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Abstract

We consider the problem of finding the closest vectors to a given vector in a large set of
vectors, and propose a randomized solution. The method has applications in Automatic Target
Recognition (ATR), Web Information Retrieval, and Data Mining.

1 Introduction

We consider the following problem. We are given a dictionary D of n vectors in no particular
order, a special vector vy, and a distance function f from the vector space to the nonnegative
reals which takes the value zero iff x = y. We wish to find, for a given k, the k closest vectors
in the dictionary to v, that is, the set of k vectors v € D which minimize f(vg,v).

Our approach is to take a random sample of m vectors from the dictionary, find the d-th
closest vector vg from those m, and then select all vectors v from the dictionary s.t. f(vg,v) <
f(vo,va).

The advantage of this method is that we only have to make one pass through the dictionary,
examining f(v,v9)Yv € D. We then have a much smaller set of vectors to work with, and
we have made only one distance comparison for most vectors in the dictionary. Furthermore,
by precomputing a single random sample for all queries, we can save even more time in doing
repeated queries, since linear memory access is faster than sampling. Total search time should
be cn + O(k + %), where cn is the amount of time to stream all vectors through once; this is
cn + O(y/n) when k is O(y/n).

We now assume that all distances are unique; the sampling part of the problem then reduces
to sampling m numbers randomly from {1,2,...,n} and determining the d-th smallest.

Lemma 1. The probability that the d-th closest vector in a set of m randomly chosen vectors
is further than the k-th smallest vector out of the n vectors is
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Proof. The d-th closest vector of m is further than the k-th smallest element of n iff we have
at most d — 1 elements of m chosen from the smallest k£ elements of n. Each term of the sum
represents the probability that of the m elements exactly ¢ fall into this range, where 0 <i < d.

Note that if m, k are small, given k,m,n,d we can use this sum to quickly compute the exact
probability that if we set the cutoff to be the d-th smallest element of m and take all vectors
nearer than that vector, we get at least £ vectors.

Indeed we have

Pr(at least k vectors) = S(n,m,d, k — 1),

Pr(at most ak vectors) =1 — S(n,m,d,ak),



Since we expect d to be very small, it is possible to use this formula to quickly calculate how
large m should be to guarantee a very high chance of getting a large enough sample size and
also a low chance of getting too large a sample size.

This should allow us to determine very quickly — in O(d) time — whether a given m is large
enough for a given n and k. Combined with binary search for m, this gives us an algorithm to
compute the smallest value of m in O(dlogm) time.

2 Approximating Probability of Failure

In this section we will derive an estimate for the probability our algorithm fails (returning fewer
than k vectors or more than ak vectors). In practice we shall know n and k, so we shall not
need to use this estimate, but in deriving it we see that probability of failure can be made close
to O for large m.
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These sums are nice because we have removed the dependency on n, k (or ak), and m
separately and replaced them by a single variable 3.

We can get an even shorter approximation by bounding the value given by the series for e”.

d—1
Let Ry(z) =e* —(1+z+ ...+ h)
d 2 d

Then we have Ra(z) = & (1+ 757 + oy + ) < Srie by

geometric series. Similarly we can get a lower bound on the remainder this way.

This upper bound on the remainder allows us to get a close lower bound on the probability
of selecting too few vectors — using this we find that

(B 1
Pr(too few vectors) < e — .

3 Expected Value of Sample Size

We may wish to approximate how many vectors on average are returned by our method, so that
we can try to fit them all in cache, for example. We shall calculate the expected sample size in
this section.

We have that the expected value of the sample size is given by the sum

E(n,m,d) =Y k(S(n,m,k,d) — S(n,m, k- 1,d)) =>_ S(n,m, k,d).
k=1 k=1

For d = 1 this reduces to
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In general we can calculate the difference between expected values of consecutive values of
d:

E(n,m,d+1) — E(n,m,d) =n""() Y _ (n— k)"
k=1

It is known, and can be proven by induction on m, that the sum 1™ + 2™ + ...+ (n — 1)™ is

equal to
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where the B; are the Bernoulli numbers, By = 1,B; = —3,B; =
defined by the recurrence relation 27 (7***)B; = 0,m >0, By = 1.

It is also known that V& > 0 Bagy1 = 0, and that Yk > 0
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Since ((2k) is close to 1, this gives a bound on Bsy.

Specifically we have, grouping together the 2¢-th term through the (2¢** — 1)-th term,

Bs =0, ..., which are
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Using this we get
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which decays quickly. From this we can find
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which is A + O(L).
So we have that
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4 Variance of Sample Size

We may further wish to solve several instances of the problem in parallel. In this case, in order
to calculate the probability that the vectors fit in our cache, we may need to know not only the
expected value, but also the variance of the sample size.

We have, letting V(X)) be the variance of a random variable X, and E(X) the expected
value, that V(X) = E(X?) — E(X)?.

Therefore the variance in the number of vectors chosen, which we shall label V(n,m,d) =
V(X), is approximately equal to E(X?) — (m”—fl +1)%

Now, we have

E(X?) = zn: K(S(k) — S(k—1)) =Y (2k+1)S(k).
k=1

As before, we can write this as
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