
DPF: A Data Parallel Fortran Benchmark Suite

Citation
Hu, Yu Charlie, S. Lennart Johnsson, Dimitris Kehagias, and Nadia Shalaby. DPF: A Data Parallel 
Fortran Benchmark Suite. Harvard Computer Science Technical Group TR-01-97.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017265

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017265
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=DPF:%20A%20Data%20Parallel%20Fortran%20Benchmark%20Suite&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


DPF: A Data Parallel Fortran

Benchmark Suite

Yu Charlie Hu

S. Lennart Johnsson

Dimitris Kehagias

Nadia Shalaby

TR-01-97

January 1997

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

To appear in the Proceedings of the 11th International Parallel Processing Symposium,

Geneva, Switzerland, April 1997.



DPF: A Data Parallel Fortran Benchmark Suite

Yu Hu
Div. Eng. and Applied Sc.

Harvard University

hu@deas.harvard.edu

S. Lennart Johnsson
Computer Science Dept.

University of Houston

johnsson@cs.uh.edu

Dimitris Kehagias
Fixed Income Sales & Anal.

Merrill Lynch

dkehagia@fir.ml.com

Nadia Shalaby
Div. Eng. and Applied Sc.

Harvard University

nadia@deas.harvard.edu

Abstract

We present the Data Parallel Fortran (DPF) benchmark
suite, a set of data parallel Fortran codes for evaluating data
parallel compilers appropriate for any target parallel archi-
tecture, with shared or distributed memory. The codes are
provided in basic, optimized and several library versions.
The functionalityof thebenchmarks cover collectivecommu-
nication functions, scientific software library functions, and
application kernels that reflect the computational structure
and communication patterns in fluid dynamic simulations,
fundamental physics and molecular studies in chemistry or
biology. The DPF benchmark suite assumes the language
model of High Performance Fortran, and provides perfor-
mance evaluation metrics of busy and elapsed times and
FLOP rates, FLOP count, memory usage, communication
patterns, local memory access, and arithmetic efficiency as
well as operation and communication counts per iteration.
An instance of the benchmark suite was fully implemented
in CM–Fortran and tested on the CM–5.

1 Introduction

1.1 Motivation, Functionality and Scope
High performance is the main motivation for scalable archi-
tectures, while portability of user codes is critical for mak-
ing scalable architectures economically feasible for all but
a few applications. These requirements represent a signifi-
cant challenge for all software developers, whether they are
developing compilers, run–time systems, operating systems
or software libraries. The goal in developing the Data Paral-
lel Fortran (DPF) benchmark suite was to produce a means
for evaluating such high performance software suites. In
particular, we target data parallel Fortran compilers; such
as any of the High Performance Fortran (HPF) [5] compil-
ers, Fortran–90 [12] compilers, the Fortran–Y or CRAFT [4]
compiler, as well as the Connection Machine Fortran (CMF)
[15] compilers. At the time thebenchmarks were developed,
CMF was the only data parallel Fortran language with a pro-
duction quality compiler available. Hence, the benchmarks

were all written in CMF. Conversion to any Fortran stan-
dard, in particular HPF, should be straight–forward given
the limited differences between CMF and HPF.

The functionality of the benchmarks cover collective
communication functions, scientific software library func-
tions, and application kernels. Communication functions
are intended to measure data motion in memory hierarchies.
In fact, efficient exploitation of spatial and temporal local-
ity of reference is the main objective of compilers for high
performance. Some functions, such as gather and scatter,
require efficient run–time system support. For conventional
vector architectures, gather and scatter have been imple-
mented as special instructions, and array transposition has
been included in some languages, like Fortran–90, as an
intrinsic function. Reduction and broadcast operations are
other examples of operations on collection of variables that
are incorporated in modern languages. On scalable archi-
tectures these functions are usually implemented as part ofa
collective communications library, which may be part of the
run–time system or a separate library. Several of these func-
tions are incorporated into the emerging Message–Passing
Interface (MPI) standard [11].

Scientific software library functions, particularly in the
early years of new architectures, may offer significantly
higher performance by being implemented, at least in part,
in lower level languages to avoid deficiencies in compiler
technology, or in the implementation of compilers and run–
time systems. However, low level library implementation
tends to be very costly,often meaning that good performance
may not be available until late in the hardware production
cycle. Thus, the amount of low level code in software li-
braries should be minimized not only for direct cost reasons.

The DPF benchmark suite also contains a set of small
application codes containing typical “inner loop” constructs
that are critical for performance, but that are typically not
found in libraries. An example is stencil evaluations in
explicit finite difference codes. The benchmarks were cho-
sen to complement each other, such that a good coverage
would be obtained of language constructs and idioms fre-
quently used in scientific applications, and for which high



performance is critical for good performance of the entire
application. The application benchmarks were selected so
as to represent the dominating applications on large data
parallel machines. Much of the resources at supercomputer
centers are consumed by codes used in fluid dynamic simu-
lations, in fundamental physics and in molecular studies in
chemistry or biology, and the DPF application codes reflect
this fact.

Some of the objectives for the DPF benchmark suite are
similar to that of several other collections of programs. The
NAS parallel benchmarks [1] are “paper and pencil” bench-
marks intended for vendors and implementors using algo-
rithms and programming models appropriate to their partic-
ular platforms. The NAS parallel benchmarks 2.0 [2] are an
MPI–based source implementation. However, to our knowl-
edge, this suite is the first focused entirely on data parallel
software environments.

The benchmark suite is divided into two groups, theli-
brary functions, and theapplications oriented codes. Li-
brary functionsare of two types:communication, which
include four functions, andlinear algebra, which consist of
eight function suites. Theapplication codesare comprised
of twenty different application benchmarks.

Here, we provide an overview of the DPF
benchmark suite. A detailed description and in-
structions for the use of the suite are covered
in [7] and in the online documentation at the URL
http://www.das.harvard.edu/cs/research/dpf/root.html.
Sources, examples of DPF benchmark use and produced out-
put are also available there. In all, there are 32 benchmarks
in the suite, comprising about 17,000 lines of source code.
The full DPF benchmark suite, including the sample data
files, occupies 2.64 MBytes.

After presenting the code versions, architectural model,
language aspects and performance evaluation in sections
1.2, 1.3, 1.4 and 1.5, respectively, we discuss the library
functions for communication in Section 2, the library func-
tions for linear algebra in Section 3 and the applications
oriented codes in Section 4. Our intent is to provide an
overview of the benchmark codes for prospective users to
understand which language or compiler feature a particular
benchmark attempts to evaluate. Therefore, for each of the
codes, we document several aspects of the employed data
structures, the floating–point computation count, the data
structures’ distribution among memory modules, the domi-
nating communication patterns, the primary local memory
access patterns, as well as how all these aspects are imple-
mented in the benchmark code. In sections 3 and 4, we
summarize these aspects in comprehensive tables to facil-
itate assessment and comparison. These tables should be
used as a primary guide in selecting the appropriate code (or
group of codes) from the entire benchmark suite, according
to a given set of goals and criteria.

1.2 DPF Code Versions
A number of the benchmarks exist in several forms, as tab-
ulated in Table 1. Abasic CMF version is provided in most
cases, intended to represent a “typical” user code produced
by a knowledgeableuser withouta lengthyoptimizationpro-
cess. In some cases anoptimized CMF version is also pro-
vided, representing the kind of code a highly performance
oriented, advanced programmer with good knowledgeof the
compiler and the architecture would produce.

Benchmark Name basic optimized library CMSSL C/DPEAC
boson �

conj–grad �

diff–1D �

diff–2D �

diff–3D �

ellip–2D �

fem–3D �

fermion � �

fft � �

gather �

gauss–jordan �

gmo �

jacobi �

ks–spectral � �

lu �

matrix–vector � �

md �

mdcell �

n–body �

pcr � �

pic–gather–scatter �

pic–simple �

qcd–kernel �

qmc �

qptransport �

qr � �

reduction �

rp �

scatter �

step4 �

transpose � �

wave–1D � �

Table 1. Benchmark suite code versions

Optimization can also be achieved via calls to highly op-
timized routines, which may be implemented in languages
other than CMF. Such routines are typically found in a run–
time system library, a scientific software library or, in the
case of the Connection Machine systems, in the CMF library
augmenting the intrinsic functions of the language. For op-
timizations resorting to source language library functions,
the code version is termedlibrary, whereas for those codes
calling the specialized, in our instance, Connection Machine
Scientific Software Library (CMSSL) [16] functions, we re-
fer to the code version asCMSSL. In other cases, rather
than resorting to library calls, some segment of the code,
critical to the benchmark performance, is identified and im-
plemented in the lower level language C/DPEAC [17]. This
code version is termedC/DPEAC and is assumed to give the
programmer finer control over the underlying architecture.

1.3 Architectural Model

Constructing a benchmark suite suitable for compiler eval-
uation in addition to a language definition requires both
a hardware model and an execution model. Most bench-

2



marks in the DPF suite are appropriate for any parallel ar-
chitecture, whether the memory is distributed among the
processors or shared. Some of the benchmarks focus on
evaluating how well the local memory hierarchy in a dis-
tributed memory multiprocessor is used. However, such
benchmarks may also be very useful in architectures with
distributed caches, such as the Stanford Dash and Flash ar-
chitectures [10]. Other benchmarks also contain constructs
related to an execution model in which one processor is pri-
marily responsible for the execution control of single thread
programs, such as a typical HPF (no extrinsic procedures)
and CMF (no local–global features) program. Such proces-
sors act very much in the same fashion as the scalar unit in
a typical vector processor.

For distributed memory architectures, the efficiency of a
parallel code is highly dependent on minimizing commu-
nication between the processors, maximizing data locality,
and exploiting the memory hierarchy. For shared mem-
ory architectures, the parallel code efficiency is affectedby
how the data referencing pattern interplays with maintain-
ing cache coherence, specifically, whether cache coherence
is maintained at the level of the hardware [9, 10], run–time
system [14], or compiler [13]. Other architectural features
affecting benchmark performance are interconnection net-
work topology, nodal architecture, availability of built–in
hardware for certain specialized communication patterns,
such as broadcast and reduction, available hardware support
for program control execution, as well as parallel I/O.

1.4 Language Aspects
The DPF benchmark suite intended language is HPF, and we
developed an instance of it in CMF with the CM–5 as the
target platform with its environment of run–time systems,
available libraries and most importantly, its data–parallel
Fortran compiler. In our terminology, we refer to the stan-
dard notions in general terms adhering to the HPF standard.
For instance, we refer to the axes of parallel arrays aslocal
andparallel.

The performance evaluation and analysis is based on the
execution semantics of HPF. An example is the execution
of the statementvtv = sum(v*v, mask), where the
self inner product of the vectorv is executed for all ele-
ments, rather than only the unmasked ones. Thus, when an-
alyzing performance for unmasked operations, we take into
consideration the entire vector and not only the unmasked
elements. In short, every time an ambiguity emerges, we
resolve it by adhering to HPF conventions, since we assume
all HPF compilers to adhere to the standard.

1.5 Performance Evaluation
The DPF codes produce the following performance metrics:
(1) Busy time (sec.):non–idle exectution time,
(2) Elapsed time (sec.):total benchmark execution time,

(3) Busy floprate (MFLOPs):number of million floating–
point operations per second (FLOP count by busy time),
(4) Elapsed floprate (MFLOPs):million floating–point op-
erations per second (FLOP count by elapsed time).

In some of the application codes, namelyboson, fem-
3D, md, mdcell, pic-gaussian, qcd-kernel, qptransportandstep4,
the above measures are provided for code segments, rather
than the entire benchmark. Similarly, performance metrics
for different modules of a benchmark may also be reported
separately. For instance, the factorization and solution times
for qr andlu, as well as the the constituents of the kernel in
diff-1D anddiff-2D, are timed separately.

We quantify performance by the following attributes:
(1) FLOP count: In counting the FLOPs, we adopt the op-
eration counts suggested in [6], assuming one FLOP for
real addition, subtraction and multiplication, four FLOPs
for division and square root, and eight FLOPs for logarith-
mic and trigonometric functions. The reduction operations
and parallel prefix operations, such as the intrinsicSUMand
segmented scans, are counted for their sequential FLOPs,
which isN � 1 in this case. For computations involving
masks, we seek the most accurate FLOP count: reporting
an exact FLOP count when the outcome of a mask is deter-
ministic, and resorting to the upper bound, when the mask
outcome cannot be determined at compile time. Redundant
operations are sometimes included in the FLOP count, as a
consequence of the semantics dictated by HPF.
(2) Arithmetic efficiency (%):Only computed for linear al-
gebra functions, by dividing the busy FLOP rate by the peak
FLOP rate of all the participating processors1.
(3) Memory usage (in bytes):We assume the standard data
type sizes, with an associated symbolic notation: 4(t), 4(l),
4(s), 8(d), 8(c), 16(z) for integer, logical, single–precision
real, double–precision real, single–precision complex and
double–precision complex, respectively. We count the
memory of all the user declared data structures including
all the auxiliary arrays required by the algorithm’s imple-
mentation. However, temporaries generated by the compiler
are not accounted for. In the case where a lower dimensional
arrayL is aligned with a higher dimensional arrayH, and
L effectively takes up the storage ofsizefHg, we report the
collective memory ofL andH to be2 sizefHg.
(4) Communication pattern:We specify the types of com-
munication that the algorithm exhibits, and the language
constructs with which they are expressed. These communi-
cation patterns include stencils, gather, scatter, reduction,
broadcast, all–to–all broadcast communication (AABC),
all–to–all personalized communication (AAPC) [8], butter-
fly, scan, circular shift (cshift), send, get, and sort. It should
be noted that more complex patterns (such as stencils and
AABC) can be implemented by more than one simpler com-

1In the case of the CM–5, the peak FLOP rate is 32 MFLOPs per second
per vector unit (VU) and for the CM–5E it is 40 MFLOPs per second.

3



munication function (e.g. cshifts, spreads, etc.).
(5) Operation count per iteration (in FLOPs):We give the
number of floating–pointoperations per data point, by divid-
ing the total FLOP count of the benchmark by the problem
size. This metric serves as a first approximation to the com-
putational grain size of the benchmark, giving an insight
into how the program scales with increasing problem sizes.
(6) Communication count per loop iteration:We group
the communication patterns invoked by this benchmark and
specify exactly how many such patterns are used within the
main computational loop. This metric, together with the op-
eration count per iteration, gives the relative ratio between
computation and communication in the benchmark.
(7) Local memory access:This attribute reports the local
memory access pattern for the primary data structures in the
main loop of the benchmark. This local access scheme is
labeled asN/Awhere no local axes are present,directwhere
the local axis is only indexed directly by the loop variable,
indirectwhere the local axis is indexed by another array and
stridedwhere the local axis is indexed by a triplet subscript.

2 Library Functions for Communication

The library communication functions measure particular
communication patterns, not bundled with computation.
These codes allow for evaluating the implementation of
communication operations in library functions or intrinsic
functions in data parallel languages. The DPF commu-
nication benchmarks aregather, scatter, reductionand trans-
pose. Thegatherandreductioncodes measure various forms
of many–to–one communication, thescattercode one–to–
many, and thetransposeis implemented as an AAPC. The
gather and scatter operations appear frequently in basic lin-
ear algebra operations for arbitrary sparse matrices, for his-
togramming and many other applications, such as finite el-
ement codes for unstructured grids. The global reduction is
an essential component of the language’s intrinsic functions
and library routines, and the transpose, apart form being
an indispensable operation in linear algebra and other nu-
merous applications, may be used to confirm advertised bi-
section bandwidths. The communication library functions,
except thereductionfunction, do not perform any floating–
point operations, which is why no FLOP count is produced
by theses codes.

3 Library Functions for Linear Algebra

The linear algebra library subset of the DPF benchmark
suite is provided to enable testing the performance of com-
piler generated code against that of any highly optimized
library, such as the CMSSL. CMSSL was created for data
parallel languages and distributedmemory architectures and
attempts to make efficient use of the underlying system ar-

chitecture with its careful choice of data layout, an efficient
implementations of interprocessor data motion and optimal
management of local memory hierarchy and data paths in
each processor. These are all primary issues of investigation
in modern compiler design for parallel languages and on
parallel machine architectures.

The DPF linear algebra subset is comprised of matrix–
vector multiplication (matrix–vector), two different densema-
trix solvers, based on LU factorization and solution (lu) and
QR factorization and solution (qr), two different tridiagonal
system solvers, based on parallel cyclic reduction (pcr) and
the conjugate gradient method (conj–grad), a dense eigen-
analysis routine (jacobi) and an FFT routine (fft). Where
possible, the interface conventions are kept identical with
those of CMSSL. In many cases, different layouts are ac-
cepted and analyzed before calling the common interface.

Code Arrays(“:serial” for local axes, “:” for parallel axes)
1–D 2–D 3–D 4–D

matrix–vector: (1) X(:) X(:,:)
(2) X(:,:) X(:,:,:)
(3) X(:serial,:) X(:serial,:serial,:)
(4) X(:,:) X(:serial,:,:)

lu X(:,:,:)
qr X(:,:)
gauss–jordan X(:) X(:,:)
pcr: (1) X(:) X(:serial,:)

(2) X(:,:) X(:serial,:,:)
(3) X(:,:,:) X(:serial,:,:,:)

conj–grad X(:)
jacobi X(:) X(:,:)
fft: 1–D X(:)

2–D X(:)
3–D X(:)

Table 2. Data representation and layout for dominating
computations in linear algebra kernels

Communication Arrays
Pattern 1–D 2–D 3–D

Reduction matrix–vector (1) matrix–vector (2,3,4)
(array gauss–jordan
dimensions qr
for source) lu
Broadcast matrix–vector (1) matrix–vector (2,3,4)
(array gauss–jordan
dimensions qr
for jacobi
destination) lu
AAPC fft 1–D fft 2–D fft 3–D
cshift conj–grad

jacobi jacobi
fft 1–D fft 2–D fft 3–D
pcr (1) pcr (2) pcr (3)

Send/Get gauss–jordan
jacobi

Table 3. Communication of linear algebra kernels

For ease of reference and clarity, we summarize and con-
trast the properties of of the linear algebra benchmarks in
three tables. Table 2 gives an overview of the data repre-
sentation and layout for the dominating computations of the
linear algebra kernels. Table 3 shows the benchmarks clas-
sified by the communication operations that they use, along
with their associated array ranks. Finally, Table 4 demon-
strates the computation (FLOP count) to communication
ratio in the main loop of each linear algebra benchmark,
memory usage for the implemented data types, as well as

4



Code FLOP Count Memory Usage Communication Local
(per iteration) (in bytes) (per iteration) Memory

Access

matrix–vector s,d: 2nmi s: 4(n+ nm+ m)i 1 Broadcast, 1 Reduction direct
d: 8(n+ nm+ m)i

c,z: 8nmi c: 8(n+ nm + m)i

z: 16(n+ nm+ m)i

lu: factor 2=3n2
i d: 8n(n+ 2r)i 1 Reduction, 1 Broadcast N/A

lu: solve 2rni d: 8n(n+ 2r)i 1 Reduction N/A
qr: factor s,d: (5:5m� 0:5n)n s: 24mn 2 Reductions, 2 Broadcasts N/A

d: 36mn

c,z: 4(5:5m� 0:5n)n2 c: 40mn

z: 68mn

qr: solve s,d: (8m� 1:5n)n s: 24mn+ 4m(r + 1) 2 Reductions, 4 Broadcasts N/A
d: 44mn+ 8m(r + 1)

c,z: 4(8m� 1:5n)n2 c: 48mn+ 8m(r + 1)
z: 92mn+ 16m(r + 1)

gauss–jordan n+ 2 + 2n2 s: 28n2
+ 16n 1 Reduction, 3 Sends, N/A

2 Gets, 2 Broadcasts
pcr s,d: (5r + 12)ni s: 4(r + 4)ni (2r + 4) CSHIFTs direct

d: 8(r + 4)ni
c,z: 4(5r + 12)ni c: 8(r + 4)ni

z: 16(r+ 4)ni
conj–grad 15n d: 40n 4 CSHIFTs, 3 Reductions N/A
jacobi 6n2

+ 26n s: 44n2
+ 28n 2 CSHIFTs on 1–D arrays, N/A

d: 88n2
+ 4n 2 CSHIFTs on 2–D arrays,

2 Sends, 4 1–D to 2–D Broadcasts
fft: 1–D 5n c: 60n 2 CSHIFTs, 1 AAPC N/A

z: 100n
fft: 2–D 10n2 c: 76n2 4 CSHIFTs, 2 AAPC N/A

z: 115n2

fft: 3–D 15n3 c: 92n3 6 CSHIFTs, 3 AAPC N/A
z: 136n3

Table 4. Computation to communication ratio in the main loop of linear algebra library codes

the local memory access pattern for the local axes of the
arrays in the main loop of the benchmark. The tables are
not representative of inherent algorithmic properties; rather,
reflect the chosen implementation.

4 Applications Oriented Codes

These benchmarks are intended to cover a wide variety
of scientific applications typically implemented on paral-
lel machines. The DPF application benchmarks consist of
quantum many–body simulation for bosons on a 2D lat-
tice (boson), solution of the diffusion equation in 1D via
a tridiagonal solver (diff-1D), in 2D via the direction im-
plicit algorithm (diff-2D), and in 3D via an explicit finite
difference method (diff-3D), solution of Poisson’s equation
by the Conjugate Gradient method (ellip-2D), iterative so-
lution of finite element equations in three dimensions (fem-
3D), quantum many–body computation for fermions on a
2D lattice (fermion), a highly generalized moveout seis-
mic kernel for all forms of Kirchhoff migration and Kirch-
hoff DMO (gmo), integration of the Kuramoto–Sivashiniski
equation by a spectral method (ks-spectral), molecular dy-
namics codes for Leonard–Jones force law for local forces
only (mdcell) and for long range forces (md), a generic direct
2D N–body solver for long range forces (n-body), a particle–
in–cell code in 2D using a straightforward implementation
(pic-simple) and a sophisticated implementation (pic-gather-
scatter), a staggered fermion Conjugate Gradient code for
Quantum Chromo–Dynamics (qcd-kernel), a Green’s func-
tion quantumMonte–Carlo (qmc) code,aquadraticprogram-

ming problem on a bipartite graph (qptransport), solution of
nonsymmetric linear equations using the Conjugate Gradi-
ent method (rp), an explicit finite difference method in 2D
(step4), and the simulation of the inhomogeneous 1D wave
equation (wave-1D).

Code Arrays(“:serial” for local axes, “:” for parallel axes)
1-D 2–D 3–D 4–D, 6–D, 7–D

boson X(:serial,:,:)
diff–1D x(:)
diff–2D x(:serial,:)
diff–3D x(:,:,:)
ellip–2D x(:,:)
fermion x(:,:serial,:serial)
gmo x(:) x(:serial,:)
ks–spectral x(:,:)
mdcell x(:serial,:,:,:)
md x(:) x(:,:)
n–body x(:serial,:)
pic–simple x(:serial,:) x(:serial,:,:)
pic–gather– x(:serial,:) x(:serial,:,:)
scatter
qcd–kernel x(:serial,:,:,:,:,:)

x(:serial,:serial,:,:,:,:,:)
qmc x(:,:) x(:serial,:serial,:,:)
qptransport x(:)
rp x(:,:,:)
step4 x(:serial,:,:)
wave–1D x(:)

Unstructured grid
fem–3D x(:serial,:,:)

x(:serial,:serial,:)

Table 5. Data representation and layout for dominating
computations in the Application codes.

Table 5 lists the data representation and layout for the
dominating computations in the application codes. Table 7
summarizes the communication patterns in the codes. Ta-
ble 8 summarizes the implementation techniques for the

5



Code FLOP Count Memory Usage Communication Local
(per iteration) (in bytes) (per iteration) Memory

Access

boson 4(258+ 36=n
t

)n

t

n

x

n

y

s: 20n
x

n

y

+ 64n
t

+ 6000 38 CSHIFTs strided
+2000m

b

+ 768n
t

n

x

n

y

diff–1D 13n
x

+ 4P logP � 8 d: 32n
x

1 3–point Stencil, N/A
substructuring w/ pcr

diff–2D 10n2
x

� 16n
x

+ 16 d: 32n2
x

1 3–point Stencil, 1 AAPC strided
diff–3D 9(n

x

� 2)(n
y

� 2)(n
z

� 2) d: 8n
x

n

y

n

z

1 7–point Stencil N/A
ellip–2D 38n

x

n

y

d: 96n
x

n

y

4 CSHIFTs, 3 Reductions N/A
fem–3D 18n

ve

n

e

s: 56n
ve

n

e

+ 140n
v

1 Gather, 1 Scatter w/combine direct
+1200n

e

fermion local matmul d: 144n2
+ 6ln+ 48p N/A indirect

gmo 6p s: p � (4 � ns
in

� ntr
in

+ N/A indirect
4 � ns

out

� (ntr
out

+ 2)+
8 + 12 � n

vec

)

ks–spectral (76+ 40 log2 nx)nxne d: 144n
x

n

e

8 1–D FFTs on 2–D arrays N/A
mdcell (101+ 392n

p

)n

p

n

c

3 d: (184+ 160n
p

)n

x

n

y

n

z

195 CSHIFTs, indirect
7 Scatter on local axis

md (23+ 51n
p

)n

p

d: 160n
p

+ 80n2
p

6 1–D to 2–D SPREADs, N/A
3 1–D to 2–D sends,
3 2–D to 1–D Reductions

n–body
broadcast 17n2 s: 36n 3 Broadcasts direct
broadcast w/fill 17n2 s: 20n+ 36m 3 Broadcasts direct
spread 17n2 s: 36n 3 SPREADs direct
spread w/fill 17n2 s: 20n+36m 3 SPREADs direct
cshift 17n(n� 1) s: 36n 3 CSHIFTs direct
cshift w/fill 17n(n� 1) s: 20n+ 36m 3 CSHIFTs direct
cshift w/sym. 13:5n(n�1)+ 17n mod(n; 2) s: 48n 3 CSHIFTs direct
cshift w/sym.fill 13:5n(n�1)+ 17n mod(n; 2) s: 20n+ 44m 2.5 CSHIFTs direct

pic–simple n

p

+ 15n
x

n

y

(logn
x

+ logn
y

) d: 60n
p

+ 72n
x

n

y

1 Gather w/ add 1–D to 2–D, direct
3 FFT, 1 Gather 3–D to 2–D

pic–gather–scatter 270 s: 12n3
x

+ 88n
p

81 Scans, 27 Scatters w/ add, indirect
27 1–D to 3–D Scatters,
27 3–D to 1–D Gather

qcd–kernel 606n
x

n

y

n

z

n

t

s: 360n
x

n

y

n

z

n

t

i 4 CSHIFTs direct
qmc [(42+ 2n

o

n

maxw

)n

p

n

d

n

w

n

e

+ d: 16n
p

n

d

+ 96n
w

n

e

n

maxw

SPREADs 3–D to 1–D, direct
(142n

o

+ 251)n
w

n

e

]n

b

5 Reductions 2–D to 1–D,
(n

p

n

d

+ 4) Scans on 2–D,
(n

p

n

d

+ 1) Sends,
3 Reductions 2–D to scalar

qptransport 34n d: 160n 10 Scatters 1–D to 1–D, N/A
1 Sort, 5 Scans, 1 CSHIFT,
1 EOSHIFT, 3 Reductions

rp 44n
x

n

y

n

z

s: 60n
x

n

y

n

z

2 Reductions, 12 CSHIFTs N/A
(2 7–point Stencils)

step4 2500 s: 500n
x

n

y

128 CSHIFTs direct
(8 16–point Stencils)

wave–1D 29n
x

+ 10n
x

logn
x

d: 64n
x

12 CSHIFTs, 2 1–D FFTs N/A

Table 6. Computation to communication ratio in the main loop of the Application codes.

stencil, gather/scatter, and AABC communication patterns.
Table 6 lists the computation to communication ratio for the
main loop in the application codes, memory usage for the
implemented data types, as well as the local memory access
pattern for the local axes of the arrays.

From the standpoint of computational structures and
communication patterns, the applications may be divided
into a number of classes. These classes are meant to be nei-
ther mutually exclusive nor exhaustive, but rather, demon-
strate an attempt to assess the performance of different appli-
cations according to some inherent properties that inevitably
dictate their computational structure and communication
pattern [3]. For the class of grid–based codes, we cate-
gorize the applications according to the dichotomies from
(1) to (6), and for non–grid–based codes from (7) to (11).
(1) Grid structure: The grids may bestructured(boson, diff-
1D, diff-2D, diff-3D, ellip-2D, rp, ks-spectral, pic-simple, pic-
gaussian, wave-1D) which can be mapped into a Cartesian
space, and tend to use communication on Cartesian grids

such asstencilsand cshifts. Otherwise, the grids may be
unstructured(fem-3D) with irregular connectivity, and tend
to use communication primitives tailored for general com-
munication, such assend–with–combiner. There are also
algorithms that do not use an Eulerian mesh but rather em-
ploy aLagrangiandescription of the spatial layout.
(2) Linearity: These are divided intolinear (diff-1D, diff-
2D, diff-3D, ellip-2D, rp, step-4, wave-1D) andnonlinear(ks-
spectral) differential equations. For linear differential equa-
tions with structured grids, astencilprimitive can be pro-
vided to retrieve the data from several neighbors simultane-
ously and to pipeline the combining of the data. For linear
equations with unstructured grids asend–to–queuewould
get data from neighbors into a local array, which may then
be combined with benefits from local optimization. In the
nonlinear case, apshift[16] primitive could be provided for
structured grids, whereas asend–to–queuewith local opti-
mization would deal with unstructured grids.
(3) Solution method: These divide intodirect solvers(diff-

6



Communication Arrays
Pattern 1–D 2–D 3–D 4–, 6–, 7–D

Stencil diff–1D diff–2D rp, diff–3D

r r rd

r r rd

r

r

r

d

r r r

r

r

r

r

�

�

d

wave–1D ellip–2D

r r r rd r r r

r

r

d

step4

r r r r r r r r r

r

r

r

r

r

r

r

r

r

d

Gather pic–simple pic–gather–
scatter

Gather w/ pic–simple
combine
Scatter qptransport pic–gather– mdcell

scatter
Scatter w/ qmc pic–gather–
combine scatter
Reduction qptransport ellip–2D

ks–spectral
md
qmc

Broadcast gaussj qmc
md
n–body

AABC md
n–body

AAPC diff–2D
Butterfly (FFT) wave–1D pic–simple

ks–spectral
Scan qptransport qmc pic–gather–

scatter
cshift wave–1D ellip–2D boson mdcell

step4 rp qcd–kernel
Send/Get md
Sort qptransport pic–gather–

scatter

Unstructured grid

Gather fem–3D
Scatter w/ fem–3D
Combine

Table 7. Communication patterns in application codes

1D, diff-2D, diff-3D),which tend to makeheavy use ofspreads
andscans, anditerative solvers(ellip-2D, rp, fem-3D, step-4),
which also retrieve and combine data from neighbors at each
iteration step, thus making use of such primitives asscans
andspreadsas well.
(4) Homogeneity:Homogeneous(diff-1D, diff-2D, diff-3D,
ks-spectral) grids have no factors that depend explicitly on
spatial position. Thus, the corresponding codes may employ
stencils with constant coefficients. Otherwise, the equation
is inhomogeneous(ellip-2D, wave-1D) and stencils with vari-
able coefficients would be required.
(5) Boundary conditions:Periodic(boson, ks-spectral, wave-
1D) boundary conditions on a Cartesian grid point to the
use ofcshifts, whereasDirichlet (ellip-2D, rp) or Neumann
boundary conditions on the surfaces of a Cartesian grid
would necessitate aneoshiftor cshift with conditionaliza-
tion to freeze values at the boundaries.Constant(diff-1D,
diff-2D, diff-3D) boundary conditions on the surfaces of a

Communication Pattern Code Implementation Techniques

Stencil boson CSHIFT
wave–1D
ellip–2D
rp
mdcell
step4 chained CSHIFT
diff–1D Array sections
diff–2D
diff–3D

Gather fem–3D CMSSL partitioned gather utility
pic–gather–scatter FORALL w/ indirect addressing
pic–simple

Gather w/ combine pic–simple FORALL w/ SUM
Scatter mdcell CMF aset1D or FORALL w/

indirect addressing
pic–gather–scatter FORALL w/ indirect addressing

indirect addressing
qptransport indirect addressing

Scatter w/ combine fem–3D CMSSL partitioned scatter utility
pic–gather–scatter CMF sendadd or FORALL w/

indirect addressing
qmc CMF sendoverwrite

AABC md SPREAD
n–body CSHIFT, SPREAD, broadcast

Table 8. Implementation techniques for stencil,
gather/scatter and AABC communication

Cartesian grid often employsarray sectionsto select the
interior elements.
(6) Locality: Within the realm of partial differential equa-
tions, the communication islocal to the grid(diff-1D, diff-
2D, diff-3D, step-4). However, the simulation of an integral
or integrodifferential equation requires more distant com-
munication which might benefit from primitives such as
global–local transposeoperations.
7) Spectral methods: They (ks-spectral) are closely related
to non–local methods for grid problems and frequently ben-
efit from aglobal–local–transposeprimitive. For Cartesian
grids with periodicboundary conditionsthe FFT is appropri-
ate. For other grid geometries, transforms such as spherical
harmonics, Fourier–Bessel transforms, wavelet transforms,
etc. may be used. All these methods benefit from a fast
global–local transpose.
(8) Particle–in–cell codes: These applications (pic-simple,
pic-gather-scatter) maintain not only a spatial grid data struc-
ture, but also a data structure for a set of particles. These par-
ticles generally possess some quantity whose density deter-
mines the force acting collectively on all of them. The parti-
cles usesend–with–combinerto get the density on the spatial
grid, some sort of elliptic solver (often done with transform
methods) to get the force from the density, andget–with–
collisionsto get the force back to the particles. Since both
primitives are highly sensitive to data–router collisions(this
occurs at local regions of high density), the particles may
first be sorted according to their destination on the lattice,
and then asum–scanperformed prior to the router operation,
which would require thescan–with–combinerprimitive.
(9) Monte Carlo simulation: These applications all need a
fast random number generator to simulate a stochastic pro-
cess. The process may consist ofrandom walks(qmc) or
may belattice–based(boson, fermion). In the former kind,

7



each processor locally determines how many new processes
it must spawn. This is accomplished by algorithms that in-
volvesum–scans, generalsendsandsegmented copy scans.
The latter kind is effectively Monte Carlo simulations on a
grid which involves fast stencil–like communication.
(10) General N–body problems: In this class of applica-
tions (md, n-body), every element needs to communicate
with every other element. The most efficient implementa-
tion would be mapping the communication structure to the
machine hardware, but it would be useless to employ in a
general purpose benchmark. Thus, the algorithms can make
use of cshifts, get–from–processorand globalbroadcast.
For smaller data structures, it is often possible to paral-
lelize over particle–particle interactions, rather than parti-
cles. This would require generalsendandsum–scan.
(11) Molecular dynamics problems: In this class of appli-
cations (mdcell), a data structure of interacting particles is
constructed, where the interaction range is short, and parti-
cles need only interact with other nearby particles, making
the general N–body approach wasteful. To utilize this fact,
an interaction list is determined for each particle at each
instant. Good approaches would involve use ofsend–to–
queueto get the particle onto the spatial grid,cshiftor pshift
to determine who is a neighbor and compute the force, and
generalcollisionless sendsto retrieve the force.

Another important aspect of the application codes is local
memory moves. For some applications with local axes, this
aspect can be made efficient by means oflocal optimization,
i.e. the vectorization of operations on local axes, as well as
indirection for local axes, so that vector–valued subscripts on
local axes become efficient. Among the application codes,
gmoandfermionare the only two embarrassingly parallel.

5 Summary
We presented the DPF benchmark suite, a set of data par-
allel Fortran codes for evaluating data parallel compilers
appropriate for any target parallel architecture, with shared
or distributed memory. The codes are provided in basic,
optimized and several library versions. The functionality
of the benchmarks cover collective communication func-
tions, scientific software library functions, and application
kernels that reflect the computational structure and commu-
nication patterns in typical scientific applications, particu-
larly fluid dynamic simulations, fundamental physics and
molecular studies in chemistry or biology. Assuming the
language model of HPF, we provided performance evalua-
tion metrics in the form of busy and elapsed times, busy and
elapsed FLOP rates, and quantify performance according
to the FLOP count, memory usage, communication pattern,
local memory access, arithmetic efficiency as well as opera-
tion and communication counts per iteration. An instance of
the benchmark suite was fully implemented in CM–Fortran
and tested on the CM–5. We expect the DPF benchmark

suite to serve an important role in the development and
benchmarking of data parallel compilers.

Acknowledgment
The DPF benchmark suite was developed by Thinking Ma-
chines Corp. with partial support from ARPA under subcontract
DABT63-91-C-0031 with the Computer Science Department of
Yale University and the Northeast Parallel Architectures Center
(NPAC) at Syracuse University. Verification, debugging, docu-
mentation and analysis were conducted by the Parallel Computa-
tion Research Group at Harvard University.

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,T. Lasin-
ski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga. The NAS parallel benchmarks. Technical
Report RNR-94-007, NASA Ames Research Center, Mof-
fett Field, California, Mar. 1994.

[2] D. Bailey, T. Harris, W. Saphir, R. Wijngaartand, A. Woo,
and M. Yarrow. The NAS parallel benchmarks2.0. Technical
Report NAS-95-020, NASA Ames Research Center, Moffett
Field, California, Dec. 1995.

[3] B. Boghosian. CM–5 performance metrics suite. TMC in-
ternal memo, 1993.

[4] M. C. Chen, J. Cowie, and J. Wu. CRAFT: A framework for
F90 compiler optimization. In5th Workshop on Compilers
for Parallel Computers, Malaga, Spain, June 1995.

[5] HPF Forum. High performance fortran; language specifica-
tion, version 1.0.Scientific Prog., 2(1 - 2):1–170, 1993.

[6] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1990.

[7] Y. Hu, S. L. Johnsson, D. Kehagias, and N. Shalaby. DPF:
A data parallel Fortran benchmark suite. Technical Report
TR–36–95, Harvard University, Sep. 1995.

[8] S. L. Johnsson and C.-T. Ho. Spanning graphs for opti-
mum broadcasting and personalized communication in hy-
percubes.IEEE Trans. Comp., 38(9):1249–1268, Sep. 1989.

[9] Kendall Square Research, Waltham, MA.Kendall Square
Research Technical Summary (of KSR-1), 1992.

[10] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens,
A. Gupta, and J. Hennessy. The DASH prototype: Logic
overhead and performance.IEEE Trans. Parallel and Dis-
tributed Systems, 4(1):41–61, January 1993.

[11] Message–PassingInterface Forum. MPI: A message-passing
interface standard. 1994.

[12] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford
Scientific Publications, 1991.

[13] M. C. Rinard, D. J. Scales,and M. S. Lam. Jade: a high–level,
machine independent language for parallel programming.
Computer, June 1993.

[14] D. J. Scales and M. S. Lam. The design and evaluation of
a shared object system for distributed memory machines. In
first Symp. OSDI, Nov. 1994.

[15] TMC CM Fortran Reference Manual, Version 2.1, 1993.
[16] TMC CMSSL for CM Fortran, Version 3.1, 1993.
[17] TMC DPEAC Reference Manual,CMOST Version 7.1,1993.

8


