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Abstrat

We onsider the problem of �nding the losest vetors to a given vetor in a large set of

vetors, and propose a randomized solution. The method has appliations in Automati Target

Reognition (ATR), Web Information Retrieval, and Data Mining.

1 Introdution

We onsider the following problem. We are given a ditionary D of n vetors in no partiular

order, a speial vetor v

0

, and a distane funtion f from the vetor spae to the nonnegative

reals whih takes the value zero i� x = y. We wish to �nd, for a given k, the k losest vetors

in the ditionary to v

0

, that is, the set of k vetors v 2 D whih minimize f(v

0

; v).

Our approah is to take a random sample of m vetors from the ditionary, �nd the d-th

losest vetor v

d

from those m, and then selet all vetors v from the ditionary s.t. f(v

0

; v) �

f(v

0

; v

d

):

The advantage of this method is that we only have to make one pass through the ditionary,

examining f(v; v

0

)8v 2 D. We then have a muh smaller set of vetors to work with, and

we have made only one distane omparison for most vetors in the ditionary. Furthermore,

by preomputing a single random sample for all queries, we an save even more time in doing

repeated queries, sine linear memory aess is faster than sampling. Total searh time should

be n + O(k +

n

k

); where n is the amount of time to stream all vetors through one; this is

n+ O(

p

n) when k is O(

p

n).

We now assume that all distanes are unique; the sampling part of the problem then redues

to sampling m numbers randomly from f1; 2; : : : ; ng and determining the d-th smallest.

Lemma 1. The probability that the d-th losest vetor in a set of m randomly hosen vetors

is further than the k-th smallest vetor out of the n vetors is

S(n;m; d; k) =

d�1

X

i=0

(

m

i

)

�

k

n

�

i

�

1�

k

n

�

m�i

:

Proof. The d-th losest vetor of m is further than the k-th smallest element of n i� we have

at most d � 1 elements of m hosen from the smallest k elements of n. Eah term of the sum

represents the probability that of the m elements exatly i fall into this range, where 0 � i � d.

Note that if m; k are small, given k;m; n; d we an use this sum to quikly ompute the exat

probability that if we set the uto� to be the d-th smallest element of m and take all vetors

nearer than that vetor, we get at least k vetors.

Indeed we have

Pr(at least k vetors) = S(n;m; d; k � 1),

Pr(at most �k vetors) = 1� S(n;m; d; �k);
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Sine we expet d to be very small, it is possible to use this formula to quikly alulate how

large m should be to guarantee a very high hane of getting a large enough sample size and

also a low hane of getting too large a sample size.

This should allow us to determine very quikly { in O(d) time { whether a given m is large

enough for a given n and k. Combined with binary searh for m, this gives us an algorithm to

ompute the smallest value of m in O(d logm) time.

2 Approximating Probability of Failure

In this setion we will derive an estimate for the probability our algorithm fails (returning fewer

than k vetors or more than �k vetors). In pratie we shall know n and k, so we shall not

need to use this estimate, but in deriving it we see that probability of failure an be made lose

to 0 for large m.

Let � =

mk

n

. Then sine lim

x!1

(1 �

1

x

)

x

= e

�1

; and the ratio of onseutive terms is

(m�i)k

(i+1)(n�k)

�

�

i+1

, we have

S(n;m; d; k) � e

��

�

1 + � +

�

2

2

+ :::+

�

d�1

(d� 1)!

�

These sums are nie beause we have removed the dependeny on n, k (or �k), and m

separately and replaed them by a single variable �.

We an get an even shorter approximation by bounding the value given by the series for e

�

.

Let R

d

(x) = e

x

� (1 + x+ :::+

x

d�1

(d�1)!

):

Then we have R

d

(x) =

x

d

d!

�

1 +

x

d+1

+

x

2

(d+1)(d+2)

+ :::

�

<

x

d

d!

1

1�

x

d+1

by

geometri series. Similarly we an get a lower bound on the remainder this way.

This upper bound on the remainder allows us to get a lose lower bound on the probability

of seleting too few vetors { using this we �nd that

Pr(too few vetors) < e

��

 

�

d

d!

1

1�

�

d+1

!

:

3 Expeted Value of Sample Size

We may wish to approximate how many vetors on average are returned by our method, so that

we an try to �t them all in ahe, for example. We shall alulate the expeted sample size in

this setion.

We have that the expeted value of the sample size is given by the sum

E(n;m; d) =

n

X

k=1

k (S(n;m; k; d)� S(n;m; k � 1; d)) =

n

X

k=1

S(n;m; k; d):

For d = 1 this redues to

n

X

k=1

�

1�

k

n

�

m

= n

�m

n

X

k=1

k

m

:

In general we an alulate the di�erene between expeted values of onseutive values of

d:

E(n;m; d+ 1)�E(n;m; d) = n

�m

(

m

d

)

n

X

k=1

(n� k)

d

k

m�d

:

It is known, and an be proven by indution on m, that the sum 1

m

+2

m

+ :::+ (n� 1)

m

is

equal to
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1

m+ 1

m

X

k=0

(

m+1

k

)B

k

n

m+1�k

;

where the B

i

are the Bernoulli numbers, B

0

= 1; B

1

= �

1

2

; B

2

=

1

6

; B

3

= 0; :::, whih are

de�ned by the reurrene relation

P

m

j=0

(

m+1

j

)B

j

= 0;m > 0; B

0

= 1.

It is also known that 8k > 0 B

2k+1

= 0, and that 8k > 0

1

X

i=1

i

�2k

= �(2k) = (�1)

n�1

2

2n�1

�

2n

B

2n

(2n)!

:

Sine �(2k) is lose to 1, this gives a bound on B

2k

.

Spei�ally we have, grouping together the 2

i

-th term through the (2

i+1

� 1)-th term,

1 < �(2k) < 1+2(2

�2k

)+4(4

�2k

)+ � � � = 1+2

�2k+1

+4

�2k+1

+ � � � =

1

1� 2

�2k+1

=

2

2k�1

2

2k�1

� 1

:

Using this we get

(2k)!

2

2k�1

�

2k

< (�1)

k�1

B

2k

<

(2k)!

(2

2k�1

� 1)�

2k

;

whih implies

0 < jB

2k

j <

(m+ 1)

2k

(2

2k�1

� 1)�

2k

<

�

m+ 1

2�

�

2k

;

whih deays quikly. From this we an �nd

E(n;m; 1) =

n

m+ 1

+

1

2

+

m

12n

�

1

m+ 1

m

X

k=4

(

m

k+1

)B

k

>

n

m+ 1

+

1

2

;

E(n;m; 1) =

n

m+ 1

+

1

2

+

m

12n

�

m(m� 1)(m� 2)

720n

3

+

1

m+ 1

m

X

k=6

(

m

k+1

)B

k

<

n

m+ 1

+

1

2

+

m

12n

;

whih implies

n

m+ 1

+

1

2

< E(n;m; 1) <

n

m+ 1

+

1

2

+

m

12n

:

Now, we have (letting D(n;m; d) = E(n;m; d+ 1)�E(n;m; d))

D(n;m; d) = n

�m

(

m

d

)

n

X

k=1

(n� k)

d

k

m�d

(1)

= n

�m

(

m

d

)

d

X

i=0

(�1)

d�i

(

d

i

)n

i

m�i

X

k=0

1

m+ 1� i

(

m+1�i

k

)B

k

n

m+1�i�k

(2)

= n

�m

(

m

d

)

d

X

i=0

(�1)

d�i

(

d

i

)n

i

m�i

X

k=0

1

k

(

m�i

k

)B

k

n

m+1�i�k

(3)

= n

�m

 

n

m+1

m+ 1

+ (

m

d

)

m

X

k=0

1

k

(

m�d

k�1�d

)B

k

n

m+1�k

!

(4)

= n

�m

 

n

m+1

m+ 1

+

m

X

k=0

1

k

(

m

k�1

)(

k�1

d

)B

k

n

m+1�k

!

; (5)
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whih is

n

m+1

+O(

1

n

d

).

So we have that

E(n;m; d) =

nd

m+ 1

+

1

2

+O(

m

n

) �

nd

m+ 1

+

1

2

:

4 Variane of Sample Size

We may further wish to solve several instanes of the problem in parallel. In this ase, in order

to alulate the probability that the vetors �t in our ahe, we may need to know not only the

expeted value, but also the variane of the sample size.

We have, letting V (X) be the variane of a random variable X , and E(X) the expeted

value, that V (X) = E(X

2

)�E(X)

2

:

Therefore the variane in the number of vetors hosen, whih we shall label V (n;m; d) =

V (X), is approximately equal to E(X

2

)� (

nd

m+1

+

1

2

)

2

:

Now, we have

E(X

2

) =

n

X

k=1

k

2

(S(k)� S(k � 1)) =

n

X

k=1

(2k + 1)S(k):

As before, we an write this as

E(n;m; d) + 2nE(n;m+ 1; d) =

nd

m+ 1

+

1

2

+

2n

2

d

m+ 2

+ n:

Hene we get that

V (n;m; d) =

nd

m+ 1

+

1

2

+

2n

2

d

m+ 2

+ n�E(n;m; d)

2

+O(

m

n)

(6)

=

nd

m+ 1

+

1

2

+

2n

2

d

m+ 2

+ n�

�

n

2

d

2

(m+ 1)

2

+

nd

m+ 1

+

1

4

�

+O(m) (7)

=

1

4

+

2n

2

d

m+ 2

+ n�

n

2

d

2

(m+ 1)

2

+O(m): (8)

�

1

4

+

2n

2

d

m+ 2

+ n�

n

2

d

2

(m+ 1)

2

: (9)
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