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ABSTRACT

The problem of detecting various kinds of update conflicts in file system synchronization fol-
lowing a network partition is well-known. All systems of which we are aware use the version
vectors of Parkeet al. These requir®(R-F) storage space fdr files shared amonR replicas.

We propose a number of different methods, the most space-efficient of whic® (Rds) space
in the worst case, b@(R +F) in the expected case.

To gain experience with the various methods, we implemented a file synchronization tool
called Tra. Based on this experience, we discuss the advantages and disadvantages of each par-

ticular method.

Tra itself turns out to be useful for a variety of tasks, including home directory maintenance,
operating system installation, and managing offline work. We discuss some of these uses.

Introduction

Anyone who uses more than one computer system
is aware of the data management problem posed by
doing so: sharing files between systems requires prop-
agation of changes to the other systems by some syn-
chronization method. One solution is to avoid the
need for synchronization, keeping all files on one sys-
tem and accessing them via a network file service or
remote login sessions. This is unsatisfactory, because
it assumes continuous connectivity to the central sys-
tem. The ability to operate in the face of network par-
tition, whether intentional (as in the case of mobile
computing) or unintentional (as in the case of fail-
ures), is highly desirable. Another solution is to syn-
chronize manually, moving files by hand as necessary.
This solution too is unsatisfactory, despite its appar-
ently widespread usage: manual data synchronization
is tedious, time-consuming, and error-prone.

In response to these problems, network file sys-
tems such as AFS [4] and Coda [3] provide support
for disconnected operation, in which a local cache
provides file service and then is synchronized with the
central server when the network connection is reestab-
lished. This works well for the case of members of a
workgroup taking files with them on a laptop when
they go home or on business trips, but the overhead of

maintaining a central server makes the approach unap-
pealing for personal use. It is also sometimes awk-
ward or impossible to provide all machines with con-
nectivity to a central server. For example, consider
someone whose only connection between his desktop
machines at home and at work is a laptop carried back
and forth. While in this case the laptop could con-
ceivably be made the central server, in more compli-
cated scenarios there is no candidate at all for a central
server.

The Rumor system [2] is one attempt to address
such scenarios. In the Rumor model, files are repli-
cated among a network of systems, with no one sys-
tem being the central point of truth for any given file.
Rumor does not assume that each machine can
directly communicate with every other machine, but
rather that between any pair of machines, there is
some perhaps indirect path along which changes can
propagate. Systems such as Unison [1] and
Microsoft's Briefcase use a peer-to-peer model but
only allow a single pair of replicas. All three systems
have the added benefit of being implemented without
additional support from the operating system, making
them more portable. In particular, Rumor is available
for Linux and FreeBSD; a Windows port is rumored
to exist.



Unfortunately, the difficult part of synchronization
is the detection of independent changes to copies of
the same file on different replicas and the subsequent
resolution of these conflicts. The frequency of con-
flicts has been measured to be quite small [3], so we
take the attitude that most resolution can be left to the
user, concerning ourselves with the problem of detect-
ing conflicts. The most common detection method for
a system ofF files shared amon® replicas requires
O(R-F) space per replica. We propose a new method
that require®O(R-F) space in the worst case, but only
O(R+F) space in the expected case. Our method
also enables a novel approach to the detection of con-
flicts involving deleted files. We then examine a
number of hybrids of the two methods.

To test the various methods, we wrote a file syn-
chronization tool called Tra. We hope to employ Tra
in our day-to-day use of a handful of systems running
a handful of operating systems.

In what follows, we present two related formaliza-
tions of the conflict detection problem and prove their
equivalence. We present both formalisms because we
expect that one of the two will be significantly more
intuitive depending on the reader’s background. We
also give a summary of the most common method,
due to Parkeet al, along with its proof of correct-
ness. Then we present our method and its proof of
correctness. Finally, we describe the architecture of
Tra and reflect on the various methods’ pros and cons,
closing with a discussion of future applications of
both the theory and the software.

A Theory of Conflicts

Conflict detection reduces to answering the ques-
tion, “here are files from two replicas; is it safe to
synchronize by simply copying one onto the other?”.
We summarize the theory of conflicts used by Parker
et al. [5]; our own modifications to the theory are
noted as such. It is assumed that nothing is known
about the semantics of the file contents. In some
cases, such knowledge will enable simpler
approaches, but this theory is interested in handling
the general case.

The first problem lies in naming among the dis-
tributed replicas. Specifically, the simultaneous
renaming or creation of files in multiple replicas can
create situations in which files on different replicas
share a name but are unrelated. As a solution, Parker
proposes the use dabrigin points which serve as
unique identifiers for files and last for the entire life-
time of the system. A candidate for such an origin
point might be the name of the creating replica along
with the time of creation (assuming the granularity of

time is fine enough that no two files will have the
same creation time). Origin points are unique in the
sense that two perhaps differing files are derived from
a common earlier version if and only if they have a
common origin point. Aname conflictoccurs when
two replicas contain files with the same name but dif-
ferent origin points: these files have been indepen-
dently created, so it is not safe simply to copy one
over the other.

The second problem is that of identifying simulta-
neous updates to a file by multiple replicas. For
example, ifA and B change their copies of the file
independently, a conflict should be detected when
they try to synchronize. On the other hand, Af
changes its copyh andB synchronizeB changes its
copy, and thenA and B synchronize again, there
should be no conflict even though the file contents at
the time of the second synchronization may be identi-
cal to those in the synchronization in the last example.
Precise definition of these conflicts requires more ter-
minology.

A modification idis a unique identifier for a modi-
fication to a file at some point during its life. The
modification historyassociated with a version of a file
is the ordered list of modification ids for all modifica-
tions made to the file. It is safe to replace one version
of a file with another if the first version’s modification
history is a prefix of the second’s since the second
must necessarily be the result of further modifications
to the first.

Partition Graphs

Parkeret al. present conflicts in terms of charac-
teristic graphs callegbartition graphs;such a graph,
denoted5( f) for a filef, is a directed acyclic graph in
which each node represents a synchronized partition
at a given time. The arrows, or edges of the graph,
connect partitions sharing participants. Since nodes
represent partitions, each replica listed in a node must
be in exactly one parent and one child node. The
exceptions, of course, are that the source has no parent
and the sink no children. The represented series of
communications must be serializable, in the sense that
there exists an equivalent sequence of sequential syn-
chronizations.



Remember that the gragh( f) is for a particular file,
not the entire shared set of files. A small “m” next to
a node indicates the file was modified in that partition,
a “u” indicates an update without conflict, and an
“x" indicates that a conflict needs to be resolved as
part of the synchronization that created the partifion.
Parkeret al.s system assumes synchronized partitions
of arbitrary size which break and recombine. In this
example drawn from their paper, the file is modified
in the AB-only partition, the newAB-only version is
propagated byB to the BC-only partition, and then
modified again. MeanwhileA has taken théB-only
version and modified it independently. ThBC
change propagates t© in the BCD partition, and
whenA andBCD attempt to re-synchronize, a conflict
is detected due to the earlier independent modifica-
tions.

As the example suggests, in a partition graph, a
conflict must be reconciled at nodkeif and only if (a)
P has two distinct ancestor nodBs andP, at which
modifications were madeand (b)P; andP, have no
common descendant that is also an ancesté: ofhe
proof is simple.

1. If there exist no distinct ancestdeg andP, with
modifications, the histories of the parents would
be identical and there would be no conflict. That
is, if (a) does not hold, there is no conflict.

2. If for every pair ofP’'s ancestord®; andP, with
modifications, there is a common descendant of
theirs that is an ancestor Bf then one ofP’s par-
ents would also be a descendant of bBthand
P,, but that parent’s modification history would
contain both of the earlier modifications, so those
modifications would not cause a conflict &
That is, if (b) does not hold, there is no conflict.

3. Since P; and P, are distinct, they have

1 parkeret al. use a small “+” for both “m” and “x”; we

feel our notation is clearer, and distinguishing these cases has
advantages noted later.

2 The reader familiar with Parket al’s paper will at this mo-
ment be wondering why we have written “modifications”
rather than “modifications and/or reconciliations,” as is used
therein. To that reader, we say “Hold that thought”.

incompatible modification histories. In particular,
the history at P; contains the modification
(P4,t1) but not (P,,t,), while the history atP,
contains P»,,t,) but not (P,,t;). SinceP; and

P, have no common descendant that is also an
ancestor oP, neither ofP’s parents’ histories can
contain both P4,t;) and (P,,t,): each contains
one, and thus the parent’s histories are incompati-
ble, so there is a conflict &. That is, if (a) and
(b) hold, then there is a conflict.

Thus, there is a conflict if and only if both (a) and (b)
hold.

Partial Orders

Another way to think about conflicts is as a prob-
lem of partially ordered sets. The “is a prefix of”
relation on modification histories imposes a partial
order (and hence a lattice structure) on the set of mod-
ification histories of files in the system. We will write
Pf Q when P’'s modification historﬁ is a prefix of
Q's and will write P=Q to denote equality. For a
nodeP with two parentd?, andP,, there is a conflict
if neither P, £ P, nor P, f P;. That is, if the two
partitions are incomparable under the relation, neither
associated history can be a prefix of the other. When
P, f P,, the P, copy should be chosen, and vice
versa.

Moreover, the relation defining the partial order
can be derived from the partition graph of the preced-
ing section: whenever one node in that graph is a par-
ent of another node, it means the file propagated from
child to parent, so the parent's modification history
must be a prefix of the child’s and so it follows that
Pf Q. If a file passed from nodP to Q and was not
changed aQ, then the modification history & is the
same as the modification history @tand so we must
haveP =Q. Conversely, if a file passes fromto Q
and Q modifies it, Pf£ Q, but the converse fails to
hold.

If P has parent§; andQ,, and a conflict occurs
at P, this means that neithéd, £ Q, nor Q, £ Qq,
i.e., Q; and Q, are incomparable under the partial
order. Each history must contain a modification not
in the other. More formally, there must exist modify-
ing nodesP, andP, such thatP; £ Q; andP, f Q,.
but neitherP; £ Q, nor P, f Q;. These conditions
are exactly those laid out in the partition graph defini-
tion of conflict.

3 More precisely, the modification history of the version of the
file at nodeP, but that’s a bit long-winded.



A Digression on Conflict Resolution

The graphs we have been using readily capture a
time-ordered sequence of modifications and conflict-
free synchronizations, with the result that we can
determine whether a conflict occurs at a given later
node. If we introduce resolved conflicts into the

Parker graphs, the meaning of the graphs becomes
ambiguous. For example, consider the partition graph
labeled (0):

(ii)

Is there a conflict at each of the bottommost nodes?
The answers depend on the resolutiorB&t If the
conflict at BC is resolved simply by using the copy
from the upperAB, then there should not be a conflict
at the lowerAB, since in effect the uppeZD modifi-
cation has been ignored IBC, as in the graph labeled
(). There should, of course, still be a conflict at the
lower CD. If we choose theCD copy, the answer is
reversed, as in the graph labeled (ii). If we merge the
AB and CD copies atBC, replacing them with a new
copy, then there are conflicts in both bottommost
nodes, as in the graph labeled (iii). By conflating
“m” with “x”, Parker's graphs always assume case
(iii).

This example illustrates the subtleties that must be
taken into account when dealing with synchronization
scenarios. Part of the problem here is that the modifi-
cation history definition of the partial order breaks
down when conflicts are resolved: BC chooses to
merge theAB and CD version somehow, we would
like to arrange that the resulting version of the file has
the properties thaABf BC and CDf BC, but this
would mean thaBC's maodification history needs to
have bothAB's andCD'’s as prefixes, which is impos-
sible since neitheAB's nor CD's history is a prefix of
the other’'s. Parkeet al’s version vector method and

our communication vector method differ in how they
approach this problem.

Version Vectors

As we have presented it, the crux of the filesys-
tems synchronization problem is the detection of syn-
chronization conflicts, which we have defined in
terms of the comparison of the files’ modification his-
tories. Thus to detect conflicts, it suffices to store
along with each file its entire modification history.
Such a method grows unwieldy very quickly. Hope-
fully a more compact representation would be less
costly to store and easier to manipulate. In fact, all
the methods we shall present, including Parkeal.'s
version vector approach, begin with the problem of
storing entire modification histories and then apply
various assumptions to reduce the necessary storage.
Let us begin by considering the version vector solu-
tion.

Suppose we use as our modification ids the replica
name along with a per-file sequence number as the
modification id, so the fifth change to a particular file
by replicaA is denoted byA®. Note first that modifi-
cation histories are never reordered: if a modification
history of a file on one replica is the list
[Al,BY,A2 A% B2], another version of the same file
will never be encountered that has a modification his-
tory that begins B,A',A2]. Thus, it is permissible
to treat the list as a set. Now the partial ordering is
given by the “is a subset of” relation rather than the
“is a prefix of” relation. Next note that modification
histories are “locally backwards closed”: K2 is in a
history, the history is sure to contai! and A? as
well. Parkeret als version vectors take advantage of
these two properties to condense the history into a
vector containing a single time for each replica. For
instance, the example history above would be repre-
sented by the vectoA¢,B?).

Two version vectors are compatible if one domi-
nates the other: that is, if every entry in one vector is
greater than or equal to the corresponding entry in the
other vector. This vector domination relation exactly
encodes our partial ordering from before. Two ver-
sion vectors are incompatible, causing a conflict, if
neither dominates the other.

Notice that the change to a set-based modification
history solves the synchronization representation
problem mentioned in the previous section: to indicate
that a version at nodB is the resolution of two con-
flicting versions at node®4 andQ, we setP’s modi-
fication history to the union of the histories @f;, and
Q.. In terms of vectors, we sé&’s version vector to
the elementwise maximum of the two conflicting



version vectors. This produces the desired effect that
Q.f PandQ, £ P.

This solution is not completely general. In terms
of the three possible resolutions described in the pre-
vious section, the union of the histories corresponds to
the last solution, in which a new version is created
that merges both previous versions. There is no way,
using version vectors, to express both that we chose
one version over the other and that we resolved the
conflict. Consider the graph labeled (0):

(ii)

(This is the same example as above except that node
D no longer modifies the file.) Note that in all cases,
the modification histories of the upp&B and A and

the upperCD andD are the same: that i B=A and

CD =D. Suppose the upp&B version is chosen over
the upperCD version. If to express this we set the
modification historyBC = AB (which, thinking strictly

in terms of file versions, is clearly the case), then we=(A?B8°.C°D°) "

correctly avoid the conflict at the lowekB, but we
repeat the just-resolved conflict at the loweb (see
(i)). If, on the other hand, we choose as our history
BC=ABOCD, we correctly avoid the conflict at the
lower CD but now induce a false conflict at the lower
AB (see (ii)).

Put more succinctly, if we choose the uppgd's
history as the modification history fdBC, we will
“re-conflict” at the lower CD. If we add anything to
the upperAB's history to creatd8C's history, we will
falsely conflict at the loweAB. Modification histo-
ries alone are not sufficient to keep track both of con-
flicts and of previous resolutions.

Communication Vectors

The first step in our proposed solution is the use of
communication vectorto address the problems with
version vectors and modification histories in general.
A communication vector is like a version vector but
notes the currency of theformation flow from a
given replica rather than the currency of the file modi-
fications.

Note that in the absence of reconciliations, modifi-
cation histories are “globally backwards closed”: if
the modification history of one version of a file is
[Al,BY,A2 A% B?] and another history contair?,
that other history will also contaii!, B, A%, and
A3, As aresult, to test whether one history is a prefix
of another, it suffices to test whether the most recent
entry in the one history exists in the other. This does
not mean that we can store only the last entry of each
history, since the larger history must be able to answer
to containing any of its modification ids.

For the moment, consider our communication vec-
tors as condensing the history in the same manner as
version vectors. In addition to this vector, we store
the id of the most recent modification to our version.
To check whether a file with last modification 4
and communication vectar; is an older version of a
file with last modification idm, and communication
vector ¢c,, we need only check whethen; is con-
tained in the history represented by the communica-
tion vectorc,. Consider the example that so troubled
the version vectors:

m=A! m=D?
c=(A!,B°C°D° c=(A°,B°C° DY)
m=A? m=D?

c=(A°B°,C° DY)

(Here, we assume that althouglandB were continu-
ously synchronized in the uppAB pair, it wasA that
made the modification; similarhp made the modifi-
cation in the uppe€D pair.) Suppose again that we
want to resolve the conflict aBC by using AB's



version as it is. We can set the communication vector
to (A?,B%,C%,D?) but leave the last modification id
asAl. The addition oD? to the communication vec-
tor indicates thaBC is aware of that modification,
althoughBC has chosen not to apply the modification
to its version of the file. It is a “non-modification” id

in the history. NowBCf A sinceBC's mf A’s ¢: Al

is in the communication history described by
(A1,B?,C?% DY). So there is no conflict at the lower
AB and theA version of the file wins, as it should.
Similarly, D £ BC, so theBC version of the file wins
without conflict at the lowelCD. If we think of D’'s
modification counter as a sort of local clock, storing
D1 in all the vectors is equivalent to noting, “I know
all about this file as it existed ob at D’s time 1.”
This allows us to conclude, when we encounter at the
lower CD a version of the file last modified bip at
time 1, that it contains nothing but old news and can
be ignored. We have successfully encoded the con-
flict resolutions without introducing false conflicts.

Communication vectors are attractive for another
reason: they lend themselves to very high compres-
sion rates when used for a set of files. Suppose that
on a replica withF files, we use a per-replica modifi-
cation id counter rather than a per-file counter. That
is, if replicaA changes one file, then another, then the
first again, the corresponding modification ids would
be Al, A%, andA® where before they werd?, A,
andA?. After A synchronizes its full set of files with
B, the B element of all ofA’'s communication vector
entries can safely be set B largest modification id.
The file last modified byB will already have that id in
its vector. Changing the other vectors effectively
have a sequence of non-modification ids to the histo-
ries. This does not pose problems becaBsgses a
single counter for all modification ids, so we will
never encounter these as real modification ids. Now
the “local time” interpretation of the vector makes
even more sense: if we think of each change to a file
on B as a localB time step, updating all th8 ele-
ments ofA’'s communication vectors records that for
all the files, “I know all about this file as it existed on
B atB's timet.” This propagation is transitive: iB’s
set of files is up-to-date with respect to machdeat
time tc, then afterA synchronizes witlB, A's set of
files is also up-to-date with respectGat timet .

In a system withR replicas, each vector is of
length O(R). In a version vector method, most vec-
tors are unigue, so storing a set Bffiles requires
O(R-F) space for the vectors. In our method, most of
the time there will only be a small number of unique
vectors. (In the case where the entire tree is always
synchronized, there is only one unique vector.) We
can store a list of vectors and use indices into this list.

If there ared distinct vectors, the list requiré3(R-d)
space and the indices for a set Bffiles requires
O(Flogd) space. We also need to store the last modi-
fication id for each fileO(F) space. Thus we have a
O(R-d+F-(1+logd)) total space requirement.
Whend =1, this reduces tO(R+F).

Deletion Conflicts (Whom ya gonna call?)

If one replica deletes its version of the file, that
deletion should propagate to other replicas so that
eventually there is no record of the file remaining: it
really is deleted. This is complicated by the possibil-
ity that one replica could delete a file while another
independently modifies it. When those two replicas
synchronize, it is not correct to delete the updated file,
nor is it correct to recreate the deleted filedaletion
conflict conflict must be reported. If we consider
deletion as a final modification, then the methods
applicable to modification histories continue to
apply.4 In order to detect deletion conflicts, we need
to keep the modification history after the file is
deleted. Data left over even after the deletion of a file
is commonly called agghost The central problem in
handling deletion is “ghostbusting.” If we leave
ghosts in our system even after all replicas have
deleted the associated files, eventually we will unnec-
essarily run out of storage space. On the other hand,
if we bust ghosts too early, we may not detect some
deletion conflicts or may, instead of propagating a
deletion, imagine a creation, resulting in files coming
back to life without explanation.

Rumor, which uses version vectors, employs a dis-
tributed two-phase garbage collection for ghostbust-
ing. Using communication vectors enables a much
simpler approach to ghostbusting. When a file is
deleted, we leave its communication vector as a ghost.
If we need to determine whether a given file is a ver-
sion of the one we deleted, we can compare its cre-
ation time to the ghost communication vector: a time
older than the vector indicates that we deleted that
file, while a time newer than the vector indicates a dif-
ferent file. Similarly, comparing the last modification
id with the communication vector distinguishes
between a simple delete propagation and a deletion
conflict. Let us define that the communication vector
associated with a directory is the elementwise mini-
mum of the communication vectors of its children.
Once the communication vector of a parent directory
dominates the vector of a ghost, that ghost can be
removed: if it is needed, the parent vector can be used

4 Similarly, origin points can be eliminated by treating cre-
ation as an initial modification.



equivalently. The progress of ghostbusting depends
only on the rest of the directory being eventually syn-

chronized. If the whole tree is checked at each syn-
chronization, ghosts never exist at all: since all com-

munication vectors are the same and thus all directory
vectors dominate all their children’s vectors, and

ghosts are busted immediately.

Implementation

We have implemented the ideas discussed here in
a system called Tra. The system only synchronizes in
one direction at a time, providing a convenient way to
bootstrap new machines, do backups, or insulate one
server from changes on another. In order accommo-
date the asymmetric synchronizations, the partition
graph model changes somewhat: an edge need not
have a common replica on its endpoints anymore.
The partial order and information flow models apply
without change.

The implementation of Tra is quite simple. A cen-
tral synchronization progransync) coordinates the
synchronization between a “from” replica server and
a “to” replica server ¢r vs).

sync
srv srv
from to

The srv programs are charged with maintaining a
databaseof communication and modification vectors,
which the sync program queries and modifies
throughout the synchronization. The database also
typically contains signatures of the files, used locally
by thesr v programs to detect when a file changes.
The signatures are system-dependent: Unix and Win-
dows systems confident in the monotonicity of system
time can uset i e, while Plan 9 systems can use the
file system-provided gids. More paranoid systems
might use MD5 hashes of the file contents.

Because of this architecture, tlync program
and the twosr v programs may all run on different
systems: keeping ther v file system sweeps local is
a large win, as is being able to rgiync on either the

“from” or the “to” system. (Indeed,sync could be
run on a third system, but the utility of such an
arrangement is questionable.) In fact, the replica
names provided tsync are expected to be executa-
bles, usually shell scripts, that take care of establish-
ing a connection to the desired machine and invoking
srv. Thus the connection protocol is left unspecified,
and could bessh, local execution, or something else
entirely.

Sync walks both trees simultaneously, using the
synchronization and modification times to decide
when files are out of date and when conflicts arise, as
previously described.

Conflicts are reported by printing the names two
files for the user to compare. Once the user has
resolved the conflict, the resolution choice will be
automatically detected at the next sweep. Signatures
of the two choices are sufficient to distinguish
between choosing one, choosing the other, and merg-
ing the two.

A Review of Assumptions and Implications

The implementation and debugging of Tra pin-
pointed a number of assumptions latent in the analysis
thus far, as well as some shortcomings in the commu-
nication vector method. We present a sequence of
various assumptions that can be made, examine the
effects of each, and discuss whether each is reasonable
in practice. Understanding these tradeoffs is helpful
in understanding the hybrid method adopted for Tra’'s
current implementation.

Assumption: Local Backwards Closure of Modifi-
cation Histories. If we have a modification from
replica R at local time t for a given file, then we
also have all the modifications made to that file on
replica R before local time t.

Effects: It is precisely from this assumption that the
method of Parkeet al. falls out. The modification
history for a file can be compressed by storing only
the last modification from each replica. In effect,
Parker is storing the last modification vector time and
vector domination corresponds directly to one history
being the prefix of another (just storing the last modi-
fication would not be sufficient). However, Parker’s
vectors do not compress especially well. In particular,
each file will typically have a different modification
time, so one must store a vector for each file.

Practicality: This assumption is entirely reasonable:
since there is only one copy of file (or directory) on a
given replica, changes must ultimately be ordered by
local time.

Assumption: Total Synchronization. The entire file



tree is synchronized each time. Partial subtree
synchronizations do not happen.

Effects: Total synchronization enables the next
assumption, which helps speed up synchronizations
considerably.

Practicality: The total synchronization assumption is,
in practice, not reasonable. It is conceivable that a
user might want only to synchronize a subtree, per-
haps not wanting to deal with changes made in other
subtrees yet. Further, the total synchronization
assumption disallows the storage of anything less than
the entire replica. It becomes impossible to have, say,
a laptop with a stripped-down replica that contains
binaries but no source tree.

Assumption: Local Backwards Closure ofReplica
Histories. If we have a modification from replica
R at local time t for a given file, then we also have
all the modifications made to any file on replica R
before local time t. (Follows from total synchro-
nization and local backwards closure for files).

Effects: Under this assumption, vector modification
times provide enough information to prune the search
for modified files. Let the modification time of a
directory be the “union” of the modification times of
its children {.e., the element-wise maximum). If the
modification time of a directory on replic&; domi-
nates that for the directory on repli€, thenR; has

all of the changes fronR,. Therefore, synchroniza-
tion from R, to R, for the subtree rooted at the direc-
tory is complete. It is important to note, however, that
without the total synchronization assumption, this sce-
nario will break down. As an example, suppose that
we have already synchronizefdusr/ bob/ quux,

but have not yet synchronizebusr/ ken/ quux,
and both have modifications from tinte=42 on the
same replica. If we then do a full sync, we might
think that we do not need to worry aboutisr on the
basis of having a recent copy blisr/ bob/ quux,
when in fact we have an out of date copy of
[ usr/ ken/ quux.

Practicality: Since total synchronization is not a rea-
sonable assumption, local backwards closure of
replica histories is also not a reasonable assumption.

Assumption: Global Backwards Closure of Indi-
vidual File Histories. For any file, at any time a
total order can be imposed on the union of
modification histories held by the replica.
Further, each history in the system is backwards
closed with respect to this order. Put another
way, each history in the system has an
unambiguous last modification.

Effects: Under this assumption, we can keep just the

replica and local time of the last modification to a file,
rather than storing the entire modification vector (as
distinct from communication vectors). This informa-
tion is just as strong as the entire vector under the
assumption. That is, it suffices to detect all conflicts
and to encode past synchronization decisions. This is
the assumption that allowed us to reduce the modifi-
cation vectors to a single element in the communica-
tion vector scheme.

The assumption makes ghostbusting easier, as
described earlier. Once the synchronization time of a
directory dominates the deletion time of a file, that
file’'s ghost may safely be removed. If the deletion
time is needed later, the synchronization time on the
directory will suffice in its stead. If applied naively,
however, it does not provide support for pruning the
search for out-of-date files, as Parker’s did. We might
try to reconstruct the per-directory modification vec-
tors by taking the maximum of all the modification
times for all the directory’s descendants. Since the
ghostbusting procedure destroys modification times,
this maximum of the modification histories for a tree
cannot be calculated accurately: it will miss times for
busted ghosts. This shortcoming means that synchro-
nizations must walk the entire tree even if there are no
changes, while in Parker's method we were able to
detect this condition without walking past the root.

Practicality: This assumption does not hold for direc-
tories, and one can imagine situations where it would
not hold for ordinary files. In the case of directories,
consider the deletion of two files and B from a
directory at the same vector time on the same host. If
we wish either ordering of the deletions to be treated
in the same manner, then there is no unambiguous
“last deletion”. A similar situation can arise in the
case of plain files. Consider, for instance, a Unix mail
spool file. The entire file is analogous to a directory
and the individual messages to plain files; the same
problem arises as before.

Implementation,

For the purposes of making Tra a useful tool, we
chose to assume global backwards closure of file his-
tories but not total synchronization nor its consequent
local backwards closure of replica histories.

To address the shortcoming of the global back-
wards closure of file histories assumption, we keep
full vector modification times for each directory.
While this negates some of the asymptotic storage
benefits of the communication vector scheme, it lets
directories hold modification times when ghosts are
busted. This in turn enables the pleasant property that
we can prune the search for modified files, avoiding a



walk of the entire tree.

The Rumor system, because it keeps only modifi-
cation times, can only prune the search under the total
synchronization assumption. We believe that Rumor
does make this assumption, explaining the difficulties
the Rumor team encountered trying to add support for
partial synchronizations. We have examined the vari-
ous design documents that come with the Rumor dis-
tribution, but they are fragmentary at best, not provid-
ing a definitive account of the methods used. We
have been hesitant to examine the fairly large seven
megabyte source tree.

Applications

We have used Tra to initialize a Plan 9 notebook
from scratch. The machine is booted from a network
file server or a CD-ROM, the file system is reamed,
and then a single Tra command populates the file sys-
tem from another replica. This replaces a complex
installation program and the personalization that usu-
ally follows. At this point, the notebook provides an
identical interface and set of files as the copied
replica, and changes made on the notebook can be
propagated to the original replica (or other replicas) as
desired.

One issue in initializing a new system is marking
files that should be copied at the beginning of time
but then left alone. For example, one might want to
start with a copy of the replicalset c/ passwd file,
but then not propagate changes to it. This can be
achieved by setting the communication time of the
file to be the infinity vector. If the file does not exist
on the target, it will be copied, but once copied, the
synchronization algorithm will interpret the infinity
vector as evidence that the file does not need any
modifications other systems might have to offer.

The convenience of having a single home direc-
tory shared among multiple computers cannot be
overstated. Spring cleaning of files on one replica
propagates automatically to the others, and the set of
replicas provides mutual backup for each other.

Future Additions

We have considered allowing parts of the replica
tree to be synthesized by user-level “file servers,”
allowing structured files to be presented as directory
trees so that Tra can handle them without change. For
example, a Unix mail spool file could be presented as
a directory of messages, so that mailboxes on multiple
systems could be synchronized despite the arrival of
mail on one or both. Here the user-level file server
allows us to counter the restrictions of the global
backwards closure assumption, because the

assumption applies only to files. We sidestep the
assumption by presenting the file as a directory.

Such user-level file servers could also provide
special semantics for ordinary files. For example,
when initializing a notebook from a replica, one wants
to create empty log files on the notebook rather than
copying the replica’s logs in full. Further, when syn-
chronizing, one does not want log file modifications
to propagate. A user-level file server that always pre-
sented the appearance of zero-length logs elegantly
solves both these problems.

The Plan 9 local file system requires that after the
/[ adnf users file (a combination of the Unix
passwd andgr oup files) is rewritten, the file server
be notified with a control message before the newly
added users or groups can be mentioned in operations
such aschown or chgrp. A user-level file server
could handle writes to just that file, making sure to
notify the local file system of changes.

Conclusions

Version vectors, introduced by Parket al. in
1983, have been thee factostandard for addressing
file system synchronization problems. However, they
bring with them a number of restrictions. The most
notable are the inability to encode past conflict resolu-
tions and the need for the total synchronization
assumption in order to prune synchronizations. Ver-
sion vectors in file synchronization have been com-
pared to vector clocks, which find a wide variety of
applications in distributed systems [6].

Communication vectors allow the lifting of the
restrictions associated with version vectors. We
believe that communication vectors are a truer ana-
logue to vector clocks. At the least, we believe those
using or considering the use of version vectors should
be more aware of the various implicit assumptions
and tradeoffs regarding version vectors, communica-
tion vectors, and hybrids of the two.

On a more practical note, the file system synchro-
nization capabilities provided by Tra should not be
ignored. They make the sharing of data between mul-
tiple computer systems bearable and even pleasant.
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