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In evolutionary biology, the fitness landscape of set of mutants is the mapping of 

genotypes onto phenotypes when the phenotype is fitness or some proxy for fitness such 

as growth rate or drug resistance. When the set of mutants is not too large, it is possible 

to create every possible combination of mutants and map these to fitness. Such 

combinatorially complete datasets have great potential to inform us about molecular and 

population genetic mechanisms that drive evolutionary change. They indicate how many 

evolutionary pathways are present in the landscape in which each successive mutational 

step results in increasing fitness. They also reveal patterns of interacti0n or epistasis 

among the mutant sites and whether particular combinations of mutants interact 

synergistically or antagonistically. Here we examine what has been accomplished already 

and what it means, but more importantly on what opportunities the approach has 

opened that have yet to be explored. 

 

The experimental protocol  

Given a relatively small number of mutations in the same or different genes that 

contribute to adaptive evolution, one could construct all possible combinations of the 

mutations and assay the contribution of each combination of mutants to the adaptation. 

If there are n genetic changes in the adaptation, with two choices for each, then there are 

2n different combinations. This set of mutations is said to be combinatorially complete 

[1, 2••]. The usual experimental assay for level of adaptation is fitness or some proxy for 

fitness under specified environmental conditions. Proxies for fitness include growth rate, 

enzyme activity, and protein stability. In this context, one combination of mutants is 

regarded as superior to another if the combination increases organismal fitness. Among 

the n! irreversible pathways (or trajectories) through 2n combinations of n mutants, a 

pathway through the sequence space is considered permissible if and only if each step in 

the pathway increases organismal fitness. Typically, only a limited number of trajectories 



through sequence space is permissible [3-8••]. The mapping between genotypes and 

fitness (or a proxy for fitness) defines the adaptive topography for that set of mutants 

under the given set of conditions. The adaptive topography (or landscape) is a venerable 

metaphor in evolutionary genetics dating back to Haldane [9] and [10] (see Ref. [11] for 

review). 

 

One great advantage of combinatorial completeness is that it uncovers the effect of each 

individual mutation when present in every possible genetic background and hence 

reveals quantitatively the extent of interaction between pairs, triplets, and higher-order 

combinations [1,2••]. The approach affords an opportunity to compare actual levels of 

gene interaction with predicted levels based on systems models of metabolism and 

reveals tradeoffs between enzyme kinetic parameters, protein stability, and other 

biochemical and biophysical properties [4,5,12]. Knowing the adaptive topography also 

enables computer simulations to estimate number and relative probabilities of different 

evolutionary trajectories [4]. 

 

The approach also has limitations. Although it enables estimation of growth rate, 

metabolic flux, enzyme activity, and other phenotypic characteristics to a high level of 

accuracy because of replication under controlled, reproducible conditions, the adaptive 

topography is defined only for that set of conditions and it is not in general known how 

robust adaptive topographies may be  to changing environments. A second limitation is 

how many genotypes can be constructed and assayed with sufficient replication. For 

example, Salverda et al. [13] list 18 amino acid residues in TEM-1 -lactamase at which 

one or more replacements have a measurable effect on antibiotic resistance in clinical 

isolates. A combinatorially complete set of these amino acid replacements would require 

analysis of a prohibitively large number of alleles. The large number of residues that can 



contribute to resistance in TEM-1 -lactamase makes one wonder how an adaptive 

topography based on a small subset of such mutants might differ according to the TEM-1 

sequence background. Nevertheless, some information can be gleaned from 

combinatorially incomplete data [13,14]. 

 

Combinatorially complete datasets 

Experiments analyzing combinatorially complete sets of alleles have been summarized 

by Weinreich et al. [2••] about as well as they can be summarized, and there is no need to 

repeat their summary here. Suffice it to say that the experimental systems are diverse 

and include 3–7 genes or protein-coding sites (average 4.6). The systems include: 

 • 3 examples of metabolic enzymes or pathways — avian lysozyme [15], Escherichia 

coli isopropyl malate dehydrogenase [12,16], and Solinaceae sesquiterpine 

synthetase [17]; 

 • 2 examples of other proteins — mammalian glucocorticoid receptor [18] and HIV 

glycoprotein [19]; 

 • 3 examples of visible mutants — in Drosophila melanogaster [20], Aspergillis 

niger [21,22], and Saccharomyces cerevisiae [23];  

 • 2 examples of adaptations in experimental evolution — in Metholobacterium 

extorquens [24] and E. coli [14]; 

 • 5 examples of drug targets — dihydrofolate reductase in E. coli [25], -lactamase in 

E. coli [4,6], Plasmodium falciparum dihydrofolate reductase transgenes in E. coli 

[5], P. falciparum dihydrofolate reductase transgenes in S. cervisiae [7,26,27], and 

P. vivax dihydrofolate reductase transgenes in S. cerevisiae and E. coli [28•]. 

 

From these 15 exemplars as well as other related experiments and observations, one can 

draw some inferences on the nature of evolution in complex systems. Some of the 



inferences are supported by numerous observations and are likely of general 

applicability, others are supported less well and should be considered tentative. 

  

Inferences so far 

1. The number of mutational paths through sequence space is limited and often a 

relatively small fraction of the theoretical possibilities [4-8••]. This is one of the most 

strongly supported conclusions among the studies carried out so far. 

 

2. Pathways through sequence space are limited largely by sign epistasis, in which a path 

is inaccessible because one or more steps would entail a decrease in fitness [4,6,8••]. 

 

3. Negative pairwise epistasis between beneficial mutations entails a pattern of 

diminishing returns, in which favorable mutations brought together in combination are 

less fit than would be expected from their individual effects [24,29]. 

 

4. Negative pairwise epistasis for fitness arises because the mapping from biochemical 

and physiological traits to fitness is nearly always concave [12,14,16,24,30,31]. This 

pattern is observed experimentally and also one expected on theoretical grounds 

[29,32••,33]. If fitness is related to a metabolic flux that converges asymptotically to a 

plateau as a function of increasing enzyme activity, for example, then the fitness–activity 

curve is concave (Figure 1). The implication concavity is that, near the origin when 

fitness is low, the relation between activity and fitness is nearly linear, hence mutations 

that cause small differences in activity are approximately additive with respect to fitness, 

and there is negligible epistasis. Likewise on the plateau when fitness is high, but at this 

level even mutations with quite large effects on activity are approximately additive. On 

the shoulder between these extremes, however, the curvature implies nonadditive effects 



of activity on fitness, and mutations in this range are expected to show sign epistasis of 

the diminishing-returns type. 

 

5. Adaptive reversions are possible in which a favorable substitution incorporated early 

in a pathway becomes unfavorable and is reversed at a later stage [8,34], but see also 

Ref. [6]. Adaptive reversions allow indirect routes to attain fitness peaks that may not be 

directly accessible.  

 

6. Ev0lutionary pathways often include compensatory mutations that mitigate 

unfavorable fitness interactions introduced at earlier stages [26,35]. 

 

7. While the number of mutational paths through sequence space is constrained, there 

may nevertheless be enough alternative mutational pathways that the predictability and 

repeatability of evolutionary trajectories is limited [21]. 

 

8. Reciprocal sign epistasis, in which single mutants each have a lower fitness than 

either the double mutant or wildtype, does occur [27,36] but is not pervasive among 

amino acid replacements [4,5,12,15-19]. The hedge ―among amino acid replacements‖ is 

important because reciprocal sign epistasis is widespread in RNA molecules that form 

foldback structures because single mutants that disrupt base pairing in the stem have 

lower fitness than the double mutant that restores the ability to base pair. In one 

example of a plant RNA virus, more than half of all significant epistatic interactions were 

cases of reciprocal sign epistasis [37]. 

 

9. Because reciprocal sign epistasis is less prevalent among amino acid replacements 

than might be expected, fitness landscape can be rugged but are nearly always smoother 



than expected were fitness effects of single mutants and their combinations uncorrelated 

[11,21-23,25]. The fitness effects of alleles that share mutations are correlated for reasons 

similar to those that explain why offspring resemble their parents. 

 

10. The use of alternating antibiotics that have the same target can restore susceptibility 

to antibiotics after resistance has evolved. The antibiotics may be structurally similar as 

in the case of TEM -lactamase [8••] or structurally dissimilar as in alternate drugs 

targeting the chloroquine resistance transporter in P. falciparum as well alternate drugs 

targeting dihydroorotate dehydrogenase in P. falciparum [38••]. These results are based 

on laboratory experiments, however clinical data on antibiotic resistance is so far 

consistent with evolutionary trajectories predicted from in vitro results [5,7,27]. 

 

11. Genetic recombination does little to speed adaptation [21-23]. This effect occurs 

owing to the recombinational breakdown of genotypes on fitness peaks, and it is most 

pronounced for relatively weak linkage. Theoretically, for tight linkage the situation is 

reversed [39•]. In principle, in genomes with tight physical linkage between strongly 

epistatic mutations, recombination allows the attainment of higher fitness peaks owing 

to the generation of combinations of mutations that may include individually deleterious 

mutations that enable jumping across fitness valleys [39•]. 

 

Next level challenges and opportunities 

Despite the impressive list of inferences that have already emerged from combinatorially 

complete experiments, a number of important issues remain unresolved and some have 

barely been addressed. While far from exhaustive, the following list highlights some 

issues that seem to us to follow naturally from the pioneering work already done. 



 

How important is higher-order epistasis?  For a combinatorially complete set of n 

mutant sites or alleles, there are n main effects, n(n – 1)/2 pairwise epistatic 

interactions, n(n – 1) (n – 2)/3! three-way epistatic interactions and, in general,  
 
 
  k-

way epistatic interactions. Evolutionary geneticists usually limit their considerations to 

main effects and pairwise interactions, however higher-order interactions (k ≥ 3) might 

also be important if for no other reason than because there are so many of them. 

Weinreich et al. [2••] have estimated levels of higher-order epistasis using Walsh 

coefficients [40,41], which are linear combinations of fitness values that isolate the effect 

of each combination of mutants, averaged across all genetic backgrounds, in such a way 

that each epistatic contribution is independent of all others. For all of the 

combinatorially complete datasets described above, substantial levels of higher-order 

epistasis are observed [2••].  

  

Some of the higher-order epistasis is due to the pervasiveness of diminishing-returns 

epistasis. In the fitness-activity relation in Figure 1, for example, suppose the red dot 

represents a nonmutant allele, the blue dot any of three single-mutants, the green dot 

any pairwise combination of the three single mutants, and the orange dot the three-way 

combination. In this situation, the pairwise and three-way values of epistasis based on 

Walsh coefficients have the same order of magnitude as the main effects of the alleles. 

The magnitude of the epistatic effects has to do mainly with the degree of curvature. The 

effect is smaller in the nearly linear portions of the curve when fitness is ascending or 

when it has plateaued. 

  

A more traditional way to estimate higher-order epistasis would be through least 

squares, an approach that automatically tends to maximize the main and second-order 



effects and to minimize higher-order effects. When epistasis is estimated by means of 

least squares for the alleles in Figure 1, for example, the second- and third-order epistatic 

effects are an order of magnitude smaller than the main effects. A limitation of this 

approach is that the different orders of epistasis are not independent as they are when 

using Walsh coefficients. 

  

No matter how higher-order epistasis is estimated, however, the error variance of the 

estimates is in need of careful investigation. The variance of an estimate of a k-way 

epistatic coefficient may include sums or differences of up to  
 
 
  fitness estimates, hence 

its variance can substantially exceed the average variance of any one fitness estimate.. To 

the extent that the fitness estimates may be correlated, the variance of the higher-order 

epistasis may be inflated further. 

  

There is likely no universally best way to measure epistasis, as the best measure of 

epistasis depends on why it is being measured. For example, one approach may be best 

for predicting long-term evolutionary outcomes, while another may be best for assessing 

the forces that drive short-term allele-frequency change in a heterogeneous population. 

There is even a case to be made for focusing qualitatively on fitness ranks instead of their 

quantitative values [42-44•]. Some features of fitness landscapes, such as number of 

local fitness peaks and number of paths to any given peak, lend themselves to this 

approach. A qualitative approach commends itself because fitness ranks can often be 

determined more reliably than precise magnitudes. Figure 2 shows a fitness graph with 

three ordered sites in which red represents mutant sites. The arrows are oriented with 

the head pointing to the allele associated with the higher fitness. Starting with the all-

blue allele, there are two (and only two) accessible paths to the maximum all-red allele, 

which are indicated by the red arrows. When quantitatively only diminishing returns 



epistasis occurs, then the mutants contribute additively to fitness rank and second- and 

higher-order epistasis disappears. For more complex assignments of fitness rank, 

second- and higher-order epistasis remains and can be estimated. Analysis of fitness by 

rank is therefore one way to identify epistatic interactions more complex than those of 

diminishing returns. The whole question of which is the best measure of second and 

higher-order epistasis for any specified purpose is rich in possibilities for theoretical 

analysis. 

 

Are inferences from adaptive landscapes of fitness also valid for other traits?  And how 

do adaptive landscapes of fitness related to lower-level cellular and molecular traits, 

especially the biochemistry and biophysics of proteins? Fitness is the quintessential 

higher-order trait, and perhaps landscapes of quantitative traits that are closer to the 

molecular and cellular level are smoother than those of fitness. This is the case for 

enzyme thermodynamic stability. Wylie and Shakhnovich [32••] have analyzed a model 

in which mutations of small effect contribute additively to thermodynamic instability 

whereas fitness depends on the fraction of molecules present in their folded state. The 

resulting fitness–stability curve is concave, and mutants affecting protein stability 

additively show negative epistasis for fitness.  

 

How many other quantitative traits are more nearly additive when measured on an 

appropriate scale? This is an open question, but it is of critical importance for evaluating 

risk in complex diseases affected by multiple risk factors. What is the cumulative risk in 

genomes that include multiple risk factors for hypertension? Type 2 diabetes? Bipolar 

disorder? 

 



How do adaptive landscapes of fitness change with changing environments? And for 

antibiotics and other drugs, how do adaptive landscapes compare across related 

perturbagens? Little data of this sort exist among the combinatorially complete datasets, 

and even limited data exist outside combinatorial completeness that would allow the key 

issue to be addressed. One relevant example concerns beneficial mutations in a single-

stranded DNA bacteriophage, in which negative pairwise epistasis maintained the same 

pattern across temperature but intensified as temperature increased [31]. 

 

An especially interesting class of environmental agents are small molecules that perturb 

cellular metabolism (perturbagens), such as antibiotics. To what extent do patterns of 

second- and higher-order epistasis change across a series of chemically related 

antibiotics that have the same target and act in the same way (e.g., as competitive 

inhibitors)?  Comprehensive data are available only for combinations of β-lactamase 

mutants when tested against different β-lactam antibiotics [6,8••,13] and combinations 

of malaria-parasite dihydrofolate reductase mutants against two antimalarial antifolates 

[7,26,27]. More limited data pertain to paired inhibitors in which one drug is effective 

against the wildtype allele but not against mutants while the other is effective against 

mutant alleles but not against wildtype [38••]. These few examples seem to suggest that 

the adaptive landscape can change quite drastically even for chemically closely related 

perturbagens, however this conclusion may be misleading because of experimental bias. 

In all cases studied so far, the chemically related perturbagens were chosen for clinical 

use or experimental study precisely because the vari0us forms were known to act 

differently on wildtype and mutant alleles of the drug target. What is needed to assess 

the robustness of fitness landscapes are studies of chemically related perturbagens that 

have been chosen with no foreknowledge of their effects on target alleles. Such studies 



are likely to be informative from the standpoint of molecular evolution and could be a 

valuable tool for drug discovery and deployment. 

 

To what extent do orthologous amino replacements in orthologous proteins exhibit 

similar evolutionary landscapes? Or, to put the question in another way, do 

orthologous proteins evolve resistance to antibiotics and other drugs through the same 

or similar amino acid replacements? These questions have hardly been explored [28•] 

but are of some general interest in revealing whether orthologous proteins can be 

expected to evolve in parallel pathways when subjected to similar selection pressures. 

The scarcity of experimental studies of this issue may reflect the fact that it is easy to 

reduce the questions to absurdity. On the other hand if one studies orthologs that are too 

different in sequence, then their folding pathways, intrinsically disordered regions, and 

active-site contacts may be so dissimilar that parallel evolutionary paths could hardly be 

expected. On the other hand, if one studies orthologs that are virtually identical in 

sequence, then parallel evolutionary paths are almost assured. The interesting question 

is at what level of divergence orthologs are still similar enough to be unambiguously 

aligned but different enough that orthologous mutants might have different biochemical 

or biophysical properties. The broader question is the extent to which the adaptive 

landscape is affected by differences in amino acid sequence that do not directly 

participate in substrate binding or catalytic activity, but may play an essential role in 

protein folding and the proper orientation of residues in and around the active site. The 

answer to this question would help in knowing when key resistance residues in one 

pathogenic species could be used for surveillance to detect emerging resistance in related 

pathogens, as well as in making best use of evolutionary principles in protein 

engineering [45••].  
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Figure legends: 

 

Fig. 1. Mapping of the activity of a hypothetical enzyme onto fitness. The model assumes 

that fitness is proportion to flux through a metabolic pathway when enzyme activity is 

limiting to flux according to simple Michaelis-Menten enzyme kinetics, and the curve is 

normalized to a fitness of 1 when activity equals 25. The colored dots correspond to 

fitness for wildtype (red), any of three single mutants (blue), any pair of double mutants 

(green), and thr triple mutant (orange). 

 

Fig. 2. Qualitative analysis of a fitness landscape with three mutant sites or genes 

(circles). Wildtype is symbolized by blue, mutant by red. Red arrows indicate pathways 

accessible from the nonmutant genotype (all blue) and blue arrows represent pathways 

that are inaccessible from this state. The fitness maximum is realized by the triple 

mutant, and there are two accessible pathways to this state from the double mutant. 
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 Fitness landscapes can help in understanding constraints on evolutionary change 

 Combinatorially complete reveal patterns of higher-order fitness interactions 

 Actual fitness landscapes are much smoother than random fitness landscapes 

 Reciprocal sign epistasis can occur but is not pervasive 

 Fitness landscapes open great opportunities for further research 

 

*Highlights (for review)


