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Abstra
t

We 
onsider the problem of �nding the 
losest ve
tors to a given ve
tor in a large set of

ve
tors, and propose a randomized solution. The method has appli
ations in Automati
 Target

Re
ognition (ATR), Web Information Retrieval, and Data Mining.

1 Introdu
tion

We 
onsider the following problem. We are given a di
tionary D of n ve
tors in no parti
ular

order, a spe
ial ve
tor v

0

, and a distan
e fun
tion f from the ve
tor spa
e to the nonnegative

reals whi
h takes the value zero i� x = y. We wish to �nd, for a given k, the k 
losest ve
tors

in the di
tionary to v

0

, that is, the set of k ve
tors v 2 D whi
h minimize f(v

0

; v).

Our approa
h is to take a random sample of m ve
tors from the di
tionary, �nd the d-th


losest ve
tor v

d

from those m, and then sele
t all ve
tors v from the di
tionary s.t. f(v

0

; v) �

f(v

0

; v

d

):

The advantage of this method is that we only have to make one pass through the di
tionary,

examining f(v; v

0

)8v 2 D. We then have a mu
h smaller set of ve
tors to work with, and

we have made only one distan
e 
omparison for most ve
tors in the di
tionary. Furthermore,

by pre
omputing a single random sample for all queries, we 
an save even more time in doing

repeated queries, sin
e linear memory a

ess is faster than sampling. Total sear
h time should

be 
n + O(k +

n

k

); where 
n is the amount of time to stream all ve
tors through on
e; this is


n+ O(

p

n) when k is O(

p

n).

We now assume that all distan
es are unique; the sampling part of the problem then redu
es

to sampling m numbers randomly from f1; 2; : : : ; ng and determining the d-th smallest.

Lemma 1. The probability that the d-th 
losest ve
tor in a set of m randomly 
hosen ve
tors

is further than the k-th smallest ve
tor out of the n ve
tors is

S(n;m; d; k) =

d�1

X

i=0

(

m

i

)

�

k

n

�

i

�

1�

k

n

�

m�i

:

Proof. The d-th 
losest ve
tor of m is further than the k-th smallest element of n i� we have

at most d � 1 elements of m 
hosen from the smallest k elements of n. Ea
h term of the sum

represents the probability that of the m elements exa
tly i fall into this range, where 0 � i � d.

Note that if m; k are small, given k;m; n; d we 
an use this sum to qui
kly 
ompute the exa
t

probability that if we set the 
uto� to be the d-th smallest element of m and take all ve
tors

nearer than that ve
tor, we get at least k ve
tors.

Indeed we have

Pr(at least k ve
tors) = S(n;m; d; k � 1),

Pr(at most �k ve
tors) = 1� S(n;m; d; �k);
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Sin
e we expe
t d to be very small, it is possible to use this formula to qui
kly 
al
ulate how

large m should be to guarantee a very high 
han
e of getting a large enough sample size and

also a low 
han
e of getting too large a sample size.

This should allow us to determine very qui
kly { in O(d) time { whether a given m is large

enough for a given n and k. Combined with binary sear
h for m, this gives us an algorithm to


ompute the smallest value of m in O(d logm) time.

2 Approximating Probability of Failure

In this se
tion we will derive an estimate for the probability our algorithm fails (returning fewer

than k ve
tors or more than �k ve
tors). In pra
ti
e we shall know n and k, so we shall not

need to use this estimate, but in deriving it we see that probability of failure 
an be made 
lose

to 0 for large m.

Let � =

mk

n

. Then sin
e lim

x!1

(1 �

1

x

)

x

= e

�1

; and the ratio of 
onse
utive terms is

(m�i)k

(i+1)(n�k)

�

�

i+1

, we have

S(n;m; d; k) � e

��

�

1 + � +

�

2

2

+ :::+

�

d�1

(d� 1)!

�

These sums are ni
e be
ause we have removed the dependen
y on n, k (or �k), and m

separately and repla
ed them by a single variable �.

We 
an get an even shorter approximation by bounding the value given by the series for e

�

.

Let R

d

(x) = e

x

� (1 + x+ :::+

x

d�1

(d�1)!

):

Then we have R

d

(x) =

x

d

d!

�

1 +

x

d+1

+

x

2

(d+1)(d+2)

+ :::

�

<

x

d

d!

1

1�

x

d+1

by

geometri
 series. Similarly we 
an get a lower bound on the remainder this way.

This upper bound on the remainder allows us to get a 
lose lower bound on the probability

of sele
ting too few ve
tors { using this we �nd that

Pr(too few ve
tors) < e

��

 

�

d

d!

1

1�

�

d+1

!

:

3 Expe
ted Value of Sample Size

We may wish to approximate how many ve
tors on average are returned by our method, so that

we 
an try to �t them all in 
a
he, for example. We shall 
al
ulate the expe
ted sample size in

this se
tion.

We have that the expe
ted value of the sample size is given by the sum

E(n;m; d) =

n

X

k=1

k (S(n;m; k; d)� S(n;m; k � 1; d)) =

n

X

k=1

S(n;m; k; d):

For d = 1 this redu
es to

n

X

k=1

�

1�

k

n

�

m

= n

�m

n

X

k=1

k

m

:

In general we 
an 
al
ulate the di�eren
e between expe
ted values of 
onse
utive values of

d:

E(n;m; d+ 1)�E(n;m; d) = n

�m

(

m

d

)

n

X

k=1

(n� k)

d

k

m�d

:

It is known, and 
an be proven by indu
tion on m, that the sum 1

m

+2

m

+ :::+ (n� 1)

m

is

equal to
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1

m+ 1

m

X

k=0

(

m+1

k

)B

k

n

m+1�k

;

where the B

i

are the Bernoulli numbers, B

0

= 1; B

1

= �

1

2

; B

2

=

1

6

; B

3

= 0; :::, whi
h are

de�ned by the re
urren
e relation

P

m

j=0

(

m+1

j

)B

j

= 0;m > 0; B

0

= 1.

It is also known that 8k > 0 B

2k+1

= 0, and that 8k > 0

1

X

i=1

i

�2k

= �(2k) = (�1)

n�1

2

2n�1

�

2n

B

2n

(2n)!

:

Sin
e �(2k) is 
lose to 1, this gives a bound on B

2k

.

Spe
i�
ally we have, grouping together the 2

i

-th term through the (2

i+1

� 1)-th term,

1 < �(2k) < 1+2(2

�2k

)+4(4

�2k

)+ � � � = 1+2

�2k+1

+4

�2k+1

+ � � � =

1

1� 2

�2k+1

=

2

2k�1

2

2k�1

� 1

:

Using this we get

(2k)!

2

2k�1

�

2k

< (�1)

k�1

B

2k

<

(2k)!

(2

2k�1

� 1)�

2k

;

whi
h implies

0 < jB

2k

j <

(m+ 1)

2k

(2

2k�1

� 1)�

2k

<

�

m+ 1

2�

�

2k

;

whi
h de
ays qui
kly. From this we 
an �nd

E(n;m; 1) =

n

m+ 1

+

1

2

+

m

12n

�

1

m+ 1

m

X

k=4

(

m

k+1

)B

k

>

n

m+ 1

+

1

2

;

E(n;m; 1) =

n

m+ 1

+

1

2

+

m

12n

�

m(m� 1)(m� 2)

720n

3

+

1

m+ 1

m

X

k=6

(

m

k+1

)B

k

<

n

m+ 1

+

1

2

+

m

12n

;

whi
h implies

n

m+ 1

+

1

2

< E(n;m; 1) <

n

m+ 1

+

1

2

+

m

12n

:

Now, we have (letting D(n;m; d) = E(n;m; d+ 1)�E(n;m; d))

D(n;m; d) = n

�m

(

m

d

)

n

X

k=1

(n� k)

d

k

m�d

(1)

= n

�m

(

m

d

)

d

X

i=0

(�1)

d�i

(

d

i

)n

i

m�i

X

k=0

1

m+ 1� i

(

m+1�i

k

)B

k

n

m+1�i�k

(2)

= n

�m

(

m

d

)

d

X

i=0

(�1)

d�i

(

d

i

)n

i

m�i

X

k=0

1

k

(

m�i

k

)B

k

n

m+1�i�k

(3)

= n

�m

 

n

m+1

m+ 1

+ (

m

d

)

m

X

k=0

1

k

(

m�d

k�1�d

)B

k

n

m+1�k

!

(4)

= n

�m

 

n

m+1

m+ 1

+

m

X

k=0

1

k

(

m

k�1

)(

k�1

d

)B

k

n

m+1�k

!

; (5)
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whi
h is

n

m+1

+O(

1

n

d

).

So we have that

E(n;m; d) =

nd

m+ 1

+

1

2

+O(

m

n

) �

nd

m+ 1

+

1

2

:

4 Varian
e of Sample Size

We may further wish to solve several instan
es of the problem in parallel. In this 
ase, in order

to 
al
ulate the probability that the ve
tors �t in our 
a
he, we may need to know not only the

expe
ted value, but also the varian
e of the sample size.

We have, letting V (X) be the varian
e of a random variable X , and E(X) the expe
ted

value, that V (X) = E(X

2

)�E(X)

2

:

Therefore the varian
e in the number of ve
tors 
hosen, whi
h we shall label V (n;m; d) =

V (X), is approximately equal to E(X

2

)� (

nd

m+1

+

1

2

)

2

:

Now, we have

E(X

2

) =

n

X

k=1

k

2

(S(k)� S(k � 1)) =

n

X

k=1

(2k + 1)S(k):

As before, we 
an write this as

E(n;m; d) + 2nE(n;m+ 1; d) =

nd

m+ 1

+

1

2

+

2n

2

d

m+ 2

+ n:

Hen
e we get that

V (n;m; d) =

nd

m+ 1

+

1

2

+

2n

2

d

m+ 2

+ n�E(n;m; d)

2

+O(

m

n)

(6)

=

nd

m+ 1

+

1

2

+

2n

2

d

m+ 2

+ n�

�

n

2

d

2

(m+ 1)

2

+

nd

m+ 1

+

1

4

�

+O(m) (7)

=

1

4

+

2n

2

d

m+ 2

+ n�

n

2

d

2

(m+ 1)

2

+O(m): (8)

�

1

4

+

2n

2

d

m+ 2

+ n�

n

2

d

2

(m+ 1)

2

: (9)
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