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Abstract were all written in CMF. Conversion to any Fortran stan-

dard, in particular HPF, should be straight—forward given
We present the Data Parallel Fortran (DPF) benchmark the limited differences between CMF and HPF.
suite, a set of data parallel Fortran codes for evaluatingeda The functionality of the benchmarks cover collective
parallel compilers appropriate for any target parallel &e ~ communication functions, scientific software library func
tecture, with shared or distributed memory. The codes aretions, and application kernels. Communication functions
provided in basic, optimized and several library versions. gre intended to measure data motion in memory hierarchies.
The functionality of the benchmarks cover collective commu |n fact, efficient exploitation of spatial and temporal Ibca
nication functions, scientific software library functioasd ity of reference is the main objective of compilers for high
application kernels that reflect the computational struetu  performance. Some functions, such as gather and scatter,
and communication patterns in fluid dynamic simulations, require efficient run—time system support. For conventiona
fundamental physics and molecular studies in chemistry oryector architectures, gather and scatter have been imple-
biology. The DPF benchmark suite assumes the languagemented as special instructions, and array transpositisn ha
model of High Performance Fortran, and provides perfor- peen included in some languages, like Fortran-90, as an
mance evaluation metrics of busy and elapsed times andntrinsic function. Reduction and broadcast operatiors ar
FLOP rates, FLOP count, memory usage, communication other examples of operations on collection of variables tha
patterns, local memory access, and arithmetic efficiency asare incorporated in modern languages. On scalable archi-
well as operation and communication counts per iteration. tectures these functions are usually implemented as part of
An instance of the benchmark suite was fully implementedcollective communications library, which may be part of the

in CM—Fortran and tested on the CM-5. run—time system or a separate library. Several of these func
tions are incorporated into the emerging Message—Passing
1 Introduction Interface (MPI) standard [11].
Scientific software library functions, particularly in the
11 Motivation, Functionality and Scope early years of new architectures, may offer significantly

High performance is the main motivation for scalable archi- higher performance by being implemented, at least in part,
tectures, while portability of user codes is critical forkna  in lower level languages to avoid deficiencies in compiler
ing scalable architectures economically feasible foratl b technology, or in the implementation of compilers and run—
a few applications. These requirements represent a signifilime systems. However, low level library implementation
cant challenge for all software developers, whether they ar tends to be very costly, often meaning that good performance
developing compilers, run—time systems, operating system may not be available until late in the hardware production
or software libraries. The goal in developing the Data Paral cycle. Thus, the amount of low level code in software li-
lel Fortran (DPF) benchmark suite was to produce a meangoraries should be minimized not only for direct cost reasons
for evaluating such high performance software suites. In  The DPF benchmark suite also contains a set of small
particular, we target data parallel Fortran compilers;hsuc application codes containing typical “inner loop” constsi

as any of the High Performance Fortran (HPF) [5] compil- that are critical for performance, but that are typically no
ers, Fortran—90[12] compilers, the Fortran—Y or CRAFT [4] found in libraries. An example is stencil evaluations in
compiler, as well as the Connection Machine Fortran (CMF) explicit finite difference codes. The benchmarks were cho-
[15] compilers. Atthe time the benchmarks were developed, sen to complement each other, such that a good coverage
CMF was the only data parallel Fortran language with a pro- would be obtained of language constructs and idioms fre-
duction quality compiler available. Hence, the benchmarks quently used in scientific applications, and for which high



performance is critical for good performance of the entire 1.2 DPF Code Versions

application. The application benchmarks were selected soA number of the benchmarks exist in several forms, as tab-

as to represent the dominating applications on large dataulated in Table 1. Aasic CMF version is provided in most

parallel machines. Much of the resources at supercomputekases, intended to represent a “typical” user code produced

centers are consumed by codes used in fluid dynamic simufy a knowledgeable user without a lengthy optimization pro-

lations, in fundamental physics and in molecular studies in cess. In some cases aptimized CMF version is also pro-

chemistry or biology, and the DPF application codes reflect vided, representing the kind of code a highly performance

this fact. oriented, advanced programmer with good knowledge of the
Some of the objectives for the DPF benchmark suite arecompiler and the architecture would produce.

similar to that of several other collections of programse Th

NAS parallel benchmarks [1] are “paper and pencil” bench- [Benchmark Name][ basic | optimized | Tibrary | CMSSL | C/DPEAC |

marks intended for vendors and implementors using algo- ggrﬁf_’érad X
rithms and programming models appropriate to their partic- g:g:%g X
ular platforms. The NAS parallel benchmarks 2.0 [2] are an [af=—3D X
MPI-based source implementation. However, to our knowl- =20 . <
edge, this suite is the first focused entirely on data paralle ;retrmlon X . X
software environments. gather X
. . .o . . gauss—jordan X

The benchmark suite is divided into two groups, the gmo X
brary functions and theapplications oriented codesLi- ‘Zcf’sk:)'ecm z <
brary functionsare of two types:communicationwhich I - X
include four functions, antinear algebra which consist of md X
eight function suites. Thapplication codesare comprised nm_dt;:gclily %
of twenty different application benchmarks. . —— . X

Here, we provide an overview of the DPF [PESmpe - X
benchmark suite. A detailed description and in- gpmtfanspm X
structions for the use of the suite are covered [ar X X
in [7] and in the online documentation at the URL [roo <
http://ww. das. harvar d. edu/ cs/ research/ dpf/root. htm . _:{:ea;fr i
Sources, examples of DPF benchmark use and produced ou -lranspose X X

put are also available there. In all, there are 32 benchmark
in the suite, comprising about 17,000 lines of source code. Table 1. Benchmark suite code versions
The full DPF benchmark suite, including the sample data
files, occupies 2.64 MBytes.

After presenting the code versions, architectural model,
language aspects and performance evaluation in section
1.2, 1.3, 1.4 and 1.5, respectively, we discuss the library
functions for communication in Section 2, the library func-
tions for linear algebra in Section 3 and the applications
oriented codes in Section 4. Our intent is to provide an
overview of the benchmark codes for prospective users to
understand which language or compiler feature a particular
benchmark attempts to evaluate. Therefore, for each of th

er to the code version &8SMSSL. In other cases, rather
codes, we document several aspects of the employed dat : .
: . . an resorting to library calls, some segment of the code,
structures, the floating—point computation count, the data

Do . critical to the benchmark performance, is identified and im-
structures’ distribution among memory modules, the domi- . .

. L . plemented in the lower level language C/DPEAC [17]. This
nating communication patterns, the primary local memory o : )

: code version is termed/DPEAC and is assumed to give the
access patterns, as well as how all these aspects are |mple-ro rammer finer control over the underlying architecture
mented in the benchmark code. In sections 3 and 4, weP09 ying '
summarize these aspects in comprehensive tables to facil- )
itate assessment and comparison. These tables should b]e3 Architectural Model
used as a primary guide in selecting the appropriate code (oiConstructing a benchmark suite suitable for compiler eval-
group of codes) from the entire benchmark suite, accordinguation in addition to a language definition requires both
to a given set of goals and criteria. a hardware model and an execution model. Most bench-

Optimization can also be achieved via calls to highly op-
timized routines, which may be implemented in languages
other than CMF. Such routines are typically found in a run—
Time system library, a scientific software library or, in the
case of the Connection Machine systems, inthe CMF library
augmenting the intrinsic functions of the language. For op-
timizations resorting to source language library funcsion
the code version is terméibrary, whereas for those codes
calling the specialized, in our instance, Connection Maghi
Scientific Software Library (CMSSL) [16] functions, we re-



marks in the DPF suite are appropriate for any parallel ar- (3) Busy floprate (MFLOPs)number of million floating—
chitecture, whether the memory is distributed among the point operations per second (FLOP count by busy time),
processors or shared. Some of the benchmarks focus otf4) Elapsed floprate (MFLOPs)million floating—point op-
evaluating how well the local memory hierarchy in a dis- erations per second (FLOP count by elapsed time).
tributed memory multiprocessor is used. However, such In some of the application codes, namélyson fem-
benchmarks may also be very useful in architectures with 3D, md, mdcell pic-gaussiangcd-kernel gptransporandstep4
distributed caches, such as the Stanford Dash and Flash athe above measures are provided for code segments, rather
chitectures [10]. Other benchmarks also contain construct than the entire benchmark. Similarly, performance metrics
related to an execution model in which one processor is pri-for different modules of a benchmark may also be reported
marily responsible for the execution control of single ite  separately. For instance, the factorization and solutines
programs, such as a typical HPF (no extrinsic procedures)for gr andlu, as well as the the constituents of the kernel in
and CMF (no local—global features) program. Such proces-diff-1D anddiff-2D, are timed separately.
sors act very much in the same fashion as the scalar unitin  We quantify performance by the following attributes:
a typical vector processor. (1) FLOP count:In counting the FLOPs, we adopt the op-
For distributed memory architectures, the efficiency of a eration counts suggested in [6], assuming one FLOP for
parallel code is highly dependent on minimizing commu- real addition, subtraction and multiplication, four FLOPs
nication between the processors, maximizing data locality for division and square root, and eight FLOPs for logarith-
and exploiting the memory hierarchy. For shared mem- mic and trigonometric functions. The reduction operations
ory architectures, the parallel code efficiency is affedigd  and parallel prefix operations, such as the intriggidvand
how the data referencing pattern interplays with maintain- segmented scans, are counted for their sequential FLOPs,
ing cache coherence, specifically, whether cache coherencevhich is NV — 1 in this case. For computations involving
is maintained at the level of the hardware [9, 10], run—time masks, we seek the most accurate FLOP count: reporting
system [14], or compiler [13]. Other architectural feature an exact FLOP count when the outcome of a mask is deter-
affecting benchmark performance are interconnection net-ministic, and resorting to the upper bound, when the mask
work topology, nodal architecture, availability of buil—  outcome cannot be determined at compile time. Redundant
hardware for certain specialized communication patterns,operations are sometimes included in the FLOP count, as a
such as broadcast and reduction, available hardware suppotonsequence of the semantics dictated by HPF.

for program control execution, as well as parallel I/O. (2) Arithmetic efficiency (%)Only computed for linear al-
gebra functions, by dividing the busy FLOP rate by the peak
14 Language Aspects FLOP rate of all the participating processbors

The DPF benchmark suite intended language is HPF, and wd3) Memory usage (in bytes)iVe assume the standard data
developed an instance of it in CMF with the CM-5 as the YPE Sizes, with an associated symbolic notation: 4(t), 4(l
target platform with its environment of run—time systems, 4(5), 8(d), 8(c), 16(2) for integer, logical, single—pszon
available libraries and most importantly, its data—patall €@, double—precision real, single—precision complex an
Fortran compiler. In our terminology, we refer to the stan- double—precision complex, respectively. We count the
dard notions in general terms adhering to the HPF standardMemory of all the user declared data structures including

For instance, we refer to the axes of parallel arraylo el all the auxiliary arrays required by the algorithm’s imple-
andparallel. mentation. However, temporaries generated by the compiler

gre notaccounted for. Inthe case where alower dimensional
array L is aligned with a higher dimensional array, and

L effectively takes up the storagesize H }, we report the
collective memory of. and H to be2 size H }.

The performance evaluation and analysis is based on th
execution semantics of HPF. An example is the execution
of the statemenvtv = sum(v*v, mask), where the
self inner product of the vector is executed for all ele- T :
ments, rather than only the unmasked ones. Thus, when an{4) Communication patternWe specify the types of com-
alyzing performance for unmasked operations, we take intoMunication that the algorithm exhibits, and the language
consideration the entire vector and not only the unmaskedC0nstructs with which they are expressed. These communi-
elements. In short, every time an ambiguity emerges, wecation patterns include stencils, gather, scatter, retuct

resolve it by adhering to HPF conventions, since we assume?roadcast, all-to-all broadcast communication (AABC),
all HPF compilers to adhere to the standard. all-to—all personalized communication (AAPC) [8], butter

fly, scan, circular shift (cshift), send, get, and sort. tislal
be noted that more complex patterns (such as stencils and

15 Performance Evaluation AABC) can be implemented by more than one simpler com-

The DPF codes produce the following performance metrics:

(1) Busy time_ (sec.)non—idle exectution time, o Ln the case of the CM-5, the peak FLOP rate is 32 MFLOPS penskeco
(2) Elapsed time (sec.)}otal benchmark execution time, per vector unit (VU) and for the CM=5E it is 40 MFLOPs per seton




munication function (e.g. cshifts, spreads, etc.). chitecture with its careful choice of data layout, an effitie
(5) Operation count per iteration (in FLOPs}Ve give the implementations of interprocessor data motion and optimal
number of floating—pointoperations per data point, by divid management of local memory hierarchy and data paths in
ing the total FLOP count of the benchmark by the problem each processor. These are all primary issues of invesimgati
size. This metric serves as a first approximation to the com-in modern compiler design for parallel languages and on
putational grain size of the benchmark, giving an insight parallel machine architectures.

into how the program scales with increasing problem sizes.  The DPF linear algebra subset is comprised of matrix—
(6) Communication count per loop iterationWe group vector multiplication fhatrix—vecto}, two different dense ma-
the communication patterns invoked by this benchmark andtrix solvers, based on LU factorization and solutian) énd
specify exactly how many such patterns are used within theQR factorization and solutiomf), two different tridiagonal
main computational loop. This metric, together with the op- system solvers, based on parallel cyclic reductpam @nd
eration count per iteration, gives the relative ratio betwe the conjugate gradient methocbfj—grad, a dense eigen-
computation and communication in the benchmark. analysis routinejgcobi) and an FFT routinefif). Where

(7) Local memory accessThis attribute reports the local possible, the interface conventions are kept identicah wit
memory access pattern for the primary data structures in thehose of CMSSL. In many cases, different layouts are ac-
main loop of the benchmark. This local access scheme iscepted and analyzed before calling the common interface.
labeled adN/Awhere no local axes are presdfitect where

the local axis is only indexed directly by the loop variable, Code I — Arzr%sc:senlarforlocal::x_es":" forparaluew ves I
indirectwhere the local axis is indexed by another array and am—vecor T X0 T X
stridedwhere the local axis is indexed by a triplet subscript. & XCshrialy | Xisahal serial)
(4) X(,) X(:serial,:,:)
Iu X5
H H H H q;uss ordan X(: ﬁ(’)
2 Library Functionsfor Communication poeeeran LS T by _
(23 Xé:,:) X(Es‘:gr|al,:,:) o
The library communication functions measure particular —r—gmgr— =0 X(i) X(serial.;.)
communication patterns, not bundled with computation. J;_COb' — §8 XC.)
These codes allow for evaluating the implementation of | 2B T X0 X0)

communication operations in library functions or intrinsi
functions in data parallel languages. The DPF commu- Table 2. Datarepresentationand layout for dominating
nication benchmarks amgather scatter reductionand trans- computationsin linear algebrakernels

pose Thegatherandreductioncodes measure various forms
of many—to—one communication, tseattercode one—to—

many, and theransposds implemented as an AAPC. The o e I D ] e | 3D I
gather and scatter operations appear frequently in basic li (Féfg;;tlon gﬁg;}gﬁggﬂ) matrix-vector(Z,3,4)
ear algebra operations for arbitrary sparse matrices,ier h goirrnsi)nusrigg)s ar

togramming and many other applications, such as finite el- [Broadcast MalfX—Vector (1) | Maix—vector(Z,3.4)
ement codes for unstructured grids. The global reductionis| & g?uss_]orda”

an essential component of the language’s intrinsic funstio g"gstmaﬁon) jacobi u

and library routines, and the transpose, apart form being ["AAPC fiTI-D fit2—0 fit3-D

an indispensable operation in linear algebra and other nu- cohit fzfcrgB?rad jacobi

merous applications, may be used to confirm advertised bi- L“C%(B E‘C?(B L“c;"’(‘g?

section bandwidths. The communication library functions, | en9/cet gauss-jordan

except theeductionfunction, do not perform any floating—
point operations, which is why no FLOP count is produced
by theses codes. For ease of reference and clarity, we summarize and con-
trast the properties of of the linear algebra benchmarks in
three tables. Table 2 gives an overview of the data repre-
sentation and layout for the dominating computations of the
The linear algebra library subset of the DPF benchmark linear algebra kernels. Table 3 shows the benchmarks clas-
suite is provided to enable testing the performance of com-sified by the communication operations that they use, along
piler generated code against that of any highly optimized with their associated array ranks. Finally, Table 4 demon-
library, such as the CMSSL. CMSSL was created for data strates the computation (FLOP count) to communication
parallel languages and distributed memory architecturds a ratio in the main loop of each linear algebra benchmark,
attempts to make efficient use of the underlying system ar-memory usage for the implemented data types, as well as

Table 3. Communication of linear algebrakernels

3 Library Functionsfor Linear Algebra



Code FLOP Count Memory Usage Communication Cocal
(per iteration) (in bytes) (per iteration) Memory
Access
matrix—vector [[ s,d: 2amz? S:4n+nm+ m) 1 Broadcast, 1 Reduction direct
d: 8n +nm+m)e
c,z: &hmi c:8n+nm-+m)i
z: 16n+ nm + m)i
lu: factor 2/3 n?i d: 8n(n + 2r) 1 Reduction, 1 Broadcast N/A
lu: solve 2rni d: 8n(n + 2r) 1 Reduction N/A
qr: factor 5,d:(5.5m — 0.5n)n s: 2dnn 2 Reductions, 2 Broadcasts N/A
d: 36mn
c,z: 45.5m — 0.5n)n? | c: 40mn
z: 68nn
gr: solve 5,d:(8m — 1.5n)n s: 24nn + 4m(r + 1) 2 Reductions, 4 Broadcasts N/A
d: 44mn 4 8m(r + 1)
c,z: 48m — 1.5n)n? c: 48mn + 8m(r + 1)
z: 92mn + 16m(r + 1)
gauss—jordan || n + 2 + 2n? s: 27 + 16n 1 Reduction, 3 Sends, N/A
2 Gets, 2 Broadcasts
pcr s,d:(5r + 12)n7 s: 4r + d)ne (2r + 4) CSHIFTs direct
d: 8(r + 4)n:
c,z: 45r + 12)ni c: 8(r + 4)ni
z: 16(r + 4)ni
conj—grad 15n d: 40n 4 CSHIFTs, 3 Reductions N/A
jacobi 6n2 + 26n S: 4407 + 28n 2 CSHIFTs on 1-D arrays, N/A
d: 8822 + 4n 2 CSHIFTs on 2-D arrays,
2 Sends, 4 1-D to 2—-D Broadcas}s
fitt I-D 5n c: 60n 2 CSHIFTs, TAAPC N/A
z: 100»
fft: 2-D 10n° c: 7602 4 CSHIFTs, 2 AAPC N/A
z: 1152
fft: 3-D 15n3 c: 927° 6 CSHIFTSs, 3 AAPC N/A
z: 136°

Table 4. Computation to communication ratio in the main loop of linear algebralibrary codes

the local memory access pattern for the local axes of theming problem on a bipartite graphgtranspoi}, solution of

arrays in the main loop of the benchmark. The tables arenonsymmetric linear equations using the Conjugate Gradi-

not representative of inherent algorithmic propertiegien ent method rp), an explicit finite difference method in 2D

reflect the chosen implementation. (step), and the simulation of the inhomogeneous 1D wave
equation wave-1D).

4 ApplicationsOriented Codes

These benchmarks are intended to cover a wide variety “°*  [Frp oty g e pd e ]
of scientific applications typically implemented on paral- 3%801% . X(iserial,:, ;)
lel machines. The DPF application benchmarks consist of G20 X0 X(seral)
quantum many—body simulation for bosons on a 2D lat- _g||'|tlf[;—3l23D i XCi)
tice (bosor), solution of the diffusion equation in 1D via Ter:]rglon - X(-,’Senal, seral)
L. . . . . . . X(: x(:serial,;
a tridiagonal solverdjff-1D), in 2D via the direction im- Es_spectral 8 XE;,;) )
plicit algorithm (iff-2D), and in 3D via an explicit finite mdcell R X(serial,:.1,)
difference methodd(ff-3D), solution of Poisson’s equation [n-body | X(seral. [
by the Conjugate Gradient methoellip-2D), iterative so- Slgzgﬁﬁe‘?_ §§§2£:2.§ §§§2£:2.§
lution of finite element equations in three dimensiciamg e G
3D), quantum many—body computation for fermions on a x(:serial,:serial,’,’,.,:,)
. . . . . qmc X(,0) x(:serial,:serial,:,:)
2D lattice fermion), a highly generalized moveout seis- [ptransport ][ X0
mic kernel for all forms of Kirchhoff migration and Kirch- % O
hoff DMO (gmo), integration of the Kuramoto—Sivashiniski [wave=ID_][ X()

Unstructured grid |

X(-serial,:,?)
x(:serial,:serial,:)

equation by a spectral methokls{spectrd, molecular dy- | —
namics codes for Leonard—Jones force law for local forces
only (mdcel) and for long range forcesnd), a generic direct

I
m-3D H ‘

Table 5. Datarepresentation and layout for dominating

2D N-body solver for long range forcasfjody), a particle— computationsin the Application codes.
in—cell code in 2D using a straightforward implementation
(pic-simplg and a sophisticated implementatiqricfgather- Table 5 lists the data representation and layout for the

scatte}, a staggered fermion Conjugate Gradient code for dominating computations in the application codes. Table 7
Quantum Chromo-Dynamicgdd-kerne), a Green’s func-  summarizes the communication patterns in the codes. Ta-
tion quantum Monte—Carla@tng code, aquadraticprogram- ble 8 summarizes the implementation techniques for the



Code FLOP Count Memory Usage Communication Local
(per iteration) (in bytes) (per iteration) Memory
Access
boson 4(258+ 36/n:)ninLny s: 2Ghony + 64n; + 6000 38 CSHIFTs strided
420000, 4 768ninzny
diff-1D 13n, + 4PlogP — 8 d: 320, 1 3—point Stencil, N/A
substructuringw/ pcr
diff-2D 10n2 — 16n, + 16 d: 3202 1 3—point Stencil, 1 AAPC strided
diff-3D Nne —2)(ny —2)(n, — 2) d: Bnonyn. 1 7—point Stencil N/A
[ ellip-2D 38n.ny d: 96n.ny, 4 CSHIFTs, 3 Reductions N/A
fem-3D 18nyene S: 561 yene + 1400, 1 Gather, 1 Scatter w/combine | direct
+1200h
fermion local matmul d: 14477 + 6ln + 48p N/A indirect
gmo 6p Sip - (4- NS, - Nt + N/A indirect
4-NSut - (Mout + 2)+
8412 n,e.)
ks—spectral (764 401og, ne)nzne d: 1440 .n. 8 1-D FFTs on 2-D arrays N/A
mdcell (1014 3921 ,)n ,n.° d: (184+ 160n,)n nyn ., 195 CSHIFTs, indirect
7 Scatter on local axis
md (234 51n,)n, d: 1602, + 80n% 6 1-D to 2-D SPREADs, N/A
3 1-D to 2-D sends,
3 2-D to 1-D Reductions
n-body
broadcast 17n? s: 36 3 Broadcasts direct
broadcast wifill 17n2 s: 20h + 36m 3 Broadcasts direct
spread 17n? s: 361 3 SPREADs direct
spread wifill 17n? s: 20n+36m 3 SPREADs direct
cshift 1nm(n - 1) s: 36 3 CSHIFTs direct
cshift wifill 1n(n - 1) s: 2n + 36m 3 CSHIFTs direct
cshift w/sym. 135n(n—1)+ 17n mod(n, 2 s: 48 3 CSHIFTs direct
cshift w/sym fill 13.5nEn - 1; + 17n modEn, 2; s: 20h 4 44m 2.5 CSHIFTs direct
pic—simple np + 15n ny(logn. +logn ) d: 60n, + 72n.ny 1 Gather w/ add 1-D to 2-D, direct
3 FFT, 1 Gather 3-Dto 2-D
pic—gather—scatterf| 270 s: lZni + 88n, 81 Scans, 27 Scatters w/ add, indirect
27 1-D to 3-D Scatters,
27 3-D to 1-D Gather
qcd—kernel 606n.nyn.ny S: 36h.nyn.net 4 CSHIFTs direct
qmc [(424 2nonmazw )Npnanwnet d: 167,14 + 96nwne N maezw SPREADS 3—-Dto 1-D,| direct
(1420, + 25D nynelne 5 Reductions 2-D to 1-D,
(npng + 4) Scans on 2-D,
(npng + 1) Sends,
3 Reductions 2-D to scalar
gptransport 34n d: 160n 10 Scatters 1-Dto 1-D, N/A
1 Sort, 5 Scans, 1 CSHIFT,
1 EOSHIFT, 3 Reductions
p 4dn  nyn ., S: 60 nyn ., 2 Reductions, 12 CSHIFTs N/A
(2 7—point Stencils)
step4 2500 S: 500 oy 128 CSHIFTs direct
(8 16—point Stencils)
wave—1D 2%, + 10n, logn d: 64n . 12 CSHIFTS, 2 1-DFFTs N/A

Table 6. Computation to communication ratio in the main loop of the Application codes.

stencil, gather/scatter, and AABC communication patterns such asstencilsand cshifs. Otherwise, the grids may be
Table 6 lists the computation to communication ratio for the unstructuredfem-3D) with irregular connectivity, and tend
main loop in the application codes, memory usage for theto use communication primitives tailored for general com-
implemented data types, as well as the local memory accessnunication, such asend-with—combinerThere are also

pattern for the local axes of the arrays.

cations according to some inherent properties that ingyita
dictate their computational structure and communication equations with unstructured gridssand—to—queuwould

pattern [3]. For the class of grid—based codes, we cate-get data from neighbors into a local array, which may then
gorize the applications according to the dichotomies from pe combined with benefits from local optimization. In the
(1) to (6), and for non—grid—based codes from (7) to (11).

(1) Grid structure: The grids may Is¢éructured(boson, diff-
1D, diff-2D, diff-3D, ellip-2D, rp, ks-spectral, pic-sinkg pic-
gaussian, wave-1pwhich can be mapped into a Cartesian (3) SoJution method: These divide intirect solverg(diff-

algorithms that do not use an Eulerian mesh but rather em-
) _ ploy aLagrangiandescription of the spatial layout.

From the standpoint of computational structures and (2) Linearity: These are divided intinear (diff-1D, diff-
communication patterns, the applications may be divided;p ift.3p, ellip-2D, rp, step-4, wave-1pand nonlinear (ks-

into a number of classes. These classes are meant to be Nédyeciry) differential equations. For linear differential equa-
ther mutually exclusive nor exhaustive, but rather, demon- tions with structured grids, stencil primitive can be pro-

strate an attempt to assess the performance of differelt app iged to retrieve the data from several neighbors simuitane
ously and to pipeline the combining of the data. For linear

space, and tend to use communication on Cartesian grids

nonlinear case, pshift[16] primitive could be provided for
structured grids, whereassand—to—queuwith local opti-
mization would deal with unstructured grids.




Communication]] Arrays | [ Communication Patterm] Code Implementation Techniques |
Pattern | 1D ] 2-D [ 3D [ 4-6-7/D] Stencil boson CSHIFT
Stencil diff—1D diff—=2D rp, diff=3D wave—1D
—@®—o ellip-2D
A p
—@—o mdcell
| step4d chained CSHIFT
diff-1ID Array secfions
wave—1D ellp-2D g:g:gg
Gather fem=3D CMSSL partitioned gather ufility |
—@®—o—o pic—gather—scatief FORALL w/ indirect addressing
pic—simple
Gather w/ combine pic—simple FORALL w/ SUM
stepd Scatter mdcell CMF_aset1D or FORALL w/
indirect addressing
p|c—gather—scatte FORALL w/ indirect addressmg
indirect addressing
gptransport indirect addressing
Scatter w/ combine fem-3D CMSSL partitioned scatter ufility|
pic—gather—scattef CMF_sendadd or FORALL w/
Gather pic—simple pic—gather— i(r:]l(\j/lilr:ed angESSiﬂ?
scatter gmc _sendoverwrite
Gather w/ pic—simple AABC md SPREAD
combine n—body CSHIFT, SPREAD, broadcast |
Scatter gptransport pic—gather—| mdcell i i i
scatter Table 8. Implementation techniques for stencil,
Scatter w/ qmc pic—gather— i ~ati
combine Soatior gather/scatter and AABC communication
Reduction gptransport| ellip-2D
ks—spectral
md
gmc : : :
Broadcast JaUss] T Carte5|ar|1 grid often employarray sectionsto select the
md interior elements.
n—bod . . . . .
AABC T (6) Locality: Within the realm of partial differential equa
S— n_pody tions, the communication i®cal to the grid(diff-1D, diff-
Butterfly (FFT) || wave—1D E|c—5|mple| 2D, diff-3D, step-4. However, the simulation of an integral
— 1) . . . . . .
. ARSI G piegae or integrodifferential equation requires more distant eom
scatter munication which might benefit from primitives such as
cshift wave—-1D ellip—2D boson mdcell .
I st3p4 p gcd—kernel global-local transposeperations.
en e m .
— GptraSpor| pic-gather 7) Spectral methods: The}fs(-spectra)l are closely related
scatter to non—local methods for grid problems and frequently ben-
| - I U“S"“Ct“rfd grid | efit from aglobal-local-transposgrimitive. For Cartesian
Gaf —3D - . - i . .
Scatierw UL grids with periodic boundary conditionsthe FFT is appropri
Combine ate. For other grid geometries, transforms such as spherica

harmonics, Fourier—Bessel transforms, wavelet transfprm
etc. may be used. All these methods benefit from a fast
global-local transpose

1D, diff-2D, diff-3D), which tend to make heavy usespfreads (8) Particle—in—cell codes: These applicatiops-6imple,
andscans anditerative solvergellip-2D, rp, fem-3D, step-} pic-gather-scatt¢imaintain not only a spatial grid data struc-
which also retrieve and combine data from neighbors at eachture, but also a data structure for a set of particles. Thase p
iteration step, thus making use of such primitiveseans ticles generally possess some quantity whose density-deter
andspreadsas well. mines the force acting collectively on all of them. The parti
(4) Homogeneity: Homogeneougdiff-1D, diff-2D, diff-3D, cles ussend—with—combingo get the density on the spatial
ks-spectrgl grids have no factors that depend explicitly on grid, some sort of elliptic solver (often done with transfor
spatial position. Thus, the corresponding codes may employmethods) to get the force from the density, ayet—with—
stencils with constant coefficients. Otherwise, the eguati  collisionsto get the force back to the particles. Since both
isinhomogeneougllip-2D, wave-10 and stencils with vari-  primitives are highly sensitive to data—router collisigiiss

able coefficients would be required. occurs at local regions of high density), the particles may
(5) Boundary conditionsPeriodic (boson, ks-spectral, wave-  first be sorted according to their destination on the lattice
1D) boundary conditions on a Cartesian grid point to the and then aum—scaperformed prior to the router operation,
use ofcshifis, whereadirichlet (ellip-2D, rp) or Neumann  which would require thecan—with—combinggrimitive.
boundary conditions on the surfaces of a Cartesian grid(9) Monte Carlo simulation: These applications all need a
would necessitate a@oshiftor cshiftwith conditionaliza- fast random number generator to simulate a stochastic pro-
tion to freeze values at the boundarigSonstant(diff-1D, cess. The process may consistrafidom walkggmc) or
diff-2D, diff-3D) boundary conditions on the surfaces of a may belattice—basedboson, fermioh In the former kind,

Table 7. Communication patternsin application codes



each processor locally determines how many new processesuite to serve an important role in the development and
it must spawn. This is accomplished by algorithms that in- benchmarking of data parallel compilers.

volve sum-scangyenerasendsandsegmented copy scans
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