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Abstract

When not enough time is available to fully explore
a search tree, different algorithms will visit differ-
ent leaves. Depth-first search and depth-bounded
discrepancy search, for example, make opposite as-
sumptions about the distribution of good leaves.
Unfortunately, it is rarely cleara priori which al-
gorithm will be most appropriate for a particular
problem. Rather than fixing strong assumptions in
advance, we propose an approach in which an al-
gorithm attempts to adjust to the distribution of leaf
costs in the tree while exploring it. By sacrificing
completeness, such flexible algorithms can exploit
information gathered during the search using only
weak assumptions. As an example, we show how a
simple depth-based additive cost model of the tree
can be learned on-line. Empirical analysis using
a generic tree search problem shows that adaptive
probing is competitive with systematic algorithms
on a variety of hard trees and outperforms them
when the node-ordering heuristic makes many mis-
takes. Results on boolean satisfiability and two dif-
ferent representations of number partitioning con-
firm these observations. Adaptive probing com-
bines the flexibility and robustness of local search
with the ability to take advantage of constructive
heuristics.

1 Introduction
Consider the problem of searching a tree to find the best leaf.
Many search trees arising in practical applications are too
large to be explored completely. Given a limited amount of
time, one can only hope to search the tree in such a way that
leaves with a greater chance of being optimal are encountered
sooner. For instance, when a node-ordering heuristic is avail-
able, a depth-first search can expand the children of a node in
the order in which they are preferred by the heuristic. How-
ever, the backtracking order of depth-first search will visit
the second-ranked child of the last internal branching node
before reconsidering the choice at the next to last branching
node. Each decision at which a non-preferred child is chosen
is called a discrepancy[Harvey and Ginsberg, 1995]. Depth-
first search will visit the leaf whose path from the root has

all discrepancies below depthi before visiting the leaf with a
single discrepancy at depthi. This corresponds to an implicit
assumption that a single discrepancy at depthi will lead to a
worse leaf than taking discrepancies at every deeper depth.

Limited discrepancy search[Harvey and Ginsberg, 1995;
Korf, 1996] was designed with a different assumption in
mind. It assumes that discrepancies at any depth are equally
disadvantageous and so visits all leaves withk discrepancies
anywhere in their paths before visiting any leaf withk + 1

discrepancies. Depth-bounded discrepancy search[Walsh,
1997] uses a still different assumption: a single discrepancy
at depthi is worse than taking discrepancies at all depths shal-
lower thani. Motivated by the idea that node-ordering heuris-
tics are typically more accurate in the later stages of problem-
solving, when local information better reflects the remaining
subproblem, this assumption is directly opposed to the one
embodied by depth-first search.

When faced with a new search problem, it is often not ob-
vious which algorithm’s assumptions most accurately reflect
the distribution of leaf costs in the tree or even if any of them
are particularly appropriate. In this paper, we investigate an
adaptive approach to tree search in which we use the costs of
the leaves we have seen to estimate the cost of a discrepancy
at each level. Simultaneously, we use these estimates to guide
search in the tree. Starting with no preconceptions about the
relative advantage of choosing a preferred or non-preferred
child node, we randomly probe from the root to a leaf. By
sharpening our estimates based on the leaf costs we observe
and choosing children with the probability that they lead to
solutions with lower cost, we focus the probing on areas of
the tree that seem to contain good leaves.

This stochastic approach is incomplete and cannot be used
to prove the absence of a goal leaf. In addition, it gener-
ates the full path from the root to every leaf it visits, incur-
ring overhead proportional to the depth of the tree when com-
pared to depth-first search, which generates roughly one in-
ternal node per leaf. However, the problem-specific search
order of adaptive probing has the potential to lead to better
leaves much faster. Since an inappropriate search order can
trap a systematic algorithm into exploring vast numbers of
poor leaves, adaptive probing would be useful even if it only
avoided such pathological performance on a significant frac-
tion of problems.

After describing the details of an algorithm based on this



adaptive approach, we investigate the algorithm’s perfor-
mance using the abstract tree model of Harvey and Ginsberg
[1995]. We find that adaptive probing outperforms system-
atic methods on large trees when the node-ordering heuristic
is moderately inaccurate and exhibits better worst-case per-
formance whenever the heuristic is not perfect at the bottom
of the tree. To confirm these observations, we also test the al-
gorithm on two different representations of the combinatorial
optimization problem of number partitioning and on the goal-
search problem of boolean satisfiability. It performs well on
satisfiability and the naive formulation of number partition-
ing, but is competitive only for long run-times when using
the powerful Karmarkar-Karp heuristic.

2 An Adaptive Probing Algorithm
Within the general approach outlined above, there are many
ways to extract information from observed leaf costs. In this
paper, we will evaluate one simple model. We will assume
that the cost of every leaf is the sum of the costs of the ac-
tions taken to reach it from the root. Each position in the
ordered list of children counts as a distinct action and actions
at different levels of the tree are modeled separately. So a
tree of depthd and branching factorb requiresdb parameters,
one for each action at each level. The model assumes, for in-
stance, that the effects of choosing the second-most-preferred
child at level 23 is the same for all nodes at level 23. This is
just a generalization of the assumption used by discrepancy
search algorithms. In addition, we will estimate the variance
of the action costs by assuming that each estimated cost is
the mean of a normal distribution, with all actions having the
same variance.

This model is easy to learn during the search. Each probe
from the root corresponds to a sequence of actions and results
in an observed leaf cost. Ifa

j

(i) is the cost of taking actioni
at depthj andl

k

is the cost of thekth leaf seen, probing three
times in a binary tree of depth three might give the following
information:
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We can then estimate thea
j

(i) using a least squares regres-
sion algorithm. In the experiments reported below, a per-
ceptron was used to estimate the parameters[Cesa-Bianchi
et al., 1996]. This simple gradient descent method updates
each cost according to the error between a prediction of the
total leaf cost using the current action estimates,^

l

k

, and the
actual leaf cost,l
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. If d actions were taken, we update each
of their estimates by
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where� controls the learning rate (or gradient step-size). All
results reported below use� = 0:2, although similar values
also worked well. (Values of 1 and 0.01 resulted in reduced
performance.) This update requires little additional memory,
takes only linear time, adjustsd parameters with every leaf,
and often performed as well as an impracticalO(d

3

) singular

value decomposition estimator. It should also be able to track
changes in costs as the probing becomes more focussed, if
necessary.

Because we assume that it is equal for all actions, the vari-
ance is straightforward to estimate. If we assume that the
costs of actions at one level are independent from those at
another, then the variance we observe in the leaf costs must
be the sum of the variances of the costs selected at each level.
The only complication is that the variance contributed by each
level is influenced by the mean costs of the actions at that
level—if the costs are very different, then we will see vari-
ance even if each action has none. More formally, ifX andY
are independent and normally distributed with common vari-
ance�2

XY

, and ifW takes its value according toX with prob-
ability p andY with probability1� p, then
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Since we can easily computep by recording the number of
times each action at a particular level is taken, and since the
action costs are estimates of the�

i

, we can use this formula
to subtract away the effects of the different means. Following
our assumption, we can then divide the remaining observed
variance byd to distribute it equally among all levels.

Using the model during tree probing is also straightfor-
ward. If we are trying to minimize the leaf cost, then for each
decision, we want to select the action with the lower expected
cost (i.e., the lower mean). Given that we have estimates of
the means and variance of the action costs and we know how
many times we have tried each action, we can compute the
probability that one mean is lower than another using a stan-
dard test for the difference of two sample means. We then
choose each action according to the probability that it is best.
To eliminate any chance of the algorithm converging to a sin-
gle path, the probability of choosing any action is clamped at
0:05

1=d for a depthd tree, which ensures at least one devia-
tion on 95% of probes.

Now we have a complete adaptive tree probing algorithm.
It assumes the search tree was drawn from a simple model
of additive discrepancy costs and it learns the parameters of
the tree efficiently on-line. Exploitation of this information
is balanced with exploration according to the variance in the
costs and the number of times each action has been tried. The
method extends to trees with large and non-uniform branch-
ing factors and depths. The underlying model should be able
to express assumptions similar to those built into algorithms
as diverse as depth-first search and depth-bounded discrep-
ancy search, as well as many other weightings not captured
by current systematic methods.

3 Empirical Evaluation
We first investigate the performance of this adaptive probing
algorithm using an abstract model of heuristic search. This
gives us precise control over the density of good nodes and
the accuracy of the heuristic. To ensure that our conclusions
apply to more complex domains, we will also evaluate the
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Figure 1: Probability of finding a goal in trees of depth 100
with m = 0.1 andp linearly varying between 0.9 at the root
and 0.95 at the leaves.

algorithm using two NP-complete search problems: the com-
binatorial optimization problem of number partitioning and
the goal-search problem of boolean satisfiability.

3.1 An Abstract Tree Model

In this model, introduced by Harvey and Ginsberg[1995] for
the analysis of limited discrepancy search, one searches for
goal nodes in a binary tree of uniform depth. Goals are dis-
tributed according to the two parametersm, which controls
goal density, andp, which controls the accuracy of the heuris-
tic. Each node either has a goal below it, in which case it is
good, or does not, in which case it isbad. Clearly, the root is
good and bad nodes only have bad children. The probabilities
of the other configurations of parent and children are:

P(good! good good) =1� 2m

P(good! bad good) =1� p

P(good! good bad) =2m� (1� p)

Following Walsh’s[1997] analysis of depth-bounded discrep-
ancy search, we will estimate the number of leaves that each
algorithm must examine before finding a goal using empirical
measurements over randomly generated trees. To provide a
leaf cost measure for adaptive probing, we continue the anal-
ogy with the constraint satisfaction problems that motivated
the model and define the leaf cost to be the number of bad
nodes in the path from the root.

Figure 1 shows the performance of depth-first search
(DFS), Korf’s [1996] improved version of limited dis-
crepancy search (ILDS), depth-bounded discrepancy search
(DDS), and adaptive probing on 2,000 trees of depth 100 with
m = 0:1. A heuristic-biased probing algorithm is also shown.
This algorithm selects the preferred child with the largest
probability that would be allowed during adaptive probing.
Following Walsh, we raise the accuracy of the heuristic as
depth increases. At the root,p = 0:9 which makes the heuris-
tic random, while at the leavesp = 0:95 for 75% accuracy.
ILDS was modified to incorporate this knowledge and take its
discrepancies at the top of the tree first.
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Figure 2: Performance on trees of depth 100,m = 0.1, andp
varying from 0.9 at the root to 0.98 at the leaves.

Adaptive probing quickly learns to search these trees, per-
forming much better than the other algorithms. Even though
DDS was designed for this kind of tree, its assumptions are
too strong and it always branches at the very top of the tree.
ILDS wastes time by branching equally often at the bottom
where the heuristic is more accurate. Thead hoc biased prob-
ing algorithm, which branches at all levels, is competitive
with ILDS (and will actually surpass it, given more time) but
fails to exploit the structure in the search space. DFS vainly
branches at the bottom of the tree, ignorant of the fatal mis-
take higher in the tree.

DDS does better when the heuristic is more accurate, since
its steadfast devotion to the preferred child in the middle and
bottom of the tree is more often correct. Figure 2 shows
the algorithms’ performance on similar trees in which the
heuristic is accurate 90% of the time at the leaves. DDS
has better median performance, although adaptive probing
exhibits more robust behavior, solving all 2,000 problems
within 4,000 leaves. (Indeed, DDS had not solved 1.4% of
these problems after 4,000 leaves and did not complete the
last one until visiting 15,000 leaves.) Similar results are ob-
tained in trees with uniform highp. Adaptive probing avoids
entrapment in poor parts of the tree at the expense of an initial
adjustment period.

Even with an accurate heuristic, however, the assumptions
of DDS can be violated. Figure 3 shows what happens in trees
in which the heuristic is accurate at the top of the tree and
random at the very bottom. DDS still has an advantage over
ILDS because a single bad choice can doom an entire subtree,
but adaptive probing learns a more appropriate strategy.

To ensure that our insights from experiments with the ab-
stract tree model carry over to other problems, we also evalu-
ated the algorithms on three additional kinds of search trees.

3.2 Number Partitioning
The objective in a number partitioning problem is to divide
a given set of numbers into two disjoint groups such that the
difference between the sums of the two groups is as small
as possible. It was used by Johnson et al. to evaluate sim-
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Figure 3: Performance on trees of depth 100,m = 0.1, andp
varying from 0.98 at the root to 0.9 at the leaves.
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Figure 4: Searching the greedy representation of number par-
titioning. Error bars indicate 95% confidence intervals around
the mean over 20 instances, each with 128 44-digit numbers.

ulated annealing[1991], Korf to evaluate his improvement
to limited discrepancy search[1996], and Walsh to evaluate
depth-bounded discrepancy search[1997]. To encourage dif-
ficult search trees by reducing the chance of encountering a
perfectly even partitioning[Karmarkaret al., 1986], we used
instances with 64 25-digit numbers or 128 44 digits numbers.
(Common Lisp, which provides arbitrary precision integer
arithmetic, was used to implement the algorithms.) To bet-
ter approximate a normal distribution, the logarithm of the
partition difference was used as the leaf cost.

The Greedy Representation
We present results using two different representations of the
problem. The first is a straightforward greedy encoding in
which the numbers are sorted in descending order and then
each decision places the largest remaining number in a parti-
tion, preferring the smaller partition. Figure 4 compares the
performance of adaptive tree probing with depth-first search
(DFS), improved limited discrepancy search (ILDS), depth-
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Figure 5: Performance on the greedy representation of num-
ber partitioning as a function of nodes generated.

bounded discrepancy search (DDS), and completely random
tree probing. To provide a comparison of the algorithms’
search orders, the horizontal axis represents the number of
leaves seen. Adaptive probing starts off poorly, like ran-
dom sampling, but surpasses all other algorithms after see-
ing about 1,000 leaves. It successfully learns an informative
model of the tree and explores the leaves in a more productive
order than the systematic algorithms.

However, recall that adaptive tree probing suffers the max-
imum possible overhead per leaf, as it generates each probe
from the root. (This implementation did not attempt to reuse
initial nodes from the previous probe.) The number of nodes
(both internal and leaves) generated by each algorithm should
correlate well with running time in problems in which the
leaf cost is computed incrementally or in which the node-
ordering heuristic is expensive. Figure 5 compares the algo-
rithms on the basis of generated search nodes. (To clarify the
plot, DFS and ILDS were permitted to visit many more leaves
than the other algorithms.) In a demonstration of the impor-
tance of overhead, DFS dominates all the other algorithms in
this view, and ILDS performs comparably to adaptive prob-
ing. DFS reuses almost all of the internal nodes on each leaf’s
path, generating only those just above the leaves. Since ILDS
needs to explore discrepancies at every level of the tree, it
will usually need to generate a significant fraction of the path
down to each leaf. DDS, which limits its discrepancies to
the upper levels of the tree, incurs overhead similar to that of
adaptive probing because it never reuses internal nodes in the
middle of the tree.

On instances using 64 numbers, adaptive probing again
dominated DDS, but was clearly surpassed by ILDS. (It per-
formed on par with a version of ILDS that visited discrepan-
cies at the top of the tree before those at the bottom.) This
suggests that, in these search trees, the advantage of adaptive
probing over ILDS and DDS increases with problem size.

The CKK Representation
A more sophisticated representation for number partitioning
was suggested by Korf[1995], based on the heuristic of Kar-
markar and Karp[1982]. The essential idea is to postpone
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the assignment of numbers to particular partitions and merely
constrain pairs of number to lie in either different bins or the
same bin. Numbers are considered in decreasing order and
constrained sets are reinserted in the list according to the re-
maining difference they represent. This representation creates
a very different search space from the greedy heuristic.

Viewing performance as a function of leaves seen (omitted
for space), DDS has a slight advantage over ILDS, although
adaptive probing is eventually able to learn an equally effec-
tive search order. DFS and random sampling too often ig-
nore the powerful heuristic. As in the greedy representation,
however, interior node overhead is an important considera-
tion. Figure 6 shows that DDS and adaptive probing are not
able to make up their overhead, and results using 128 num-
bers suggest that these difficulties increase on larger prob-
lems. Bedrax-Weiss[1999] argues that the KK heuristic is
extraordinarily effective at capturing relevant information and
that little structure remains in the space. These results are
consistent with that conclusion, as the uniform and limited
discrepancies of ILDS appear best.

3.3 Boolean Satisfiability
We also tested on instances of boolean satisfiability. Follow-
ing Walsh[1997], we generated problems according to the
random 3-SAT model with 3.5 clauses per variable and fil-
tered out any unsatisfiable problems. All algorithms used
unit propagation, selected the variable occurring in the most
clauses of minimum size, and preferred the value whose unit
propagation left the most variables unassigned. The cost of
a leaf was computed as the number of variables unassigned
when the empty clause was encountered.

Figure 7 shows the percentage of 200-variable problems
solved as a function of the number of nodes generated. Al-
though Walsh used these problems to argue for the suit-
ability of DDS, we see that both ILDS and purely ran-
dom sampling perform significantly better. (Crawford and
Baker[1994] similarly found random sampling effective on
scheduling problems that had been converted to satisfiability
problems.) DFS performs very poorly. Adaptive probing per-
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forms slightly better than random sampling (this is most no-
ticeable at the extremes of the distribution). Although slight,
this advantage persisted at all problem sizes we examined.

To summarize: in each search space we examined, the sys-
tematic search algorithms ranked differently in performance.
Even when taking its overhead into account, adaptive probing
performed at or near the top in every domain, except those in
which the node-ordering heuristic was very accurate.

4 Related Work
Juillé and Pollack[1998] used random tree probing as a
value choice heuristic during beam search, although no learn-
ing was used. Bresina[1996] used stochastic probing for
scheduling, introducing an fixedad hoc bias favoring chil-
dren preferred by the node-ordering heuristic. Adaptive prob-
ing provides a way to estimate that bias on-line, rather than
having to specify it beforehand, presumably using trial and
error. By removing this burden from the user, it also becomes
feasible to use a more flexible model.

Squeaky wheel optimization[Joslin and Clements, 1998]
adapts during tree search, although it learns a variable or-
dering for use with a greedy constructive algorithm, rather
than learning about the single tree that results from using
an ordinary variable choice heuristic. The relative benefits
of adapting the variable ordering as opposed to the value or-
dering seem unclear at present. Adaptive probing is slightly
more general, as the squeaky wheel method requires the user
to specify a domain-specific analysis function for identify-
ing variables that should receive increased priority during the
next probe.

Adaptive tree probing is similar in spirit to iterative im-
provement algorithms such as adaptive multi-start[Boeseet
al., 1994] and PBIL [Baluja, 1997], which explicitly try to
represent promising regions in the search space and generate
new solutions from that representation. For some problems,
however, tree search is more natural and heuristic guidance
is more easily expressed over extensions of a partial solution



in a constructive algorithm than over changes to a complete
solution. Adaptive probing gives one the choice of pursuing
incomplete heuristic search in whichever space is most suit-
able for the problem. It is a promising area of future research
to see how the two types of heuristic information might be
combined.

Tree probing is also related to STAGE[Boyan and Moore,
1998], which attempts to predict promising starting points
for hill-climbing given the values of user-specified problem-
specific features. The discrepancy cost model requires less of
the user, however, since a node-ordering function is the only
required feature. The tree structure itself can be used to give
the geometry for the search space model.

5 Possible Extensions
The particular adaptive probing algorithm we have evaluated
is only one possible way to pursue this general approach. It
would be interesting to try more restricted models, perhaps
forcing action costs to be a smooth function of depth, for ex-
ample. It may be worthwhile to distribute variance unequally
among depths. Additional features besides depth might be
helpful, perhaps characterizing the path taken so far.

The algorithm we have presented takes no prior experience
into account. An initial bias in favor of the heuristic may be
beneficial. Furthermore, it may also be possible to reuse the
learned models across multiple problems in the same domain.

Adaptive probing can be used for goal search, as we saw
with boolean satisfiability, as long as a suitable real-valued
cost measure can be found. If one is not available, it may
be possible to fit the model using many small instances of
similar problems (or small versions of the current problem)
that can be quickly solved and then to scale up the model to
guide probing on the original problem.

6 Conclusions
It is a widely held intuition that tree search is only appropriate
for complete searches, while local improvement search dom-
inates in hard or poorly understood domains. Adaptive prob-
ing can overcome the strong assumptions that are built into
systematic tree search procedures. By learning a model of the
tree on-line and simultaneously using it to guide search, we
have seen how incomplete heuristic search can be effective
in a tree-structured search space. When the node-ordering
heuristic is very accurate, a systematic discrepancy search al-
gorithm may be more effective. But for problems with un-
known character or domains that are less well-understood, the
robustness of adaptive probing makes it superior. Its flexibil-
ity raises the possibility that, for difficult and messy prob-
lems, incomplete tree search may even be a viable alternative
to local improvement algorithms.
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