.

Transfection of neurons and HeLa cells 
and immunofluorescence

For transfection of 4-week-old iPSC-derived neurons and 
HeLa cells, we used 1.6 µg of plasmid DNA containing 
HA-(GA)80, FLAG-(GR)80, or empty vector (pcDNA 3.1, 
Life Technologies) and Lipofectamine 2000 (Life Tech-
nologies). Forty-eight hours after transfection, cells were 
fixed with 4 % paraformaldehyde and permeabilized with 
0.2 % Triton X-100, blocked with 3 % bovine serum albu-
min, and incubated overnight at 4 °C with primary antibod-
ies against HA (Roche; 1:600) or FLAG (Sigma; 1:1000). 

After three washes with PBS, the cells were incubated with 
Alexa Fluor-conjugated secondary antibodies (Invitrogen; 
1:300) for 1 h at room temperature and mounted on glass 
slides with Vectashield HardSet Mounting Medium with 
DAPI. Immunostained cells were examined by fluores-
cence microscopy.

Imaging

The images of adult eyes and wings were acquired with a 
Nikon DS-Fi1 camera and a Nikon SMZ1500 stereomi-
croscope. The image of the dorsoventral boundary was 
acquired with a Nikon D-Eclipse C1. All other images were 
acquired with a Leica TCS SP5 II laser scanning confocal 
microscope and Leica LAS AF software. To quantify Wg 
fluorescence intensity in wing imaginal discs after stain-
ing, 30 Z-stack images (step size 0.5 μM) were acquired 
for each sample. Image-J was used for Z projection, and the 
integrated intensity of the same region at the dorsoventral 
boundary of six discs was measured per genotype.

Results

Generation of transgenic Drosophila models of DPR 
toxicity

To determine which DPR is toxic in vivo and identify the 
mechanisms, we generated DNA constructs containing 80 
copies of GGXGCX, GGXCGX, or CCXCGX (with X 
being randomly any one of the four nucleotides) that can be 
transcribed under the control of UAS elements and trans-
lated into (GA)80, (GR)80, or (PR)80, respectively. All con-
structs contained the CCACC consensus Kozak sequence 
adjacent to the ATG start codon and a DNA sequence 
encoding the Flag tag at the N-terminus of DPRs (Fig. 1a; 
Tab. S1). To generate transgenic fly lines, we used the 
PhiC31 integrase-mediated site-specific integration sys-
tem [5] to ensure equal transcription of different DPR con-
structs in a cell-type specific manner when a unique Gal4 
driver is used [8].

To dissect the toxicity of DPRs, we first used GMR-
Gal4, which drives ectopic gene expression mostly in the 
eye, a widely used model for studying neurodegeneration 
[6, 24]. Expression of (PR)80 and (GR)80, but not (GA)80, 
driven by GMR-Gal4 resulted in a mostly adult lethal 
phenotype and caused a drastic deformation of eyes in all 
flies at the pupal stage; neither the GMR-Gal4 nor any of 
the UAS transgenic lines alone had any eye phenotype 
(Fig. 1b). More than 200 flies were examined for each 
genotype. To confirm that different DPRs were expressed 
in the eye tissue, we performed RT-PCR analysis using 
primers specific to the 3′UTR sequence common to all 
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DPR constructs. Indeed, all DPR mRNAs were expressed, 
although at different levels (Fig. S1), which is probably due 
to differences in mRNA stability. The stability, degradation, 
and biophysical properties of (GA)80 proteins may also dif-
fer from those of (PR)80 and (GR)80. Indeed, immunostain-
ing analysis with Flag tag-specific antibody showed all 
three DPRs were expressed when OK371-Gal4 was used 
(Fig. S2a–c), which drives target gene expression in cho-
linergic neurons including motor neurons. However, unlike 
(GR)80 (Fig. S2b) and (PR)80 (Fig. S2c), (GA)80 forms 
distinct inclusions, mostly one in each neuron (Fig. S2a). 
Thus, although the extent of toxicity between different 
DPRs cannot be compared directly, lack of (GA)80 toxicity 

is correlated with its inclusion formation, while more dif-
fuse (GR)80 and (PR)80 cause drastic phenotypes under the 
same experimental condition.

To further exclude the possibility that (GR)80 toxic-
ity might be caused by transcription of GC-rich RNAs 
in vivo, we also generated transgenic fly lines that 
expressed the same (GR)80 mRNA except that the AUG 
start codon was replaced with the UAG stop codon 
(Fig. 1a). Expression of this control construct from the 
same genomic locus under the same Gal4 driver was not 
toxic (Fig. 1b). Thus, (GR)80 and (PR)80 proteins are 
highly toxic when overexpressed in the Drosophila eye 
by the GMR-Gal4.

UAS-(GR)80

UAS-(GR)80 Control

5xUAS

ATG

TGATAAFlag (GGXCGX)80

5xUAS

TAG

TGATAAFlag (GGXCGX)80

UAS-(GA)80 5xUAS

ATG

TGATAAFlag (GGXGCX)80

UAS-(PR)80 5xUAS

ATG

TGATAAFlag (CCXCGX) 80

UAS-(GA)80 Control 5xUAS

TAA

TGATAAFlag (GGXGCX)80

GMR-Gal4/+ UAS-(GA)80/+ UAS-(GR)80/+ UAS-(PR)80/+

GMR-Gal4/UAS-(GA)80 GMR-Gal4/UAS-(GR)80GMR-Gal4/UAS-(PR)80 GMR-Gal4/UAS-(GR)80 Ctrl

b

a

Fig. 1  Toxicity of different FTD/ALS-associated dipeptides in the 
Drosophila eye. a Schematic representation of DNA constructs that 
express Flag-tagged (GA)80, (PR)80, and (GR)80 under the control of 
the UAS elements. In control lines, the AUG start codon was replaced 
by a UAG or UAA stop codon to block translation. X at the third 

codon can be randomly any one of the four nucleotides. b Repre-
sentative images of Drosophila eyes with different genotypes. Neither 
GMR-Gal4 nor any of the UAS transgenic lines showed an eye phe-
notype. Expression of (PR)80 or (GR)80 in the eye by the GMR-Gal4 
resulted in grossly deformed eyes
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(GR)80 is toxic in neuronal and non‑neuronal cells 
in Drosophila

Since GMR-Gal4 drives target gene expression at a high 
level, the drastic toxicity of (GR)80 and (PR)80 in the eye 
should be considered in the context of their overexpression. 
Therefore, we searched for Gal4 drivers that would give 
rise to a more moderate phenotype, enabling us to study the 
mechanism. Expression of the (GA)80 construct by various 
Gal4s did not result in any obvious phenotypes (Table S2). 
However, expression of (GR)80 and (PR)80 in all cells by 
tubulin-Gal4, in all neurons by elav-Gal4, or in motor neu-
rons by D42 or OK371-Gal4 at 25 °C resulted in a mostly 
lethal phenotype (Table S2). The strength of Gal4 drivers 
is dependent on temperature. Lower expression of (GR)80 
and (PR)80 by OK371-Gal4 at 18 °C caused a semi-lethal 
phenotype (Table S2), and surviving adult flies had greatly 
reduced locomotor activity (Fig. 2a). Moreover, expression 
of (GR)80 and (PR)80 in ddaE sensory neurons decreased 
dendritic branching (Fig. 2b). (GR)80-control was not 
used in these experiments because it did not produce any 
eye phenotype (Fig. 1b). Expression of (GR)80, but not 

the (GR)80 control construct, by Vg-Gal4, which drives 
gene expression in the dorsoventral boundary and some 
other cells of the wing imaginal discs [11], gave rise to 
wing margin defects in 90 % of flies of both sexes at 25 °C 
(Fig. 2c, d). Thus, (GR)80 is toxic in multiple neuronal and 
non-neuronal cell types in vivo.

(GR)80 genetically interacts with Notch

Misregulation of several signaling pathways results in dis-
tinct wing defects [4]. However, the mild notching defects 
at or near the tip of the wing caused by (GR)80 are remark-
ably similar to the defect due to partial loss of Notch activ-
ity, as in flies heterozygous for the N5419 allele [20]. There-
fore, we investigated the genetic interaction between Notch 
and (GR)80. We grouped wing notching phenotypes by 
their severity: absent, weak, medium, and strong (Fig. 3a). 
Since the Notch gene is located on the X chromosome, 
we examined only female flies in this genetic interaction 
experiment. About 90 % of female flies heterozygous for 
the N5419 allele had a weak wing margin defect (Fig. 3b). 
To facilitate the genetic interaction study, Vg-Gal4 and 
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Fig. 2  (GR)80 is toxic in neuronal and non-neuronal cells in Dros-
ophila. a Effects of (GA)80, (GR)80, and (PR)80 on locomotor activ-
ity of adult flies. (GA)80, (GR)80, and (PR)80 were expressed in motor 
neurons by OK371-Gal4 at 18 °C, and surviving 3-day-old adult flies 
(10 flies of each genotype) were tested for climbing activity. Forty 
OK371-Gal4 flies and 10 flies expressing (GA)80 mRNA but with a 
stop codon instead of the ATG start codon (see Table S1) were also 
examined. Values are mean ± SEM. **p value <0.01, ***p value 
<0.001, by Student’s t test. b Effects of (GA)80, (GR)80, and (PR)80 

expression on dendritic branching of ddaE sensory neurons. ddaE 
neurons were labeled with mCD8-GFP driven by 221-Gal4. The 
number of neuron analyzed for each genotype is listed on each col-
umn. Values are mean ± SD. **p value <0.01, by single-factor 
ANOVA. c Effects of (GA)80, (GR)80, and (PR)80 on the survival of 
wing margin cells. The expression of (GR)80, and (PR)80 resulted in 
the wing notching phenotype. d The percentage of flies with or with-
out wing notching phenotype is shown for each genotype. More than 
300 flies of both sexes were scored for each genotype
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UAS-(GR)80 were recombined onto the same second chro-
mosome. The wing notching phenotype in the resulting 
fly line (Fig. 3b) was stronger than that in flies transhet-
erozygous for Vg-Gal4 and UAS-(GR)80 (Fig. 2c). When 
this line was examined in the N5419/+ background, the 
wing notching phenotype was substantially stronger than 
would be expected from an additive effect of (GR)80 and 
N5419/+: 18 % of (GR)80 flies versus 47 % of (GR)80 flies 
in the N5419/+ background showed a strong wing margin 
phenotype (p < 0.05, n = 3), raising the possibility that the 
two genes genetically interact (Fig. 3b). These results sug-
gest that (GR)80 compromises the Notch signaling pathway. 
Indeed, (GR)80 toxicity was largely suppressed by ectopic 
expression of full-length Notch; a wing notching phenotype 
was absent in 67 % of (GR)80 flies when Notch was co-
expressed but in only 12 % of (GR)80 flies when GFP was 
co-expressed (p < 0.001, n = 3) (Fig. 3c–e). (PR)80 toxicity 
was not suppressed by Notch expression, and PR80 expres-
sion in N5419/+ background did not significantly enhance 
the PR80 wing defect (not shown), suggesting divergent 

pathogenic mechanisms of these two DPRs. To ensure that 
the suppression by Notch was not due to the dilution of 
Gal4 caused by a second copy of the UAS transgene, flies 
expressing both (GR)80 and GFP by Vg-Gal4 were used as 
controls in this experiment (Fig. 3c). These genetic analy-
ses suggest that the Notch pathway is a major target of 
(GR)80 toxicity in vivo.

(GR)80 suppresses Notch signaling

To confirm (GR)80 indeed suppresses Notch signal-
ing, we expressed a Notch activity reporter, UAS-Notch 
Response Element (NRE)-EGFP [33], in the wing disc 
cells by Vg-Gal4. Notch signaling was generally lower in 
all cells at the dorsoventral boundary that express UAS-
(GR)80 (Fig. 4b) than in control flies expressing UAS-
(GR)80 Control (Fig. 4a). The dorsoventral boundary 
remained intact, and no obvious cell loss was observed, 
as judged from caspase-3 immunostaining. To further 
confirm this finding, we examined the expression level 
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Fig. 3  Notch expression suppresses (GR)80 toxicity. a Representa-
tive images of Drosophila wings with margin defects of different 
severities. The image of a normal wing was from a UAS-(GR)80/+ 
fly; other wing images were from N5419/+; Vg-Gal4, UAS-(GR)80/+ 
flies. b Quantification of wing margin defects in female flies het-
erozygous for the N5419 allele, expressing (GR)80 driven by Vg-Gal4 
recombined to the same second chromosome and expressing (GR)80 
on the N5419/+ background by Vg-Gal4. Only female flies were 
examined, and the total number of flies for each genotype from three 

experiments is listed above each column. c Representative images of 
wing margin defects in Vg-Gal4, UAS-(GR)80/+ flies. d Representa-
tive wing images of Vg-Gal4, UAS-(GR)80/+; UAS-NFL7 flies show-
ing suppression of the wing margin defects by ectopic expression of 
full-length Notch. UAS-GFP was used as the control for UAS-NFL7. 
e Quantification of Notch suppression of wing margin defects caused 
by (GR)80. The total number of flies of both sexes examined for each 
genotype from 3 experiments is listed above each column
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of endogenous Wingless (Wg) at the dorsoventral bound-
ary of the wing disc, which is a direct target of Notch 
signaling [12]. Indeed, (GR)80 significantly suppressed 
endogenous Wg expression (Fig. 4c, d). Although we 
cannot rule out the possibility that (GR)80 affects the Wg 
level through other mechanisms, this result is consist-
ent with the finding that (GR)80 decreases endogenous 
Notch signaling.

Poly(GR) proteins have been detected mostly in the 
cytoplasmic inclusions in brain tissues of patients with 
C9ORF72 repeat expansion [3, 30, 42], thus it is possible 
that Notch signaling in patient neurons may also be com-
promised. In recent years, patient-specific iPSCs have been 

used as a powerful model for many neurodegenerative dis-
eases [18, 38, 39]. We differentiated iPSC lines from two 
control and three subjects with C9ORF72 repeat expan-
sions [1, 2, 34] into 8-week-old postmitotic neurons of cor-
tical lineage and found reduced expression of the Notch tar-
get genes HES1 (Fig. 4e) and HEY1 (Fig. 4f). HEY1, one of 
the target genes more sensitive to Notch level [35], showed 
reduced expression in brain tissues of C9ORF72 patients 
(Fig. 4f). The expression of Notch target NFKB1 was also 
lower in both iPSC-derived neurons and brain tissues of 
C9ORF72 patients (not shown). Although these results are 
correlative, Notch signaling seems to be compromised in 
patient cells as well.

Fig. 4  (GR)80 downregulates 
notch signaling in Drosophila. 
GFP expression controlled by 
the Notch-responsive element 
(NRE) at the dorsoventral 
boundary (green arrowheads) 
of a control wing disc (a) and 
a wing disc expressing (GR)80 
driven by Vg-Gal4 (b). The 
areas indicated by red rectan-
gles are enlarged and presented 
as the two right panels. Wg 
immunostaining at the dors-
oventral boundary (red arrow-
heads) of a control wing disc 
(c) and a wing disc expressing 
(GR)80 (d). Expression levels 
of the Notch targets HES1 (e) 
and HEY1 (f) in iPSC-derived 
neurons and brain tissues of 
subjects with C9ORF72 repeat 
expansion. The number of iPSC 
lines or brain samples analyzed 
is indicated in each column. 
Values are mean ± SEM. *p 
value <0.05, **p value <0.01 by 
Student’s t test
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(GA)80 partially suppresses (GR)80 toxicity 
through inclusion formation

To further examine the effects of (GR)80 on Notch signal-
ing, we examined the subcellular localization of (GR)80 
expressed in a subset of wing disc cells by Vg-Gal4 (Fig. 
S2d). Immunostaining with either anti-Flag antibody or 
anti-GR antibody revealed that this DPR was localized 
in the cytoplasm (Fig. S2e and g), suggesting that (GR)80 
interferes with the Notch signaling pathway in the cyto-
plasm. In both wing disc cells (Fig. S2f) and salivary 
gland cells (Fig. S3d), (PR)80 also seemed to be mostly 
cytoplasmic.

Since both poly(GA) and poly(GR) proteins are con-
comitantly expressed in patient cells [3, 30, 42], we first 
co-expressed (GA)80 and (GR)80 in Drosophila salivary 

gland cells, which are large and facilitate imaging analy-
sis. (GA)80 by itself formed mostly cytoplasmic inclu-
sions (Fig. 5a), while (GR)80 was localized throughout the 
cytoplasm in salivary gland cells (Fig. 5b), as in wing disc 
cells (Fig. S2e). This subcellular distribution of (GR)80 in 
salivary gland cells was confirmed with the anti-GR anti-
body (Fig. S3e). We also noticed one or two small (GR)80-
positive dots on chromatin in each salivary gland cell 
(Fig. 5b, Fig. S3e), as well as in Drosophila motor neu-
rons (Fig. S3f). Their nature and significance remain to be 
determined. Shorter GR forms have been reported to accu-
mulate in nucleoli of cultured cells [21], but we found no 
significant presence of (GR)80 in nucleoli of salivary gland 
cells, even though their nucleoli were enlarged (Fig. 5b). 
But unexpectedly, in the presence of HA-(GA)80 (Fig. 5c, 
left panel), a portion of Flag-(GR)80 formed cytoplasmic 
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Fig. 5  Subcellular localization of (GR)80 and (GA)80. a Flag-tagged 
(GA)80 forms inclusions mostly in the cytosol of Drosophila salivary 
gland cells. Some inclusions are highlighted by red arrowheads. b 
(GR)80 is largely present throughout the cytoplasm of salivary gland 
cells, and their nucleoli are larger than those of cells expressing the 
(GR)80-control construct. These are confocal images, and one or two 

(GR)80-positive dots (yellow arrowhead) were observed on chroma-
tin in each cell at different confocal planes. Scale bar 20 μm. c HA-
tagged (GA)80 recruits Flag-tagged (GR)80 into cytoplasmic inclu-
sions when the two are co-expressed. All inclusions contain both 
(GA)80 and (GR)80 (some are indicated by yellow arrowheads)
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inclusions as well (Fig. 5c, middle panel), in contrast to 
the diffuse cytoplasmic localization when only Flag-(GR)80 
was expressed (Fig. 5b). Because (GA)80 alone forms cyto-
plasmic inclusions (Fig. 5a), co-localization of Flag-(GR)80 
and HA-(GA)80 suggested that (GA)80 recruits (GR)80 into 
these inclusions (Fig. 5c, right panel).

Similarly, in human HeLa cells, (GA)80 alone formed 
inclusions (Fig. 6a), while (GR)80 alone was localized 
throughout the cytoplasm without any detectable accumula-
tion in the nucleus (Fig. 6b). (GA)80 inclusions seemed to be 
aggresomes surrounded by vimentin and were often close 
to the nucleus (Fig. S4a) and positive for p62 (Fig. S4b). 
When (GA)80 and (GR)80 were co-expressed, some (GR)80 

co-localized with (GA)80 inclusions in all HeLa cells we 
examined (Fig. 6c). Moreover, in iPSC-derived human neu-
rons, (GA)80 recruited (GR)80 into cytoplasmic inclusions 
as well (Fig. 6d–f). These findings raise the possibility that 
(GA)80 protein is protective and can sequester highly toxic 
poly(GR) protein into inclusions. Indeed, (GA)80 expres-
sion partially suppressed the (GR)80-induced cell-loss phe-
notype at the wing margin (Fig. 6g) and correspondingly 
increased the Notch signaling, as indicated by the elevated 
expression of Wg at the dorsoventral boundary of the wing 
disc (Fig. 6h–j). (GA)80 expression did not suppress the 
(GR)80-induced eye phenotype (not shown), presumably 
because GMR-Gal4 is a very strong driver so that the level 

Fig. 6  (GA)80 suppresses (GR)80 toxicity through inclusion forma-
tion. a HA-tagged (GA)80 forms inclusion in HeLa cells. b (GR)80 
expression alone in HeLa cells shows diffuse cytoplasmic localiza-
tion. c When (GA)80 and (GR)80 are co-expressed in HeLa cells, 
(GR)80 is recruited into (GA)80 inclusions (yellow arrowhead). d 
HA-tagged (GA)80 forms inclusion in iPSC-derived human neurons. e 
(GR)80 expression alone in iPSC-derived human neurons shows cyto-
plasmic localization. f When (GA)80 and (GR)80 are co-expressed in 
iPSC-derived human neurons, (GR)80 is recruited into (GA)80 inclu-
sions (yellow arrowhead). Scale bar 10 μm. g (GA)80 partially sup-

presses (GR)80 toxicity in wing disc cells, resulting in a less severe 
wing notching phenotype. In this experiment, Vg-Gal4 and UAS-
(GR)80 were recombined onto the same chromosome. Wg expression 
at the dorsoventral boundary of wing discs expressing UAS-(GA)80 
control (Table S1) and UAS-(GR)80 (h) or both UAS-(GA)80 and 
UAS-(GR)80 (i). UAS-(GR)80 on the third chromosome. The brackets 
indicate the dorsoventral boundary. j Wg expression levels in wing 
discs of flies with genotypes described in panels h and i. Scale bar in 
panels a–f, h, i: 20 μm. Values are mean ± SEM. *p value <0.05 by 
single-factor ANOVA
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of non-aggregated (GR)80 remained high. Thus, (GA)80 par-
tially suppresses (GR)80 toxicity in vivo by sequestering 
(GR)80 into inclusions.

Discussion

This study shows that poly(GR) proteins are toxic in various 
neuronal and non-neuronal cell types in vivo under defined 
experimental conditions, consistent with several reports pub-
lished during the preparation of our manuscript [21, 28, 36, 
37]. However, in contrast to some of these studies, in which 
smaller poly(GR) proteins provided to cultured cells migrate 
to and significantly accumulate in the nucleolus, we found 
that (GR)80 is mostly localized throughout the cytoplasm in 
vivo and does not accumulate in the nucleolus. Thus, it is 
possible that DPRs of different lengths have diverse biologi-
cal properties and pathogenic mechanisms.

We found that (GR)80 compromises Notch signaling and 
that ectopic expression of Notch partially suppresses (GR)80 
toxicity in Drosophila. The expression levels of DPRs in 
many experimental systems, including ours in this study, 
are likely much higher than in human neurons, especially 
before disease onset. Thus, detrimental effects of low levels 
of DPRs in postmitotic neurons over a long period remain 
to be examined, and some of the mechanisms may differ 
from those found in overexpression studies. Nonetheless, 
Notch signaling also seems to be downregulated in iPSC-
derived neurons and postmortem brain tissues of subjects 
with C9ORF72 repeat expansion; however, this result is cor-
relative and should be interpreted cautiously. Together, our 
results raise the possibility that some key receptor signaling 
pathways are compromised in C9ORF72 FTD/ALS patients. 
The Notch signaling pathway is subject to complex regula-
tion at multiple steps [17]. It would be interesting to deter-
mine exactly how (GR)80 and possibly other poly(GR) pro-
teins of different lengths affect the Notch pathway or other 
receptor signaling pathways. The relative contributions of 
the Notch pathway and other affected signaling pathways to 
dysfunction of patient neurons also remain to be examined.

Another pathological feature of (GR)80 was the presence 
of small (GR)80-positive dots on chromatin in postmitotic 
cells in Drosophila (Fig. 5b, Fig. S3e, f) but not in divid-
ing HeLa cells (Fig. 6b). The nature and significance of 
these (GR)80-positive structures on chromatin are unknown. 
If similar structures can be found in diseased neurons of 
C9ORF72 FTD/ALS patients, our fly model would be a use-
ful tool for further investigation. It is also worth noting that 
Drosophila cells expressing (GR)80 have enlarged nucleoli 
even in the absence of detectable accumulation of (GR)80 
in this subcellular compartment. Various cellular stresses 
induce specific changes in nucleolar morphology and com-
position in many cell types, including postmitotic neurons 

[7, 19]. Thus, nucleolar defects in C9ORF72 FTD/ALS can 
be caused by indirect mechanisms other than direct actions 
of G4C2 repeat RNAs or DPRs in the nucleolus.

Subjects with C9ORF72 repeat expansion often live for 
decades without symptoms, and DPR inclusions are mostly 
cytoplasmic and more abundant in brain regions without 
neurodegeneration [3, 30, 42]. Our finding that (GA)80 
suppresses (GR)80 toxicity by sequestering (GR)80 into 
cytoplasmic inclusions suggests that different DPRs have 
diverse roles in neuronal cell death. Although transient 
overexpression of poly(GA) alone in cultured cells can be 
detrimental [26, 40], our findings suggest that aggregation-
prone poly(GA) proteins may also have an in vivo neuro-
protective function in early stages of disease by sequester-
ing highly toxic poly(GR) into inclusions. We speculate 
that in the early stage of disease, poly(GR) is efficiently 
sequestered by poly(GA) inclusions and degraded, likely 
through the autophagy pathway. But with disease progres-
sion, overall DPR toxicity in some neurons may increase 
due to elevated levels of non-aggregated poly(GR). Thus, 
sequestration of poly(GR) proteins and other approaches 
to alleviate their detrimental effects on receptor signaling 
pathways are potential therapeutic avenues.
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