Androgen-sensitive hypertension associated with soluble guanylate cyclase alpha1 deficiency is mediated by 20-HETE

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1186/2050-6511-16-S1-A97

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:22857027

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Androgen-sensitive hypertension associated with soluble guanylate cyclase alpha1 deficiency is mediated by 20-HETE

Sara Vandenwijngaert1, Ana C Dordea1, Victor Garcia2, Robert E Tainsh1, Daniel I Nathan1, Michael J Raher1, Kaitlin Allen1, Fan Zhang3, Wolfgang S Lieb1, Sarah Mikelman1, Andrew Kirby3, Christine Stevens5, Robrecht Thoonen1, Allyson Hindle1, Patrick Y Sips4, Rajeev Malhotra1, Mark J Daly3, Peter Brouckaert5, Kenneth D Bloch1, Michal Schwartzman2, Emmanuel S Buys1*

From 7th International Conference on cGMP Generators, Effectors and Therapeutic Implications Trier, Germany. 19-21 June 2015

Background
Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension. Previously, we reported gender- and strain-specific hypertension in mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1−/−): male mice on an Sv129/J (S6) but not a C57BL6/J (B6) background are hypertensive.

Methods and results
Via linkage analysis, we identified a quantitative trait locus (QTL) associated with elevated blood pressure in male sGCα1−/− S6 mice. This QTL encompasses CYP4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Renal expression of CYP4a12awas strain-, gender-, and testosterone-dependent: CYP4a12a gene expression was higher in male WT and sGCα1−/− S6 mice than in female S6 mice, or than in male and female, WT and sGCα1−/− B6 mice, higher in testosterone-treated S6 mice than in vehicle-treated S6 mice, and higher in sham-operated S6 mice than orchiectomized S6 mice. Also, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1−/− S6 than of sGCα1−/− B6 mice. Furthermore, the 20-HETE antagonist 20-6,15-HEDGE lowered blood pressure in male sGCα1−/− S6 but not WT mice. Finally, the more significant impairment of acetylcholine-induced relaxation of renal interlobar arteries in male sGCα1−/− S6 than sGCα1−/− B6 mice, in male sGCα1−/− S6 than WT S6 mice, and in male sham-operated sGCα1−/− S6 mice than orchiectomized sGCα1−/− S6 mice was rescued by 20-6,15-HEDGE.

Conclusion
Gender- and strain-specific hypertension and vascular dysfunction in sGCα1−/− S6 mice is associated with elevated CYP4a12a expression and 20-HETE levels, and is abrogated by antagonizing 20-HETE. These results corroborate our hypothesis that testosterone-induced CYP4a12a expression and a concomitant increase in 20-HETE production contribute to the hypertension associated with impaired NO-cGMP signaling and that CYP4a12a represents a candidate blood pressure modifying gene in the context of deficient NO-sGC signaling.

Authors’ details
1Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. 2Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA. 3Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. 4Department of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. 5Department for Biomedical Molecular Biology, Ghent University, Ghent, 9000, Belgium.

Published: 2 September 2015

Cite this article as: Vandenwijngaert et al: Androgen-sensitive hypertension associated with soluble guanylate cyclase alpha1 deficiency is mediated by 20-HETE. BMC Pharmacology and Toxicology 2015 16(Suppl 1):A97.

© 2015 Vandenwijngaert et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.