
Reexamining Operating System Support for
Database Management

Citation
Vasil, Tim. Reexamining Operating System Support for Database Management. Harvard
Computer Science Technical Group TR-02-03.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017277

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017277
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Reexamining%20Operating%20System%20Support%20for%20Database%20Management&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

�✂✁✄✁✆☎✞✝✠✟☛✡✌☞✍✡✎☞✑✏✓✒✕✔✖✁✘✗✙✝✛✚✜✡✌☞✑✏✣✢✥✤✧✦★✚✩✁✘✟ ✢✞✪✍✔✍✔✬✫✭✗✩✚
✮ ✫✭✗✂✯✰✝✛✚✩✝✠✱✑✝✲✦✩✁✴✳ ✝✠☞✑✝✲✏✭✁✘✟✵✁✘☞✶✚

✷✹✸✻✺ ✼✾✽❀✿❁✸❃❂

✷❅❄❇❆❉❈✄❊✩❆❉❈✆❋

●❇❍ ✺❏■✠❑✛▲◆▼★❖❅P❘◗★✸✻▼❚❙✲◗★▼❱❯❲❖ ❍ ❑❳■
❨ ✽❩❖❁❬❭✽❩❖❫❪✰❴❵❙✲✸❛❬❜▼❚❖◆✿❁✸❝▲❉❞

● ✽❀✺❢❡✲❖❫✸✻❪❳❣✆▼❀❤✲✐❥✽❀✿❁✿❫✽❭◗❧❦❘❑✲✿♠▼♥▲❁▲♦✿

1

F I N A L P A P E R

Reexamining Operating System
Support for Database Management

Tim Vasil
vasil@fas.harvard.edu

CS 265: Database Systems
Harvard University

January 12, 2003

Abstract

In 1981, Michael Stonebraker [21] observed that database management systems written
for commodity operating systems could not effectively take advantage of key operating system
services, such as buffer pool management and process scheduling, due to expensive overhead
and lack of customizability. The “not quite right” fit between these kernel services and the
demands of database systems forced database designers to work around such limitations or
re-implement some kernel functionality in user mode.

We reconsider Stonebraker’s 21-year old observations in the context of a modern-day da-
tabase system, Microsoft SQL Server 2000, and the commodity operating system for which it
is explicitly designed, Microsoft Windows 2000. We show that operating system services have
become more efficient and flexible so as to meet many of SQL Server’s needs directly. We also
identify areas where operating system services continue fall short of meeting the needs of a
DBMS, and propose several enhancements to rectify these shortcomings.

1 Introduction
Twenty-one years ago Michael Stonebraker came

down hard on the services provided by commodity
operating systems, declaring them “either too slow or
inappropriate.” Indeed, key operating system ser-
vices, such as buffer pool management, process
scheduling, and locking primitives, were not designed
to meet the efficiency and flexibility needs of a per-
formance-driven database management system. Con-
sequently, database system designers, including
Stonebraker, grudgingly provided their own user-
level implementations of such services in their soft-
ware. For these designers, duplicating existing func-
tionality was not only painful, it wasted valuable de-
velopment, debugging, and maintenance time. The
ideal solution, according to Stonebraker, was for an
operating system to offer two levels of services: gen-
eral-purpose services acceptable to most applications,
and lower-level, customizable services that met the
unique needs of performance-driven applications
such as database systems.

Now, with over two decades having passed, we
cite the need for a review of Stonebraker’s criticisms.
Not only have the demands placed on an operating
system by a DBMS remained considerable, but en-
tirely new classes of applications have arisen, such as
web servers and directory servers, with similar de-
mands. Consequently, determining how adequately
an operating system supports the needs of these most

demanding and increasingly popular applications has,
if anything, has become an even more relevant ques-
tion today. Surprisingly, little research has been
dedicated to this area.

The conclusions we reach in this paper do not
simply provide a “delta x” analysis of Stonebraker’s
work, they stand alone as relevant observations and
criticisms of both application and operating system
design. By revealing areas where applications do not
take adequate advantage of improved operating sys-
tem services, we help to identify and eliminate unnec-
essarily redundant code so as to reduce development
and maintenance costs. Further, by revealing areas
where operating systems continue to neglect the true
needs of the most important and relevant applications
of the day, we provide some direction for the further
evolution of commodity operating systems. Finally,
by conducting the research to investigate these two
areas, we present performance metrics that may guide
programming “best practices” as well as reflect on the
overall effectiveness of commodity operating systems’
one-size-fits-all design methodology.

Using our own custom benchmarks, we identify
areas where modern operating systems now meet the
needs of database applications, and also those areas
where adequate support is still lacking. We hope that
our research, and potential future research motivated
by it, fosters a much better coupling between this
class of high-performance applications and the oper-
ating systems upon which they rely .

2

1.1 Platform
Stonebraker’s analysis focused on the needs of

the INGRES DBMS and the services provided by the
UNIX operating system, but his observations general-
ized to most of the database systems and commodity
operating systems of the day. We likewise are moti-
vated to choose a generalizable database/operating
system combination so that our results have broad
relevance. We aim to choose suitable parallels by
considering a popular relational database system and
a popular commodity operating system.

These criteria give us many choices, including the
option of evaluating Oracle running on a Unix plat-
form or that of evaluating Microsoft SQL Server 2000
running on the Microsoft Windows 2000 platform.
For this paper, we choose the latter option for two
important reasons. First, Yang and Li have already
explored the suitability of operating system services
for database systems on Sun Solaris platform [23], a
flavor of Unix. Second, we discovered that SQL
Server, unlike Oracle, is not designed to run on mul-
tiple platforms, enabling it to tightly integrate with
the Windows operating system [6], just as INGRES
tightly integrated with UNIX. Since the database is
not limited to the least common denominator of ser-
vices, which would likely be necessary if it were to
support multiple platforms, we expect SQL Server to
make better use of operating system services than
Oracle, and thus provide us with the best case sce-
nario of application-OS coupling from which to draw
conclusions. At the same time, since Windows 2000
is a commodity operating system much like many of
the flavors of Unix, we feel that the Windows
2000/SQL Server platform choice will have sufficient
generalizability to other modern-day operating sys-
tems and the respective relational databases these
operating systems support.

1.2 Windows 2000 Overview
Microsoft Windows 2000 is a symmetric multi-

processing (SMP), fully reentrant, preemptive multi-
tasking operating system designed for both low-end
client desktops and high-end datacenter servers. It
maintains a flat 32-bit virtual memory address space,
reserving the upper 2 GB for system memory and the
lower 2 GB for private process memory.1 Although
available in four flavors—Professional, Server, Ad-
vanced Server, and Datacenter Server—the core code-
base remains consistent. The more expensive flavors
are distinguishable by their ability to utilize addi-

1 To provide more memory to demanding server processes, Win-
dows 2000 Advanced Server and Datacenter Server have a boot
argument, /3GB, to limit operating system virtual memory to 1
GB so that processes may utilize 3 GB. For even more de-
manding server processes, Windows provides Address Window-

ing Extensions (AWE) that allows processes to map views of up
to 64 GB of physical memory into their virtual address space.

tional processors, physical memory, and concurrent
network connections, as well as by the additional
bundled software they ship with, including DHCP and
DNS servers.

Windows 2000 supports exactly two modes of
execution: kernel mode and user mode, even when
the processor supports more. Only core operating
system components and device drivers run in a privi-
leged kernel mode , which permits access to all physi-
cal memory and system resources. All other code
runs in unprivileged user mode, where its use of in-
structions and system resources are limited. The
scheduling component distributes processing time at
the thread level of granularity based on adjustable
thread priority levels; it treats application and operat-
ing system threads identically.

The Windows 2000 kernel sits above a hardware
abstraction layer (HAL) that provides a standard in-
terface to hardware-dependent mechanisms such as
acquiring locks, performing port I/O, and adjusting
the interrupt request (IRQ) level. Processes interact
with kernel services from user mode via the kernel’s
stub dynamic link library, typically via one of the
three available environment subsystems: Win32,
POSIX, or OS/2. Figure 1.2.1 summarizes the sy s-
tem’s architecture.

The principal interface to Windows 2000 is the
Win32 API, accessible from the Win32 environment
subsystem. This API exposes all public kernel- and
user-level services, and implements significant addi-
tional functionality, including the windowing and
graphics system. The Win32 subsystem is the only
environment subsystem required for Windows 2000
to run.

Hardware abstraction layer (HAL)

Kernel

System service dispatcher

Kernel stub DLL

Win32

subsystem

POSIX

subsystem

OS/2

subsystem

Win32
processes

Hardware

user mode

kernel mode

Figure 1.2.1

High-level view of the Windows 2000 architecture,
(adapted from Inside Windows 2000, figure 2-3 [18])

3

1.3 SQL Server 2000 Overview

SQL Server 2000 is the most popular relational
database running on the Windows platform, currently
holding 38% of the market share [19]. Its success
may be due, in part, to its tight integration with the
Win32 API [6]. Unlike database management sy s-
tems that typically re-implement preexisting kernel
services to run on platforms lacking such functional-
ity (the least-common-denominator approach to de-
velopment), Windows integration is a specific man-
date followed by SQL Server developers [6]. The
DBMS ships in seven flavors—Standard, Enterprise,
Enterprise Evaluation, Personal, Developer, Windows
CE, and Desktop—distinguishable by the maximum
database size, number of processors, and total physi-
cal memory supported.

The design goal of SQL Server 2000 parallels that
of Windows 2000—to scale gracefully from low-
performance desktop machines all the way up to high-
performance datacenter servers [6]. Towards this
end, SQL Server 2000 manages its memory buffers in
a dynamic, intelligent way that we discuss further in
section 4.

Though SQL Server runs as a single process, it
achieves high-volume symmetric multiprocessing by
scheduling queued tasks efficiently using its User
Mode Scheduler (UMS). Windows 2000 provides the
underlying thread scheduling and asynchronous I/O
completion notifications to make this possible. We
further discuss file I/O in section 5 and process archi-
tecture in section 6.

SQL Server communicates with clients using a
variety of interprocess communication (IPC) mecha-
nisms, including popular networking protocols such
as TCP/IP and IPX/SPX, named pipes, and shared
memory. Both SQL Server and its clients use a Net-
Library module to translate between protocol-
dependent message formats and SQL Server’s Tabular
Data Stream (TDS) format. We discuss interprocess
communication in depth in section 7.

Internally, SQL Server consists principally of a
relational engine and a storage engine that communi-
cate using an OLE DB interface and other mecha-
nisms, as outlined in Figure 1.3.1. The relational en-
gine performs higher-level functions such as com-
mand parsing and query optimizing, and the storage
engine handles lower-level functions such as tuple
access methods, buffering, locking, and transaction
support. SQL Server ensures ACID transactions with
its serializable transaction level, but it offers three
less restrictive levels: repeatable read, committed
read, and uncommitted read. Transaction support
is based on write-ahead logging with fuzzy
checkpointing.

To support transaction consistency, SQL Server
protects data resources uses a two-phase locking algo-
rithm at three levels of granularity—row, page, and
table—dynamically escalates existing locks into
coarser ones when it determines that doing so would
increase overall efficiency. Objects are locked using
ten locking modes, including the usual shared, exclu-
sive, intention-shared, and intention-exclusive
modes, plus some additional ones to efficiently sup-
port the bulk copy process (BCP) and other new func-
tionality; deadlocks are resolved using a lock cycle
detector thread. We discuss concurrency control in
depth in section 8.

1.4 Paper Structure
Following a summary of related work (section 2)

and a description of our suite of benchmarks (section
3), we analyze the same operating system services
that Stonebraker discusses in his original paper:
buffer pool management (section 4), file system man-
agement (section 5), scheduling and process man-
agement (section 6), interprocess communication
(section 7), and consistency control (section 8). In
each of these sections, we focus our analysis on the
implementations of Windows 2000 and SQL Server,
discussing the suitability of services provided by
Windows 2000 for SQL Server and suggesting en-
hancements to both the Windows 2000 kernel and
the Win32 API that would make these services more
useful. We introduce some newly relevant services in
section 9, and conclude in section 10.

Server Net-Library

OLE DB
communication

User Mode Scheduler (UMS)

Relational engine

Storage engine

I/O manager

Win32 API

non-OLE DB
communication

Database clients

process
boundary

Client Net-Library

Figure 1.3.1

High level view of the SQL Server 2000 architecture
(adapted from Inside SQL Server 2000, figure 3-1 [6])

4

2 Related Work
We reexamine Michael Stonebraker’s 1981 de-

termination that operating system services are inap-
propriate for database management systems [21].
Stonebraker’s evaluation focuses on UNIX and IN-
GRES, but many of his criticisms are generalizable to
other platforms. We consider these criticisms to be as
follows:

1. The buffer manager uses an inappropriate and
unalterable replacement strategy—last recently
used (LRU)—and does not have a selective force-
out option to immediately commit pages to disk.

2. The file system does not efficiently provide for
record-level access and wastes space by storing
file control block trees, directory trees, and keyed
access trees separately.

3. Task switching mechanisms are inefficient, and
the scheduler may deschedule database processes
while they are holding critical locks, instead of al-
lowing database systems to run at a higher prior-
ity levels and granting them the power to
deschedule themselves at the appropriate times.

4. Interprocess communication mechanisms are
inefficient.

5. Native locking mechanisms and crash recovery
support are insufficient.

2.1 Reassessments
Several teams of researches have attempted—or

are currently attempting—to reevaluate Stonebraker’s
work in the context of modern-day commodity oper-
ating systems. Li Yang and Jin Li [23] examine Sun
Solaris and Microsoft Windows NT in the areas of
buffer pool management, file system support, process
management and scheduling, and consistency con-
trol. They primarily discuss the details of the Solaris
API, and only briefly acknowledge services provided
by Windows NT. For both platforms, they fail to
compare the investigated kernel services to compara-
ble user-mode implementations or reveal whether or
not these services meet the needs of modern-day da-
tabase management systems.

Daniel Fellig and Olga Tikhonova [10] focus ex-
clusively on the Windows NT 4.0 buffer management
service and its use by SQL Server 7.0, the predecessor
to SQL Server 2000. They claim to empirically inves-
tigate the Windows NT buffer management policy,
but their testing procedure reveals that they are actu-
ally testing the replacement policy of the memory
manager, not the replacement policy of the buffer
manager. Additionally, their testing methodology is
suspect for at least three reasons: 1) a background
process runs simultaneously to dynamically change
the amount of memory available, 2) they do not con-
sider the effects of prefetching, and 3) key experimen-
tal variables—the number of pages to map and the

number of pages to revisit—are fixed without explana-
tion. This makes us question their conclusions that
Stonebraker’s complaints about buffer management
remain relevant for Windows NT.

Josh Forman and Mark Luber [11] are concur-
rently completing work similar to that of our own, so
their work is not yet available for review. Though
they limit the scope of their study to buffer pool man-
agement, sequential file layout, and interprocess
communication, they examine these services on both
Windows 2000 and a Unix platform.

2.2 Operating System Criticisms & Designs
The insufficiency of commodity operating system

services has been considered rather exhaustively, and
overwhelmingly researchers concur with Stone-
braker’s assessment that operating system services
are too opaque for some types of applications to util-
ize effectively. There are a wide variety of proposed
solutions, which we loosely classify into the categories
of “tweakable” kernels, extensible kernels, and
exokernels. These solutions differ by the level of ex-
tensibility the operating system exposes to user appli-
cations, ranging from tweaks of existing services
to the elimination of services beyond hardware
abstraction.

2.2.1 Tweakable kernels

Margo Seltzer, Christopher Small, and Keith
Smith [16] extend the BSD/OS 2.0 kernel so that
applications may tweak the buffer read-ahead size,
the lock granting policy, and the process scheduling
order, among other things. Their results show that
processes employing their interfaces can make better
utilization of resources and run more efficiently. For
example, the gzip compression utility runs 19% faster
using the kernel’s new interface to customize read-
ahead size.

2.2.2 Extensible kernels

Extensible kernel systems are distinct from
tweakable kernels in that they are designed from the
ground up to support modularity and flexible configu-
ration. The SPIN microkernel [3], for example, splits
resource abstraction and resource management into
separate domains, and allows processes to customize
resource management decisions using spindles—
system-specific privileged code that interfaces with
the resource abstraction layer in kernel mode. The
VINO microkernel [17] represents resources with ob-
jects that can be overridden dynamically by user
processes in a technique called grafting. Grafted
code runs in kernel mode and alters the behavior of a
kernel service or adds pre- and/or post-processing to
the service’s default behavior. Other microkernels,
such as Bridge and Scout, are also under develop-
ment.

SPIN and VINO both require the machine code of
their extensions to be produced using a special com-

5

piler that ensures safe behavior, such as memory ac-
cesses that only operate within acceptable ranges.
This verification technique is essential for the stability
of the operating systems, since poorly designed exten-
sions, which execute in unprotected kernel mode,
could potentially crash the entire system.

Though sometimes referred to as one [4], Win-
dows is not a microkernel because its core services are
not modular or extensible [18]. Drivers designed in
accordance with the Windows Driver Model (WDM)
can extend limited subsets of functionality, however;
for example, file system drivers can interface with the
buffer manager to slightly tweak the buffer replace-
ment strategy. And, like extensible kernels, Windows
uses a verification technique to ensure kernel-
privileged code is stable. In contrast with the
verification-by-compilation technique used by SPIN
and VINO, however, Windows 2000 employs a
verification-by-testing technique that requires “certi-
fied” drivers to be evaluated via rigorous testing con-
ducted by humans. Those drivers which pass these
tests and meet quality assurance requirements are
marked with a special digital signature indicating
compliance.

While SQL Server 2000 could have included a
WDM driver that bypasses file system overhead and
writes directly to raw partitions (like Oracle does), its
designers chose not to do so. In fact, the server does
not have any direct hooks into the kernel or extend
the kernel in any way; it interfaces solely with the
Win32 API.

2.2.3 Exokernels

Dawson Engler and M. Kaashoek argue that op-
erating systems are fundamentally flawed because the
resource abstractions they provide are unreliable,
hard to change, inefficient, and inflexible—in essence,
that abstractions cannot serve disparate application
needs appropriately [7]. They advocate an abstrac-
tion-free kernel, called an exokernel. Aegis [9] is
exokernel concept taken to the extreme, providing
very limited functionality with a mere handful of sys-
tem calls. It allows user-mode extensions for a lay-
ered approach to operating system design. The ExOS
kernel [8], for example, is an exokernel written as an
extension to Aegis. User applications can be designed
to run directly on ExOS, or on a library operating sys-
tem, such as one with a POSIX-compatible interface,
that sits on top of ExOS. In this manner application
are empowered to choose the appropriate level of
granularity—Aegis, ExOS, or POSIX—for their effi-
cient operation. The abstraction/efficiency tradeoff
seen here is exactly the type of functionality for which
Stonebraker was asking. We show that in certain ar-
eas Windows 2000 provides similar tradeoffs, but
without the complexity of multiple OS interfaces.

3 TheKub Benchmark
Our own observations and conclusions derive

from two principle sources: technical documentation
and benchmark results. All of our benchmark appli-
cations belong to Kub, a kernel vs. user mode
comparator benchmark suite. We wrote Kub from
scratch specifically for this paper, even though other
benchmarking suites such as lmbench and kbench are
available. We consider these other suites unsuitable
for our purposes since they are not designed to inter-
face with the Win32 API optimally and do not reveal
how much more efficient user-mode implementations
of these services might be.

Kub solves these difficulties by interfacing di-
rectly with the Win32 API and providing alternative
user-mode implementations of the kernel services it
tests. These user-mode implementations are not de-
signed to be full-featured solutions, but rather pro-
vide only the necessary , bare-bones support to reveal
the minimum cost associated with implementing each
service in user mode. Using Kub we can compare
timing statistics to reveal the maximum relative gain
obtainable by bypassing a kernel service and instead
implementing it in user mode. This type of compari-
son is crucial to the analysis which follows.

All of the benchmarks in the Kub suite report ker-
nel and user times in milliseconds and absolute run
times in microseconds. The kernel and user times are
determined by calls to the GetProcessTimes
Win32 API function, and the microsecond measure-
ments are tracked by the CPU’s high-resolution timer
and determined via calls the QueryPerformance-
Counter API function. On the system we used for
testing, the timer has a resolution of about 0.28 us.

The Kub benchmarking suite principally consists
of six benchmarks:

1. KubBind. This benchmark measures the costs
of performing all of the operations related to
mapping views of pages into virtual memory, in-
cluding binding and flushing (see section 4).

2. KubLocality. This benchmark correlates the
degree of spatial locality among file fragments
with sequential read time (see section 5).

3. KubLock. This benchmark compares the effi-
ciency of the file system locking mechanism to a
user-level locking mechanism we designed our-
selves (see section 8).

4. KubMessage. This benchmark measures
the costs of using several IPC technologies to
transport messages of varying size (see section 7).

5. KubReplaceStrategy . This benchmark exam-
ines the effectiveness of the buffer manager’s re-
placement strategy (see section 4).

6

6. KubSchedule. This benchmark compares
thread scheduling to user-mode fiber scheduling
to suggest the most efficient process architecture
(see section 6).

We compiled these programs using version 6.0 of
the Microsoft C++ compiler and executed them on an
800 MHz Intel Pentium III machine with 256 MB of
RAM running Microsoft Windows 2000 Server (build
2195). We discuss the details of these programs, and
their output, in subsequent sections. Source code for
the entire suite is available online.2

All of the benchmarks’ threads run at a high-
priority level, which means they are always be sched-
uled when they have work to do, preempting all other
system and application threads in the normal process
priority class or lower. Only a select few system proc-
esses run at a higher priority class, so the impact of
other processes on the benchmark timings is assured
to be minimal. The null benchmark, which simply
starts and stops the timer, reports user and kernel
times of 0 ms and total execution time as 3-4 us.
Since these numbers are negligible, we do not adjust
the times we report to account for the costs associated
with starting and stopping the timer. Because the
kernel and user times are supplied at such a high level
of granularity, we avoid describing them in our re-
sults. Additionally, we avoid short-running bench-
marks so that the total execution time is always at
least several orders of magnitude greater than 5 us.
In order to ensure that our benchmarks run for an
adequate duration, we often execute a task many
times; for example, in KubLock we measure the time
it takes to acquire and release not a single exclusive
lock, but thousands of such locks in sequence.

We now consider the five areas of operating sys-
tem support for database management with the help
of the Kub benchmark suite.

4 Buffer Pool Management
Stonebraker has wide-ranging concerns regard-

ing operating system-provided buffer management
services. He claims that the overhead of memory-
mapped files is too high, that the latency of buffer
accesses is too great, and that the buffer manager’s
replacement and prefetching strategies are inappro-
priate and not customizable by applications. We con-
sider how far Windows 2000 has come from this
sorry state of affairs.

2 The Kub codebase and the benchmark results we cite in this

paper are available in ZIP format on the web:
http://www.fas.harvard.edu/~vasil/kub

4.1 Memory-Mapped Files
We use the KubBind benchmark to evaluate the

efficiency of the Windows 2000 file mapping imple-
mentation and compare it to the traditional method
of file I/O. The file mapping technique utilizes the
functionality of the memory manager to map sections
of a file to an application’s virtual memory as it needs
them, and write these pages back to disk when they
are dirtied. The memory manager takes care of per-
forming all file I/O to make this possible. Some of the
intricacies of memory mapped files are discussed in
detail in the context of concurrency control (see sec-
tion 8.1).

The KubBind benchmark determines the laten-
cies of memory-mapped operations and compares
these latencies to the analogous operations performed
by traditional (unmapped) file I/O. The latencies of
memory-mapped operations are discovered by timing
specific system calls involved in the memory mapping
process. The results are shown in Figure 4.1.1.

The open file time corresponds to latency of the
CreateFile system call, which obtains a handle to
the file KubBind wishes to map. We vary the file size
from 64 KB to 64 MB. The create map time corre-
sponds to latency of the CreateFileMapping sys-
tem call, which provides a handle to a read-write vir-
tual memory map of the entire file. The function has
arguments that allow for the creation of smaller
maps, but we are interested in mapping the entire file
at once to determine how the function’s performance
changes as file size increases. The bind time corre-

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256 512 1024

Close file

Destroy map

Unbind

Bind

Create map

Open file

Mapping size (×64 KB)

M
ic

ro
s
e
c
o
n
d
s
 (

u
s
)

Figure 4.1.1

Costs associated with mapping views of a file of
various sizes, ranging from 64 KB to 64 MB. All of
the pages are dirtied and flushed before being un-
bound (source: KubBind benchmark)

7

sponds to the latency of the MapViewOfFile system
call, which provides a pointer to this mapped view.
Since the pointer indicates the starting address of a
contiguous buffer in virtual memory that maps to the
file’s contents, the buffer size matches the file size.
The unbind time corresponds to the latency of the
UnmapViewOfFile system call, which unmaps all
pages in the buffer’s range. Between the mapping and
unmapping calls, KubBind modifies all pages in the
map by incrementing every byte in the buffer range,
and then forces a flush of all modified pages to disk.
(We evaluate read/write and flush times later in this
section.) Note that KubBind opens all files with the
FILE_FLAG_WRITE_THROUGH flag, which guaran-
tees that flush functions do not return until all dirty
data has made its way to disk. The destroy map time
corresponds to the latency of the CloseHandle sys-
tem call, which destroys the system’s internal mem-
ory-mapped objects, and the close file time corre-
sponds to another CloseHandle system call, which
closes the mapped file.

As we see from Figure 4.1.1, all of the memory-
map operations are performed in constant time, ex-
cept for unbind. The latency of unbind is a function
of the number of pages involved in the memory map,
which makes sense since memory associated with
each one of these pages must be deallocated and the
system’s page tables updated. The bind time does not
show the same type of latency because the system
does not adjust the page tables when the map is cre-
ated; instead, it uses a lazy evaluation technique,
waiting for page faults before it does any substantial
work. The bind operation simply notes mapping re-
quest in a virtual address descriptor (VAD) tree by
inserting a node into the tree indicating the desired
mapping range. When a page fault occurs for a given
address, the memory manager uses this tree to de-

termine whether or not a given page should be
mapped to a file, and, if so, it loads the appropriate
data from the file into physical memory and then
modifies the page tables accordingly. Consequently ,
the cost of the memory mapping is not reflected in
Figure 4.1.1; the cost is accrued by the first read or
write access to a bound page.

The much higher costs of reads, writes, and
flushes are illustrated in Figure 4.1.2. Here we com-
pare costs of file I/O via memory-mapped files to that
of traditional (unmapped) files. For memory-mapped
files, initial read/write and subsequent read measure
the time it takes KubBind to increment every byte on
every page of the mapped pages. The initial
read/write always takes longer than the subsequent
one, even though the same code is executed in both
cases, because, as we just noted, the first read
prompts the operating system to load the request
page into memory and alter its page tables accord-
ingly. The flush value measures the cost of the
FlushViewOfFile system call, where all dirty pages
(the entire file) are written to disk. Total time sums
all of the costs involved in the file mapping (from
opening the file and creating the map, to modifying
all pages, to flushing these pages, to closing the map
and file).

For unmapped files, initial read/write refers to
reading the entire file into memory and writing this
buffer back to disk in 64 KB chunks using the Read-
File and WriteFile system calls. Subsequent read
refers to incrementing each byte of this memory, as in
the mapped file case. Flush measures the cost of the
FlushFileBuffers system call, where all modified
pages of the file that remain in the system’s buffer
pool are written to disk. Total time sums all the costs
involved in the process (from opening the file to

100

1000

10000

100000

1000000

10000000

64 256 1024 4096 16384 65536

Initial read/write Initial read/write

Subsequent read Subsequent read

Flush Flush

Total time Total time

C
o
s
t

(u
s
)

(KB)

Mapped files: Unmapped files:

Figure 4.1.2

Comparison of costs performing file I/O functions with memory-mapped files and traditional (unmapped)
files (source: KubBind benchmark)

8

modifying the entire file to flushing modifications in
the buffer pool to closing the file).

The two file I/O techniques appear to have some
tradeoffs. While the initial read/write time for mem-
ory-mapped files is smaller, the flush time for un-
mapped files is smaller. We attribute these differ-
ences to the distinct caching policies used by the
memory manager (in the mapped file cases) and the
buffer pool manager (in the unmapped file cases).
The buffer pool manager is more eager to flush dirty
pages to disk than the memory manager, and begins
doing so while the initial read/write is proceeding;
thus, the initial read/write times of file I/O reflect
this cost. The memory manager, on the other hand,
has a modified page writer thread that writes dirty
pages every five minutes or as the number of modified
pages exceeds a dynamically calculated threshold
value [18], so hardly any page flushing happens at the
initial read/write stage.

Since the background activity of the memory
manager and the buffer pool manager make policy
decisions and perform flushes at various stages of
KubBind’s execution, the only truly reliable metric is
total time, which reflects the total latency of the entire
process. As the green bars illustrate in Figure 1.4.2,
the difference in cost between mapped file I/O and
unmapped file I/O is negligible. Stonebraker’s wor-
ries over the expense of mapping files into virtual
memory space seems to be unfounded. Modern hard-
ware and Windows 2000 are able to efficiently man-
age virtual memory.

The decision concerning when to use a particular
method should depend in part on which method is
more convenient for a specific task, and how much
control is desired over when the actual disk reads and
writes occur. The unmapped technique seems to offer
more control, since ReadFile fetches data immedi-
ately and WriteFile writes data in short order. The
memory-mapped technique uses lazy reading—by
waiting for the first access to a page—and writes dirty
pages at a much less frequent interval than the buffer
pool manager.

4.2 Buffer Management Strategies
The buffer manager exposes four types of buffer

management directives that processes can choose
from to indicate their preferred the prefetching and
replacement strategies: [18]

• Normal strategy. This strategy tells the buffer
manager to asynchronously read ahead up to 64
KB of data by extrapolating the last three reads.
Once referenced, pages are unmapped and placed
at the end of the memory manager’s standby or
modified list, depending on whether or not they
are dirty.

• Sequential strategy. This works like the nor-
mal strategy, but tells the buffer manager to read
ahead three times as much data. Once refer-
enced, pages are unmapped and placed at the
front of the standby or modified list.

• Random strategy. This strategy prevents read-
aheads and minimizes page unmappings.

• No caching. This strategy tells the buffer man-
ager not to prefetch or cache any pages.

We use the KubReplaceStrategy benchmark to
determine the effectiveness of these different strat e-
gies by performing file I/O both sequentially and ran-
domly on 64 KB chunks of data in a 1 MB file. The
benchmark iterates over four variables: the prefetch-
ing/replacement strategy (sequential, random, none),
the type of I/O (read or read/write), the access pat-
tern of I/O (sequential or random), and the file I/O
technique (unmapped or mapped). For each of the 24
tests, KubReplaceStrategy first creates a fresh 1 MB
file, copies it, deletes it, and then performs the I/O
operations on the copy of the file. This guarantees
that the buffer pool does not contain any cached data
of the file in memory, which would skew results.

When the type of I/O is simply read, 16 reads of
64 KB each are performed on the file. With a sequen-
tial access pattern, these 64 KB chunks are read in
sequence from file offset zero upward. With a ran-
dom access pattern, these 64 KB chunks are selected
at random 64 KB-offsets. All of the random access
pattern tests use identical offsets, which are randomly
selected at the start of benchmark using the C run-
time library’s rand function.

When the type of I/O is read/write, each read oc-
curs in the manner previously described. The subse-
quent write first increments every byte in the 64 KB
buffer and then writes this buffer to disk. When the
memory-mapped I/O technique is used, touching
each byte ensures that all 16 pages of the 64 KB view
are dirtied. At the end of the write process, Flush-
FileBuffers (for unmapped I/O) and Flush-
ViewOfFile (for mapped I/O) are called to ensure
that the entire 64 KB chunk of data is sent to disk
immediately.

The results of the benchmark appear in Figure
4.2.1. Concerning unmapped files, employing either
prefetching technique helps reduce read latency. As
expected, the sequential prefetching technique does
especially well as lowering the latencies of sequential
reads. When writes are added to the mix, however,
the benefits of prefetching are dimmed by the high
latencies of buffer copies and disk I/O.

The mapped files do not benefit from the pre-
fetching techniques chosen by KubReplaceStrategy,
apparently because the memory manager does not
ask the buffer pool manager for hints when loading
pages. We do see that the clustering technique em-
ployed by the memory manager to take advantage of

9

spatial locality (by faulting nearby pages) does pro-
vide some benefit to memory-mapped files when the
reads are sequential. We also see that reads to
mapped files are about an order of magnitude faster
than reads to unmapped files; this difference results
from the latency of the buffer copies needed to trans-
fer data from the buffer pool to the process’ own
memory in the unmapped file case. For mapped files,
no buffer transfer is necessary. Note that for write
operations the expense of these extra copies is negli-
gible due to the much larger expense of disk I/O.

In summary we see that prefetching by the buffer
manager can reduce read latencies for unmapped
files, although such benefits are minimal when there
is a high volume of writes. Mapped files do not bene-
fit from the services of the buffer manager, but reads
to mapped files are faster because there is no need for
a buffer copy.

4.3 Support for Database Management
The KubBind benchmark addresses Stone-

braker’s concern about the overhead of memory-
mapped files; it shows that memory-mapped files
offer no real disadvantage over traditional unmapped
file I/O: the overall latencies are the same. The po-
tentially substantial bookkeeping task of identifying
pages currenty mapped in memory does, however,
remain a burden to the DBMS. The KubReplace-
Strategy benchmark shows how choosing among a
limited number of prefetching strategies may increase
performance, but there remains no way for a DBMS
to offer its own prefetching advice, though certainly it
would know more about the data to prefetch that the
buffer manager could possibly surmise from access
history alone. Overall, we have seen some improv e-

ment in efficiency, but very little improvement in
flexibility. Successful database systems likely need to
forego the file mapping technique so that they have
more precise control over when pages are actually
read and written, and they need to bypass the buffer
manager in order to fine-tune page prefetching and
replacement.

For database data, SQL Server does not take ad-
vantage of memory-mapped file functionality or the
buffer pool. This may seem surprising, since the
KubReplaceStrategy suggests that the alternative,
unmapped file I/O, would be more expensive than
using mapped I/O. This is true, but there is yet an-
other alternative for file I/O: scatter/gather I/O.
This technique allows the file system to access process
buffers directly without the overhead of a single
memory copy. Even better, a single read or write re-
quest can involve regions of discontinuous memory
(hence the name “scatter/gather”). The only restric-
tions are that each buffer is aligned on a page bound-
ary (easily accomplished by allocating memory with
the VirtualAlloc function) and that the write sizes
are multiples of the sector size. The technique actu-
ally performs better than simple mapped files because
it bypasses the memory manager. It also gives proc-
esses precise control over when buffers are read from
disk or written to disk, unlike memory-mapped pages.

Since disk latency remains on the critical path of
efficient query processing, SQL Server implements its
own prefetching and replacement strategy on top of
scatter/gather I/O to obtain maximum disk perform-
ance. SQL Server performs different types of read-
ahead for tables and indexes. It also includes various
optimizations prevent buffer thrashing as a result of
merry-go-round scans. Finally, it self-tunes the
amount of physical memory it utilizes to keep its

1

10

100

1000

10000

100000

1000000

Random read Random read/write Sequential read Sequential read/write

No prefetching No prefetching

Random prefetching Random prefetching

Sequential prefetching Sequential prefetching

Mapped files: Unmapped files:

Figure 4.2.1

Cost of traditional and mapped file I/O in tandem with various buffer prefetching techniques. Chunks of 64
KB are read and written both sequentially and randomly from and to a 1 MB file.
(source: KubReplaceStrategy benchmark)

10

buffer as large as possible while not hindering system
performance [6].

We find SQL Server’s techniques to managing its
own buffer pool remain painfully redundant with
those of the memory manager and buffer pool man-
ager. Unfortunately, in the current implementation
of Windows 2000, scatter/gather I/O is incompatible
with both managers. In fact, any file used for scat-
ter/gather I/O must have caching explicitly disabled.
Ideally, scatter/gather functions would be able to op-
erate on mapped views of files so that SQL Server and
similar applications need not duplicate the fine-tuned
mechanisms of the memory manager. This would also
require that the memory manager give applications
greater flexibility concerning when dirty pages are
written to disk, something we address in section 8.1.

5 File System Management
Stonebraker makes several complaints about the

functionality of file systems. The UNIX file system he
reviews did not provide extent-based allocations (for
spatial locality), atomic record I/O, or keyed access
trees, and it wasted space by maintaining separate
trees for organizing directories and file fragments.
Considering these drawbacks, we understand why
databases sometimes bypass file systems entirely and
perform I/O directly on raw disk partitions. System R
did so back in 1976, and Oracle recommends doing
so today.

After discussing the tradeoff between using the
raw partitions versus the native file systems sup-
ported by Windows 2000, we evaluate how well these
file systems alleviate Stonebraker’s criticisms. For
completeness, we add two important file system-
related topics not considered by Stonebraker: zero-
fill guarantees and advanced I/O techniques.

5.1 File Systems vs. Raw Partitions
Windows 2000 includes native support for sev-

eral types of file systems, including FAT16, FAT32
and NTFS. These file systems vary by the maximum
partition size they support, the robustness and effi-
ciency of their recoverability scheme, and value-add
services, such as data encryption.

FAT32 uses a lazy-write recoverability scheme. It
performs I/O using an intelligently managed cache
that it flushes modifications to disk in an optimized
way, so as to minimize actual disk activity. The draw-
back to this approach is that there are times when the
physical disk is in an inconsistent state; thus system
crashes or power failures necessitate the need for a
disk checker utility that repairs such inconsistencies.
Sometimes, however, these inconsistencies are not
recoverable, and user data is permanently lost.

NTFS uses a write-ahead logging scheme similar
to that employed by databases. NTFS flushes to disk
log entries of metadata operations before actually

performing them; thus it can roll back to a consistent
state interrupted metadata operations, such as file
extends and directory structure modifications, by
reading the log entries for unfinished metadata opera-
tions in reverse. As a value-add, NTFS also includes
support for security descriptors, compression, and
encryption.

While the NTFS file system makes better assur-
ances about recovery than FAT, neither system makes
any guarantee about the recoverability of user data.
The designers of these file systems chose not to do so
as an intentional trade-off between recoverability and
performance [18]. Neither file system exposes any
transactional support primitives to assist applications
in making this data recoverable, either.

At a superficial level, these file systems do not
seem to offer much more support to a database sys-
tem than that offered by a raw partition. A database
system writing directly to a raw partition, which is not
managed by any file system, would not lose or gain
any degree of recoverability, but would certainly gain
in efficiency, since the overhead of maintaining the
file system has been eliminated. There are draw-
backs, however. Database administrators must man-
age database data, and they are accustomed to doing
so using traditional file utilities and operations
(move, copy, etc.), which would be unavailable if da-
tabase data were to reside on a raw partition (since
these things require a file system driver).

As it turns out, the gains in efficiency resulting
from bypassing FAT or NTFS are negligible. Even
when the I/O system is fully throttled, the perform-
ance difference between running SQL Server 2000 on
a file system versus a raw partition is around 2% [6].
Therefore, on the Windows platform, the administra-
tive costs of managing the raw partition outweigh
their benefits. This explains why Microsoft recom-
mends that its SQL Server customers store their data-
base files on FAT or NTFS partitions, and not on raw
partitions. Given this preference toward file systems,
we examine the relevance of Stonebraker’s criticisms
concerning these systems.

5.2 Spatial Locality
Extent-based allocations are important to a

DBMS since disk arm movement is a very expensive
part of disk I/O. By clustering related data on physi-
cally close sectors, a database system can cut down on
read time.

SQL Server 2000 supports both FAT and NTFS
file systems, though neither offers extent-based file
allocation to promote spatial locality. Windows 2000
does offer defragmentation I/O control codes for use
with the DeviceIoControl function that allow
processes to determine the actual disk sectors allo-
cated to a file (FSCTL_GET_RETRIEVAL_POINTERS)
and defragment files as necessary
(FSCTL_MOVE_FILE), but these control codes are

11

low-level and intended for defragmentation utilities
that run occasionally , not high-performance servers.
Further, they do not work with earlier versions of
Windows or with NTFS when cluster sizes are greater
than 4 KB, and they don’t guarantee that files are
placed on physically proximal clusters, since two logi-
cally numbered clusters may in fact be on opposite
parts of a disk.

To put the locality problem in perspective, we use
the KubLocality⋅benchmark to estimate how impaired
read time becomes as the spatial locality of file frag-
ments deteriorates. KubLocality creates a 640 KB
data file in 4 KB chunks. In between each 4 KB write,
it appends some data into a separate “delocalizing”
file on the same disk (separate runs of the benchmark
vary the size of this data from 4 KB to 4 MB). Since
FAT and NTFS do not support extents, they interleave
the data of these two files and thus provide them both
with poor spatial locality. We verified this behavior
by using the DeviceIoControl function to deter-
mine exactly how many fragments into which our test
file was divided, and the number of fragments did in
fact reveal interleaving. The NTFS disk we tested had
an allocation size of 4 KB, while the FAT32 disk had
an allocation size of 32 KB. For NTFS, our 640 KB
file was reported as occupying 160 distinct fragments
(and 640 ÷ 160 = 4 KB). For FAT32, our 640 KB file
was reported as occupying 20 distinct fragments
(and 640 ÷ 20 = 32 KB). The space between each
fragment matched the amount of interleaved data we
wrote to the de-localizing file in between each write to
the data file.

In turn, KubLocality creates fragmented 640 KB
data files on both NTFS and FAT32. One such file has
4 KB interleaving chunks between each allocation
unit, another has 8 KB, and so on, up to 4 MB.
KubLocality reports sequential scan latencies for all
of these files, and the results are shown in Figure 5.2.1
(in the “single delocalizing file” category). The data is

presented using a bubble graph because a third di-
mension of data appeared during our testing: the
number of fragments. Unexpectedly, the number of
fragments our data file occupies decreases under
FAT32 as the interleaved chunks exceed 64 KB. Thus,
the third dimension of data in Figure 5.2.1, the size of
the bubbles, represents the number of fragments into
which the data file is divided. To be specific, the
number of fragments drops to 16 with 128 KB inter-
leaved chunks, to 9 with 256 KB chunks, 5 with 512
KB chunks, and 4 with 1024 KB chunks. NTFS always
remains consistent with 160 fragments, irrespective
of interleave size. We figure this behavior may be due
to some intelligence within the FAT32 file system
driver that the NTFS driver lacks: the ability to iden-
tify large files and reserve extra space for their
growth—in other words, that it has some primitive
ability to support extents. Recall that in KubLocality,
we use a single “de-localizing” file to interleave with
our data file. As this delocalizing file grows large (it
becomes 640 MB for the 4 MB interleaving test), per-
haps FAT32 dedicates some extra space for extents,
allowing, as a side effect, for our data file to have bet-
ter spatial locality. To test this, we ran KubLocality
again, but had it create separate delocalizing files in
between each 4 KB write to the data file. In this case,
FAT32 in fact remained consistent in distributing the
data file into 20 fragments, even at the higher inter-
leave sizes. This suggests that FAT32 may indeed
have some extent-like logic, but since we ran our tests
on a well-used (though mostly unfragmented) file
system, we do not have the control conditions neces-
sary to be confident in such a theory. The behavior is
reproducible on our test system but may, in fact, be
coincidental.

Regardless of whether the FAT32 behavior is
intentional or not, we certainly see from the results of
the KubLocality benchmark that spatial locality is
crucial to efficient file I/O. On the disks we tested,
once the space between fragments extend beyond 100

0

250

500

750

1000

1250

1500

1750

2000

2250

1 10 100 1000 10000

NTFS - Single delocalizing file

0

50

100

150

200

250

1 10 100 1000 10000

FAT32 - Separate delocalizing files

FAT32 - Single delocalizing file

F
u
ll

s
e
q
u
e
n
ti
a
l
s
c
a
n
 t

im
e
 (

m
s
)

Space between fragments (KB)

F
u
ll

s
e
q
u
e
n
ti
a
l
s
c
a
n
 t
im

e
 (

m
s
)

Space between fragments (KB)

Figure 5.2.1

Cost of sequentially reading a 640 KB file with varying space between fragments; the size of the circles show
the relative number of fragments into which the file is divided (source: KubLocality benchmark)

12

KB, we see that the seek time increases dramatically;
sequential scan times become up to 800 times longer
in our tests.

Windows 2000 file systems need to provide some
mechanisms for extent-based allocations. Since data-
bases typically grow files in large chunks, anywhere
from 64 KB to several megabytes, file systems should
make a best-effort attempt to give these large alloca-
tions good spatial locality. As we have seen from the
KubLocality benchmark, any simultaneous file ap-
pends by other process may seriously disrupt spatial
locality otherwise, and in the multithreaded Windows
environment, this is a very likely scenario. The extent
functionality Windows should provide need not be
explicitly exposed through an API—the file system
could perform such a task automatically , as FAT32
seemed to attempt in our benchmark runs.

5.3 Record-Level Primitives &
Triple Indexing

The character array-based NTFS and FAT file
systems may not adequately meet the needs of some
important data-centric applications such as web serv-
ers, e-mail clients, personal information managers,
and, of course, databases. These applications tend to
store and traverse large amounts of homogenous
data, suggesting natural proclivities to a record-base
file system. A file system that provided record-level
primitives guaranteeing read/write atomicity and
natively supporting indexing structures would seem
highly relevant and useful. The IBM VSAM file sys-
tem and the Compaq RMS file system are two exam-
ples of record-based file systems that do offer primi-
tive record-based file I/O, but neither guarantees at-
omicity for writes. There has been some interesting
research into offering such guarantees [12], but to
our knowledge no commercially viable system is yet
available.

If Windows were to adopt a record-based file sys-
tem, some of the aforementioned applications would
benefit. We argue that SQL Server likely would not.
There are a host of integration issues making the use
of a record-base file system complex and perhaps in-
efficient. For example, record-based file systems of-
ten include mechanisms for keyed access. Such func-
tionality could not match the robustness of SQL
Server’s own keyed access data structures, which in-
cludes a tightly integrated two-phase locking protocol
and intricate prefetch and caching routines. In es-
sence, for the record-level file system to be advanta-
geous to the database system, it would have to incor-
porate much of the database system’s functionality or
provide sufficiently flexible interfaces to permit the
database system this functionality. The benefit of all
this complex integration seems minimal.

Stonebraker hoped that file, data, and keyed ac-
cess trees could all be consolidated into a single tree
structure. His hope was that the integration would

reduce overhead. Yet to date the layered approach to
technology (e.g. OS buffers on top of hardware
caches, client-middleware-server architectures, busi-
ness/presentation layers), has proved to be relatively
successful. While disk is now cheap enough so that
the overhead of maintaining separate trees is mini-
mal, we also see that for SQL Server the overhead of
the file system in its entirely is, in the worst case, a
minimal 2%.

5.4 Zero-Filled Pages
One point neglected by Stonebraker but certainly

important for database system designers is guaran-
tees the operating system may or may not make about
the state of freshly allocated data. Ideally, designers
like to see newly allocated memory or disk sectors
zero-filled, since this represents a valid unallocated
state, as opposed to undefined garbage bits which a
DBMS would be burdened with initializing.

Windows 2000 guarantees that all pages allo-
cated in memory using the VirtualAlloc function
are zero-filled, but it does not make any guarantee
about the state of file extents made using the
SetEndOfFile function. These extents may or may
not be zero-filled, so the database designer must
manually initialize them. If the database wishes to
grow a data file by even a modest value, say 64 KB, it
must zero-fill the entire extent itself; and this can de-
lay other processing.

Though really nothing more than a minor nui-
sance, the lack of support by the operating system to
assist in the zero-filling task is discouraging. A possi-
ble workaround might involve combining the zero-
filling capability of the memory manager with the
functionality of the file system driver by using mem-
ory mapped files. A call to CreateFileMapping
that specifies as its boundary the current file size plus
the extent size desired will, in fact, grow the file and
zero-fill it, since the memory manager zero-fills new
pages and these pages will get flushed to the new ex-
tent. Unfortunately, memory-mapped files are not a
viable method of file I/O for database systems, as we
discuss in section 8.1.

5.5 Advanced I/O Techniques
 SQL Server 2000 takes advantage of two new file

I/O features in Windows 2000: asynchronous I/O
and scatter/gather I/O. Asynchronous I/O allows
SQL Server to better utilize the CPU while the disk
processes I/O requests. Scatter/gather I/O, as we
discuss in section 4, allows reads and writes of con-
tiguous logical storage to be based on discontinuous
allocations of memory, which makes SQL Server’s job
of maintaining its memory easier and more efficient.

13

6 Scheduling & Process Management
Without operating system support for threads,

database designers typically contemplate a process-
per-user approach or a server approach to DBMS de-
sign. Ever-negative Stonebraker considers the draw-
back to both approaches [21]:

• The process-per-user approach creates a
new DBMS process for each database client.
Though these processes share data segments such
as the lock table and the buffer pool, it requires
an excessive amount of memory to maintain mul-
tiple process states, suffers from the potentially
high expense of task switches, and requires
mechanisms to synchronize inter-process mem-
ory sharing.

• The single-server approach uses a single
DBMS process to handle all client transactions.
The process must use IPC to communicate with
database clients, and it must provide its own
scheduling mechanisms to handle client requests.
The approach is akin to re-implementing the ker-
nel’s process scheduler in user mode.

The process-per-user approach is unacceptable
for any large-volume DBMS which may have thou-
sands of concurrent users. The overhead needed to
maintain each process is simply too great. Most data-
base system designers take the server approach and
implement their own scheduling package.

 Windows 2000 natively supports threads, which
makes the single-server approach much easier to im-
plement. Additionally, the Win32 API supports fi-
bers, which are like light-weight threads; each fiber
has its own call stack but executes within the context
of a specific thread. Fibers allow programs to utilize
less memory, avoid the cost of some context switches,
and take greater control over their own scheduling.

Database designers thus have four viable process
management options on Windows 2000:

1. The thread-per-user approach. This is simi-
lar to the process-per-user approach in that the
DBMS trades the costs of process switches and
overhead for that of thread switches and over-
head. Though thread contexts require less mem-
ory than that of processes, their overhead is still
relevant. Since Windows 2000 schedules
threads, not processes, the latency of a thread
switch is comparable to that of a process switch.
The benefit of thread-per-user over process-per-
user is that all of the threads share the same vir-
tual address space, making it easier to share
common data structures.

2. The fiber-per-user approach. This is similar
to the single-server approach in that fibers are a
user-mode construct provided above the kernel,
and that processes are responsible for the sched-
uling of their own fibers. The benefit of this ap-
proach over the single-server approach is that the

Win32 library automatically maintains a distinct
stack for each fiber, which simplifies any user-
implemented scheduling code.

3. The thread pooling approach. This concept
adapts the thread-per-user approach by placing a
limit on the number of threads a DBMS server
may create. Once the limit is reached, additional
clients must wait in a queue for an available
worker thread before being processed. In asyn-
chronous thread pooling implementations,
threads that would normally block on system
calls such as disk I/O can instead use asynchro-
nous I/O and service clients in the queue while
these system calls complete.

4. The fiber pool approach. In this approach, a
thread is created for each CPU and a fiber pool
handles user requests. The DBMS schedules fi-
bers to run on available threads and deschedules
them as they wait for asynchronous operations to
complete. Of the four approaches, this approach
makes maximal use of system resources with
minimal overhead.

6.1 Cost Analysis
We use the KubSchedule benchmark to analyze

the overhead of threads and fibers to determine
whether or not the performance gain from using fi-
bers is enough to motivate database systems to per-
form their own scheduling. The benchmark evaluates
four scheduling techniques:

1. Thread-switching overhead. Two threads are
created with the CreateThread function; these
threads share two event objects. An event object
is created with the CreateEvent function, and
allows a thread to block until another thread sets
the event using the blocking Wait-
ForSingleObject function. Each thread in
KubSchedule sets the other thread’s event and
then blocks to wait for its own event to be sig-
naled a given number of times. KubSchedule
measures the costs associated with this many
thread context switches. Each context switch is
triggered by the blocking call almost as soon as a
thread is scheduled—much sooner than when the
quantum assigned to the thread would expire
(typically between 10 and 15 ms on Intel’s x86
systems [18]).

2. Fiber-switching overhead. Fibers must be
scheduled on top of existing threads, and a fiber
can be created only by another fiber. To get the
process started, a single thread uses a Convert-
ThreadToFiber call to initialize Win32 memory
structures to support fibers and convert itself to a
fiber. Subsequently each fiber calls SwitchTo-
Fiber to switch fiber contexts a given number of
times. KubSchedule measures the costs associ-
ated with this many fiber context switches. Note
that these switches happen in the context of a

14

single thread, so that they do not involve the
overhead of the Windows 2000 scheduler.

3. DLL procedure call overhead. This is not a
scheduling technique per se, but is useful to get a
relative sense for how expensive a context switch
is compared to a DLL procedure call. All Win32
function calls, at minimum, involve the overhead
of a DLL procedure call. KubSchedule repeatedly
calls a DLL procedure that simply returns.

4. Procedure call overhead. To compare the
overhead of DLL calls to intra-process procedure
calls, KubSchedule also repeatedly calls an intra-
process procedure that simply returns.

The KubSchedule benchmark measures the
amount of time it takes to perform between 100 and
100,000 scheduling switches (be they thread
switches, fiber switches, or procedure calls). The re-
sults of KubSchedule, shown in Figure 6.1.1, demon-
strate that thread context switching is an order of
magnitude less efficient than fiber context switching,
and that fiber scheduling is an order of magnitude
less efficient than procedure calls. Do note, however,
that our fiber context switching code was devoid of
any user-mode scheduling algorithm whereas the
thread context switching made use of the Windows
2000 scheduler. In actual applications, the user
mode scheduler necessary in a successful fiber-based
implementation may put the two technologies more
in line with each other with respect to latency , al-
though fibers retain the benefit of a smaller memory
footprint.

Note that Stonebraker’s original complaint about
the inefficiency of context switches was that they cost
over 1,000 instructions on UNIX while efficient sys-
tems had reduced the expense to about 100 instruc-
tions [21]. Now compare this order-of-magnitude
difference between the costs associated with thread
and fiber scheduling. It appears that Windows has
provided database systems with a more efficient, less
abstract interface in which to perform scheduling
with the order-of-magnitude reduction Stonebraker
requests.

While the costs of the scheduling mechanisms
generally grow linearly, the lower three lines seem to
bend a bit between 1,000 and 10,000 switches, most
likely because of interruptions by the Windows
scheduler to see if other threads are available to run.
Note that the Windows 2000 scheduler queues wait-
ing-to-run threads in linked-list structures, with one
such structure for each pr iority level, so that it can
make scheduling decisions in constant time, irrespec-
tive of the number of threads in the system. When we
modify KubSchedule to create up to 2,000 back-
ground threads at normal priority before beginning
its usual tests (recall that benchmark tests always run
at a high priority level), we find no differences in the
results. Thus, performance of the system scheduler
does not change as the number of threads increases.

As an interesting aside, we note that the cost as-
sociated with a DLL call matches that of a standard
procedure call, indicating that calls to Win32 func-
tions are no more expensive than calls to intra-
process functions. We attribute this to Windows’
native support for dynamic link libraries.

6.2 Support for Database Management
Databases want symmetric multiprocessing to 1)

handle background operations such as checkpointing,
lazywriting, log writing, and cleanup tasks, and 2) to
process concurrent client requests.

The first need is easily satiable by giving each of
these background operations its own thread, assign-
ing relative priority levels to these threads, and letting
Windows 2000 perform thread scheduling using its
own highly-tuned algorithms. In fact, this is exactly
what SQL Server does.

The second need cannot be solved using the same
technique,since a thread-per-client approach requires
too much overhead. Instead, SQL Server uses thread
pooling to dynamically create between 16 and 100
worker threads (as usage demands dictate) [6]. SQL
Server provides its own User Mode Scheduler (UMS)
to handle dispatching client requests to threads.

As an optimization, SQL Server exposes a “light-
weight pooling” option that permits database admin-
istrators toggle the server between thread and fiber

1

10

100

1000

10000

100000

1000000

10000000

100 1000 10000 100000

Procedure

DLL Procedure

Fiber

Thread

Number of switches

M
ic

ro
s
e

c
o

n
d

s
 (

u
s
)

Figure 6.1.1

Scheduling technique cost vs. number of switches
(source: KubSchedule benchmark)

15

scheduling mode. The fiber mode creates no more
worker threads than CPUs available, and has the UMS
distribute work to fibers that run on top of these
threads. Using fibers on a multiprocessor system
with high CPU utilization improves performance by
around 5% [20].

While SQL Server does make extensive use of the
Windows 2000 threading model and I/O completion
ports to handle a high volume of concurrent connec-
tions without the need for a transaction manager [6],
it must still provide its own UMS to take advantage of
thread pooling. This doesn’t represent a mismatch
between kernel services and user needs, but rather a
gaping hole in the functionality of kernel services. A
kernel-level thread pooling service would likely bene-
fit a broad range of server applications, including web
servers and Windows services, which must each im-
plement its own UMS to efficiently handle a high vol-
ume of concurrent users.

7 Interprocess Communication
Stonebraker considers the expense of interproc-

ess communication (IPC) to be a major roadblock in
the efficient implementation of the single-server
DBMS architecture SQL Server employs [21]. IPC
costs have been reduced dramatically in recent years
[2], but not enough for these costs to be disregarded,
especially for client-server designs where perform-
ance depends heavily on IPC costs [13].

We evaluate various Windows 2000 IPC mecha-
nisms to determine whether the associated costs
should concern SQL Server 2000 developers, as it did
Stonebraker. Windows 2000 offers many IPC tech-
niques, including:

• Component object model (COM) interfaces,
which provides object linking and embedding
(OLE) support in compound documents,

• Dynamic data exchange (DDE), which is
based on Windows clipboard technology and
message passing via the Win32 message pump,

• Mailslots, which use file I/O functions for unre-
liable unidirectional data transfer,

• Named and unnamed pipes, which use file
I/O functions for reliable bidirectional data
transfer,

• Remote procedure calls (RPC), which rely on
a Microsoft Interface Definition Language
(MIDL) compiler to generate proxy functions that
package and transmit function arguments when
RPC functions are called,

• Shared memory, which is available only
through virtual memory file mapping and re-
quires processes to provide their own synchroni-
zation mechanisms, and

• Windows sockets, which provides TCP/IP and
UDP/IP network transport services.

With the exception of the shared memory tech-
nique, all of the methods listed above support IPC
over a network. Not all of them are designed with
efficiency in mind, however. COM and DDE tech-
nologies in particular involve a high overhead and are
not suitable for communication between a client and
a database server. SQL Server supports the more effi-
cient IPC mechanisms for client-server communica-
tion: named pipes, shared memory, and Windows
sockets. Using SQL Server’s Net-Library, database
clients may choose protocols that work with any of
these three mechanisms.

7.1 Cost Analysis
We use the KubMessage benchmark to determine

the cost of IPC on Windows 2000. We are specifically
interested in the overhead of the kernel-supplied
named pipe service verses a roll-your-own service
that a process might choose to implement using
shared memory or Windows sockets.

Two instances of KubMessage run on the same
machine. One instance of KubMessage acts as a cli-
ent, sending messages to the server in page-sized
units, varying from 8 KB to 256 KB. The other acts as
a server, reading these messages over each IPC
mechanism and sending them back to the client in
their entirety . The client subsequently reads the re-
sponse. For efficiency, the first four bytes of the mes-
sage describe the full length of the message; this way,
the size of a message can be easily determined in a
protocol-independent way.

The following IPC mechanisms are tested by
KubMessage:

• Named pipes. The server creates a named pipe
using the CreateNamedPipe function, which
permits an unlimited number of client connec-
tions. Using the ConnectNamedPipe function,
each client connection opens a private bidirec-
tional pipe between the client and the server.

• Shared memory. The only way to share mem-
ory between processes is to map a file to virtual
memory and share the map’s object handle with
another process.3 KubMessage uses the Cre-
ateFileMapping and MapViewOfFile API
functions to accomplish this. Instead of main-
taining its own file, it uses the system page file by
passing a null pointer to the CreateFileMap-
ping function. In addition to the shared map-
ping, the two instances of KubMessage also share
two mutexes: one guards the shared memory
against simultaneous access, while the other sig-

3 Technic ally, the ReadProcessMemory function also provides
inter-process memory sharing, although this function requires
the possession of special security rights by the calling process

and is supplied by the operating system primarily for interactive
debuggers.

16

nals alerts each instance to the arrival of new,
unprocessed messages in this memory. The
mutexes are necessary due to the lack of kernel
support for shared memory synchronization.

• TCP/IP. The KubMessage server uses standard
Berkeley socket interface to bind to a port and ac-
cept connection requests.

• Intra-process function calls. Not an IPC
technique by definition, we use intra-process
function calls to compare the overhead of IPC to
that of message passing within a process. A
pointer to the message is passed from a “client”
procedure to a “server” procedure via a standard
procedure call. The server process makes a local
copy of the message before returning.

KubMessage makes all latency measurements at
the client end of communication. Specifically , it
measures the time it takes to connect to the server,
the time it takes to write the entire message to the IPC
buffer, the time it takes to receive the first 4 bytes of
the response from the server, the time it takes to re-
ceive the remainder of the message back from the
server, and the time it takes to shutdown the commu-
nication channel.

Figure 7.1.1 illustrates the results of the overall
KubMessage benchmark. The intra-process mecha-
nism performs most efficiently for small message

sizes, as we expect, and grows linearly with message
size. The shared memory IPC technique is nearly as
efficient as intra-process message passing, and is even
more efficient as message size increases beyond 64
KB. We see this behavior because we specifically
coded the “server” end of the intra-process technique
to make a copy of the message, whereas the shared
memory technique maintains a single copy of the
message.

Since both named pipes and TCP/IP must copy
the message from the client buffer to the operating
system buffer, then from the operating system buffer
to the server buffer, and subsequently perform the
process in reverse, they are more expensive and be-
come increasingly more so as message size increases.
TCP/IP performs the worst because it suffers from the
additional overhead of the protocol stack, but this
overhead becomes less relevant as the message size
increases. In our experiments we set the read and
write named pipe buffer sizes to 64 KB explicitly, and
use the system default read and write buffer sizes of 8
KB for TCP/IP.

When we examine the costs of specific IPC tasks,
such as connecting, writing, and reading, as illus-
trated in Figure 7.1.2, we notice that the costs of IPC
tasks vary with IPC technique, and that the costs gen-
erally do not remain proportional as message size
increases. Connection times remain relatively con-
stant, except in the case of TCP/IP. TCP/IP connec-
tions are typically more expensive the first time they
are made, since the process must resolve the host-
name and warm up the socket library. This may in-
clude an expense for mapping the socket DLL into the
process’ virtual address space and initializing internal
socket data structures. Consequently, TCP/IP con-
nect time diminishes as more messages are ex-
changed.

Write and reads become more expensive for
named pipes and TCP/IP as message size increases.
We find the write cost to a named pipe alarming for
large message sizes. While a 256 KB memory copy
takes about 1 ms using the intra-process mechanism,
a 256 KB synchronous write onto a named pipe using
the WriteFile function takes over 4 ms, almost 2
ms longer than TCP/IP’s corresponding send call.
We attribute this extra cost to the size of the read and
write buffers the system maintains for the named
pipe. As our message size extends beyond buffer ca-
pacity, the system must either transmit the message
in chunks—continuing to block the client as it waits
for the server to read from the full buffer—or allocate
more memory for the buffer. Either method is expen-
sive. We discovered that by increasing the buffer size
from 64 KB to 256 KB + 50, we reduce the cost of
writing a 256 KB message by 50%. We posit that the
system must store state information in addition to the
actual message in the buffer because a buffer size of
256 KB is not sufficient to realize this gain.

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 4 8 16 32 64

Intra-process

Named pipe

Shared memory

TCP/IP

Message size (4 KB)

C
o
s
t
(m

s
)

Figure 7.1.1

Costs of various IPC techniques by message size
(source: KubMessage benchmark)

17

We use the setsockopt function to adjust the
TCP/IP send and receive buffers from their 8 KB de-
faults, but actually notice performance degradation as
the buffer size increases beyond 16 KB. The socket
library must be allocating buffer space as it needs,
and not at socket create time; the expense of this allo-
cation ends up outweighing any possible gain. For
longer IPC conversations, where the socket is kept
open for an extended period of time, we do find gains.

To summarize, we see that shared memory IPC
performs best, especially for larger message sizes,
because it avoids buffer copies. For IPC on a single
system, the named pipe technique fairs second best.
For inter-system IPC, we find that TCP/IP outper-
forms named pipes since the named pipe implemen-
tation requires the services of IPX, TCP/IP, or
NetBEUI (depending on what protocols the client and
server share) in addition to its own overhead.

7.2 Support for Database Management
As we observe in section 6, SQL Server is archi-

tected as a single process, so IPC is not necessary for
the tasks Stonebraker has in mind, such as requesting
disk I/O from other processes [21]. This doesn’t
make IPC irrelevant, however, since its database cli-
ents use some form of IPC to communicate with the
database server.

We see that shared memory is the most efficient
IPC mechanism, but this mechanism does not provide

any synchronization or notification support that is a
prerequisite of message passing. For a rather modest
amount of overhead, named pipes comfortably supply
this functionality with a straightforward and versatile
API. In addition to providing security, multiple in-
stance support, and bidirectional communication, the
named pipe implementation offers some interesting
functionality via the CallNamedPipe and Trans-
actNamedPipe functions, which combine writes and
reads into a single system call.

SQL Server uses named pipe IPC by default
mostly for historical reasons [6]; Microsoft research
agrees with our previous analysis that inter-system
IPC performs best using TCP/IP. In our own testing,
we found that query execution speeds vary negligibly
as we change IPC mechanisms, since the query execu-
tion time dominates.

7.3 Suitability of IPC
Despite the robustness of the Win32 IPC API,

Stonebraker’s question still looms over us: does the
cost of IPC outweigh the benefits of the flexible client-
server architecture? The alternative, of course, would
be to employ some form of the process-per-user ar-
chitecture, perhaps where the database server and
database client are linked together into a single ex-
ecutable image. This approach would eliminate any
IPC cost, for sure, but would not allow for multiple
client connections. If the client statically linking with

0

1

2

3

Intra-process Shared

memory

Named pipes TCP/IP

Shutdown

Full read

Initial read

Write

Connect

0

1

2

3

4

5

6

7

8

9

10

11

12

Intra-process Shared

memory

Named pipes TCP/IP

Shutdown

Full read

Initial read

Write

Connect

C
o

s
t
(m

s
)

C
o

s
t
(m

s
)

4 KB message cost 256 KB message cost

Figure 7.1.2

Costs of performing IPC tasks with various IPC techniques using 4 KB and 256 KB message sizes (source:
KubMessage benchmark)

18

the database server happens to support clients of its
own, however, we see something interesting. Con-
sider the example of a web server that statically links
with a database server. In this case, the web server
receives client requests over HTTP, and these client
requests, which presumably must be served by oper-
ating on data in the database, prompt the web server
to open multiple database connections on behalf of
these multiple web clients. In essence, the database
server is now serving web clients through a web
server proxy, and the only difference between this
model and the single-server model is that the IPC
costs between the web server and the database server
have been eliminated. The cost of IPC has been
traded for the much lower cost of a statically linked
procedure call. Interestingly, most business with web
servers move in the opposite direction, adding more
layers of IPC on top of the single-server database ar-
chitecture by means of middleware. Some research-
ers have balked at this trend, instead touting the ad-
vantage of statically linked databases to a world that
remains quite fond of the client-server
model [15].

The analysis of scheduling and process manage-
ment in the previous section demonstrates how the
cost of a context switch is at least an order of magni-
tude more expensive than a simple procedure call (see
Figure 6.2.1). Since the client-server architecture re-
quires, at minimum, shared memory and a context
switch, the costs associated with IPC when compared
with the static linking approach should not be over-
looked. Amdahl’s Law tells us to make the common
case fast and not fret about the rest, but it remains
unclear where IPC lies in this continuum. For long-
running queries that don’t return much data, IPC
costs may be negligible. For fast-running queries that
return much data, these costs may be substantial.

Ultimately, then, the relevance of IPC cost is de-
pendent upon the average latency of database re-
quests and the amount of data transmitted between
the client and the server, and these metrics are highly
specific to individual use cases. Also important in this
consideration is the flexibility the client-server model
provides, allowing multiple, disparate applications to
access a common data source simultaneously. SQL
Server has chosen to support the more common use
case with the client-server model, and the plethora of
IPC mechanisms provided by Windows 2000 have
certainly been supportive. Ultimately, however, the
decision to accept the cost of IPC with the client-
server model or turn to an embedded database system
must be evaluated on a case-by-case basis. Until IPC
becomes, in a relative sense, no more expensive than
a procedure call there will be no “right” answer.

8 Consistency Control
There are two types of operating system services

that help database systems maintain consistency:
crash recovery and locking. Stonebraker considers
both areas problematic. In the case of crash recovery,
operating systems may not provide a selective force-
out option from their file buffers to guarantee that
transaction data, or even the log entries for these
transactions, are successfully written to disk before a
transaction commits. In the case of locking, operat-
ing systems typically provide file-level read and write
locks, but not locks with the granularity or escalation
properties that a DBMS desires. We will consider
each of these criticisms in turn.

8.1 Selective Force-Out Functionality
Most applications perform file I/O using the gen-

eral ReadFile and WriteFile functions; for this
approach the only force-out function Windows pro-
vides is FlushFileBuffers. This function always
writes all buffered data to disk, not allowing a pro-
gram to specify a data range to flush. While the inter-
face is simple, it goes no further in meeting the needs
of a DBMS than the UNIX buffer pool did back in
1981 [21].

Fortunately, Windows does provide a selective
force-out option when file I/O is carried out using a
different approach, by mapping files in an applica-
tion’s virtual memory space. After a program maps
views of a file (in units of the page size) using the
MapViewOfFile function, it may flush any page or
range of pages within this view using the Flush-
ViewOfFile function. By using memory-mapped
files instead of typical file I/O, programs gain granu-
lar control over the flushing of individual byte ranges
of a file, all the way down to the sector size of the disk.

To combine the benefits of prefetching with the
finer control over individual pages, Windows allows
memory-mapped files to be simultaneously managed
by the buffer pool. In this case, the buffer pool oper-
ates in the mode prescribed by a program (i.e. se-
quential or random) and the application’s view of the
file and the buffer manager’s view of the data are both
mapped to the same segments of physical memory.
In other words, the virtual memory manager provides
consistency between these two views, which is made
possible because the buffer manager uses the same
file-mapping interface of the memory manager to
buffer and prefetch data. By combining traditional
file I/O with a memory-mapped view of the file, an
application now has selective force-out ability over
buffer manager pages, because, with the consistency
of the two views, a flush of a mapped view by a pro-
gram necessarily corresponds to a flush of that data
from the buffer pool. This appears to provide the se-
lective force-out option desired by database systems.

19

Note that when physical memory is low, or dirty
pages are in memory for more than 5 minutes, the
virtual memory manager proactively begins writing
dirty pages to the mapped files backing them. Since
the modified page writer thread runs at a higher pr i-
ority level than normal application threads [18], the
operating system may actually hinder database
performance by writing dirty pages at exactly the
wrong time. This also has ramifications on
transaction processing, since the virtual memory
manager may write out uncommitted transaction’s
data before the log entries describing the transaction.
If a system failure were to occur between these two
steps, the database likely would not be able to
recover.A database system that does not want its pages to
be flushed to disk by the virtual memory manager
may use the VirtualLock function to lock pages
into physical memory. To protect the system from the
instability that may arise when too much physical
memory is locked, Windows limits an application to
30 locked pages by default and never allows an appli-
cation to adjust its maximum allotment much beyond
this [18]. Since a database system cannot guarantee
the order in which pages are written to disk using the
memory-mapped technique, it cannot use it. Once
again an operating system service has come tantaliz-
ingly close to exactly what a database system needs,
but ultimately the miniscule “gotcha” is enough to
disqualify the entire service from consideration.

SQL Server is forced to manage its own buffers,
and dynamically tweak the size of these buffers in
response to available system memory by using the
data from the GlobalMemoryStatus system call.
Ultimately, SQL Server winds up duplicating various
memory manager services mainly so it has control
over the exact time pages are flushed to disk.

8.2Locking
Windows 2000 is notoriously deficient in the

area of locking services. While it does provide the
ability to lock byte ranges of a file using shared locks
and exclusive locks via the LockFile function, it
does not offer the ability to escalate shared locks to
exclusive locks. If the holder of a shared lock at-
tempts to obtain an exclusive lock on the same byte
range, the system call blocks indefinitely.

If a database system desires additional lock types,
lock escalation, or multiple levels of locking granular-
ity, database system designers must write this func-
tionality themselves. We use the KubLock benchmark
to evaluate whether or not designers should base their
locking implementation on the primitive locking
mechanism already provided by Windows 2000, or
disregard this mechanism and develop their own
locking implementation from scratch.

KubLock tests the efficiency of file system locks
and a custom locking package we adapt from the work
of Ruediger Asche [1]. Our locking package imple-

ments functionality identical to that provided by the
file system; it includes methods to acquire and release
read locks and write locks, but does not provide any
mechanism for deadlock detection, lock escalation, or
starvation prevention. As part of the implementation,
we use two operating system primitives: event ob-
jects, which are synchronization objects that can be
explicitly signaled and reset, and interlocked variable
access functions, which perform atomic arithmetic
operations on integer var iables.

In order for the first read or write lock to be ac-
quired, the thread desiring access must wait for the
drop-to-zero event object to be signaled; Windows
ensures that only one waiting thread will get the sig-
nal. Once the thread gets the signal, it sets a flag indi-
cating its desire for read or write access. If the flag is
set for read access, additional read locks are obtain-
able by other threads simply by incrementing an as-
sociated reader count variable using the Interlock-
edIncrement atomic increment function. When a
thread finishes with a read lock, it decrements the
reader count variable using the Interlocked-
Decrement function. A thread holding a write lock
doesn’t bother incrementing or decrementing any
variable, since the lock compatibility matrix guaran-
tees that no other thread will simultaneously be hold-
ing the lock. Once the last thread holding the lock
finishes, it signals the drop-to-zero event so that the
lock may be picked up by another thread interested in
acquiring the lock for either read or write access, and
the process repeats. We have omitted some subtleties
of our implementation; the interested reader should
examine the KubLock source code for more details.

Since Windows makes no guarantees about which
thread in a set of waiting threads is awoken by an
event object’s signal, this locking mechanism makes
no guarantees about fairness. Also, the implementa-
tion waits indefinitely for the drop-to-zero event, but
could be adapted to timeout after a given amount of
time and check for deadlocks. Compare this to the
file-based locking technique: the LockFile function
has no wait timeout, so there is no possibility of in-
corporating deadlock detection support.

The KubLock benchmark exercises the native file
locking mechanism and our custom locking package
by acquiring and releasing 5,000 read locks and then
acquiring and releasing 5,000 write locks. These lock
acquisitions are all performed by a single thread, so as
to hone in on the cost of locking overhead without
having to consider the related costs of thread schedul-
ing and contention. We chose to perform each opera-
tion 5,000 times so that the benchmark runs long
enough to produce quantifiable differences. The
benchmark shows our custom read locks to be 9%
more efficient than file system read locks and our cus-
tom write locks to be 68% more efficient than file sys-
tem write locks. The results are illustrated in Figure
8.2.1.

20

The KubLock benchmark, in its second phase,
creates an additional thread. While the first thread
attempts to acquire 5,000 write locks, the second
thread acquires and releases read locks in an infinite
loop. Both threads run at the same high priority level,
above other processes and most system threads. Our
goal here is to get a rough idea of the relative
throughput of the two locking techniques. The results
show that our custom locking package allows the sec-
ond thread to acquire and release 4,567 read locks
while the first thread acquires and releases the 5,000
write locks; the total processing time here is 35 ms.
The file system locking implementation allows for
only 13 read locks to be acquired and release for the
same 5,000 write locks; the total processing time is
22 ms. Our custom technique appears to allow for
substantially more data throughput.

8.3Support for Database Management
Based on the results of KubLock, we conclude

that the primitive Windows 2000 locking mecha-
nisms are not sufficient for use as the foundation of a
full-feature database locking mechanism. Despite the
ease of use of the LockFile call, database designers
lose both efficiency and the ability to prevent dead-
locks, which are unacceptable limitations.

The Win32 API designers should consider sup-
porting abstract locking functions independent of
files. Any multithreaded application that maintains
buffers of shared data, including SQL Server, will

likely benefit by a more abstract and feature-rich
locking interface.

9 New Domains
Stonebraker addresses five principal services re-

quired by database management systems, which we
have addressed in detail in the preceding five sec-
tions. Now we briefly consider additional services
provided by the operating system that are useful to
database management systems and evaluate how well
they meet the needs of a modern DBMS and its ad-
ministrators.

9.1 Security Management
Especially in recent years, data security has be-

come a critical concern for system administrators.
Windows 2000 is certified as EAL4-compliant by the
international Common Criteria body, meaning it in-
cludes support for secure logons, access controls, au-
diting, and trusted facility management, among many
other features [18].

Windows 2000 manages user accounts and priv i-
leges either locally or via a centralized domain con-
troller or Active Directory (AD) server. Client-server
processes such as SQL Server can use these priv ileges
and even define new privileges. Win32 functions
such as ImpersonateNamedPipeClient and Im-
personateLoggedOnUser are extraordinarily use-
ful in that they allow a server process to temporarily
assume the security context of an arbitrary user. In
this manner processes can access resources using cli-
ent credentials and never have to explicitly make se-
curity checks; the system handles this automatically
by returning “access denied” error codes when a proc-
ess attempts to manipulate resources the imperson-
ated user is prohibited from using. This alleviates
error-prone development efforts by greatly simplify-
ing a server process’ code base. It also allows system
administrators to configure user accounts once and
have these accounts work with a wide variety of server
applications.

SQL Server 2000 exploits Windows authentica-
tion techniques, but also provides the ability to create
SQL Server-specific users for compatibility with cli-
ents connecting from non-Windows platforms.

The NTFS file system supports data encryption
that is opaque to user processes such as SQL Server.
When this feature is enabled, all user data is stored in
encrypted for on the file system and only the owner of
the data has the security key needed to decrypt the
stored data.

Additionally, Windows natively supports SSL
communication mechanisms that provide secure net-
work communications. The SQL Server Net-Library
takes advantage of this functionality.

C
o

s
t

(u
s
)

0

50

100

150

200

250

300

350

400

450

500

5,000 write locks 5,000 read locks

Custom locking

File system locking

Figure 8.2.1

Comparison of the cost of acquiring 5,000 locks in
sequence using our custom user-mode locking pack-
age and the Windows 2000 file locking function
LockFile (source: KubLock benchmark)

21

9.2 Performance Monitoring
Windows 2000 provides three distinct services

that allow system administrators to track the per-
formance metrics of processes:

1. Performance Monitoring. The performance
monitoring interface, part of the Win32 API, al-
lows processes to register performance statistics
on the system and supply a stream of perform-
ance information. The Performance Monitor util-
ity that ships with Windows displays these statis-
tics graphically, and updates its display as fast as
once per second.

2. Simple Network Management Protocol
(SNMP). Windows allows processes to supply a
Management Information Base (MIB) of per-
formance statistics that SNMP management tools
can navigate, and send SNMP traps alerting these
managers to critical events.

3. Windows Management Instrumentation
(WMI) uses the industry-standard Information
Model (CIM) to display performance statistics in
a web interface.

SQL Server supports all three of these perform-
ance monitoring technologies to provide up-to-the-
second statistics such as memory usage, concurrent
connections, CPU utilization, and transactions per
second. Such statistics are invaluable to administra-
tors who are sensitive to resource utilization and want
to tune the DBMS for maximum efficiency.

The drawback to these technologies is their re-
dundancy. Microsoft should find a way to provide all
of this functionality through a single interface to re-
duce development time and avoid confusion.

9.3 Programmatic Interfaces
Windows 2000 ships with support for the Com-

ponent Object Model (COM), Remote Procedure Calls
(RPC), and several scripting languages including
JavaScript and VBScript. SQL Server leverages these
technologies to provide administrators and develop-
ers methods for programmatically tuning and admin-
istering the server using Rapid Application Develop-
ment (RAD) tools. For example, using the SQL-DMO
COM object model of SQL Server, a Visual Basic de-
veloper can log on to a SQL Server and enumerate the
space available on all of its managed databases using
no more than 10 lines of code [6].

10 Conclusion
We reevaluate operating system support for da-

tabase management and find that in some areas the
operating system has definitely improved, giving da-
tabase systems a more efficient and flexible API to
work with. There are areas, however, particularly
buffer management and consistency control, where
we see virtually no improvement at all.

We discover several new operating system ser-
vices—such as security and performance monitoring—
that are now being exploited by database sy stems.
We intentionally neglected putting these new systems
under the same scrutiny as those originally cited by
Stonebraker because these systems are not on the
critical path to efficient query processing; rather, they
provide support to database administrators to ease
the burden of management. We are encouraged by
shift in focus from efficient computer resource utiliza-
tion to that of efficient human resource utilization,
since the latter category has not received nearly as
much attention despite the fact that both are crucial
to the ultimate success of a DBMS.

Table 10.1 summarizes the operating system ser-
vices we explore, a brief analysis of their suitability
for database systems, and our recommendations for
further improvements. We attempt to offer reason-
able advice, and believe that these improvements will
greatly assist many Win32 developers, including, but
not limited to, database developers.

10.1 Shortcomings
We attempt to cover a broad range of operating

system services in a short space. Certainly we do not
do justice to the intricate design of both Windows
2000 and SQL Server 2000. The interested reader
should explore David Solomon’s Inside Microsoft
Windows 2000 [18] and Kalen Delaney’s Inside Mi-
crosoft SQL Server 2000 [6] for the details—these are
two very insightful books. Additionally, the Microsoft
Developer Network Technology Group publishes
some interesting technical articles concerning the
resourceful uses of the Win32 API [1][22].

22

10.2 New Directions

We understand the motivations behind new op-
erating system designs, but our analysis shows that
Windows 2000 is actually doing a very good job of
balancing between easy-to-use least-common-
denominator interfaces and robust, efficient, highly
scalable interfaces. SQL Server has proven that de-
signing a process to these interfaces can prov ide ex-
cellent performance. Part of the problem with other
database systems, such as Oracle, is its need to sup-
port multiple platforms. This platform-independent
nature forces Oracle to take a least-common-
denominator approach to which services it utilizes
from operating systems—in other words, don’t expect
Oracle to be taking advantage of Win32 fiber or scat-
ter/gather I/O functions anytime soon.

Though perhaps wishful thinking, a common OS
interface like POSIX but encompassing Win32 func-
tionality or, at minimum, an agreed upon list of OS
service prerequisites would alleviate this problem. It
would define interfaces operating system services,
such as fibers and asynchronous I/O routines, that
disparate OS vendors could standardize and imple-
ment. This would allow developers to support multi-
ple platforms without suffering from the inefficiencies
and code duplication inherent in the least-common-
denominator approach.

More practically, we hope operating system de-
signers consider the suggestions we outline in Table
10.1. Doing so will allow Windows to meet virtually
all of the basic needs of a DBMS and many of today’s
other prevalent applications.

Operating system service: Database suitability: Areas of improvement:

Buffer pool management Poor. Efficient scatter/gather I/O tech-

niques are incompatible with the buffer
manager and memory manager, leading
to user-level duplication of these ser-
vices.

The kernel should support

scatter/gather I/O to/from mapped
views of a file.

File system management Good. Asynchronous I/O and comple-

tion ports improve efficiency and
throughput while recoverability mecha-

nisms protect the integrity of file system
metadata upon which database data is
stored.

The file system driver should make
an effort to cluster large file
allocations.

Scheduling and process
management

Very good. Threads are scheduled by

the kernel to support efficient symmetric
multiprocessing of concurrent client
connections and background tasks.

The kernel should supply a thread

pool service for processes that deal
with a high volume of concurrent
connections.

Interprocess communication Excellent. The Win32 API offers a

variety of efficient, robust IPC mecha-
nisms for client-server communication.
(Note, however, that some database

workloads may benefit from an embed-
ded architecture that eliminates IPC.)

No areas cited for improvement.

Consistency control Poor. The selective force-out mecha-

nism still allows pages to be written to
disk without DBMS approval, and the
primitive locking mechanisms do not
even provide a practical or efficient

foundation upon which to build a robust
custom locking package

The virtual memory manager should

consult an application before writing
dirty memory-mapped pages to disk,
and the Win32 API should provide
generic locking services, with lock

escalation support, to complement
its existing set of synchronization
primitives.

New domains

(security, performance
monitoring, programmatic
interfaces)

Very good. The Win32 API offers ro-

bust support for security, an overly suf-
ficient supply of performance monitoring
interfaces, and technologies to support
RAD development of programmatic

application administration.

The plethora of performance moni-

toring functions is confusing; WMI in
particular is too complex.

Table 10.1

Summary of operating system support for database management systems

23

References
[1] Asche, Ruediger. “Compound Win32 Synchroni-

zation Objects.” Microsoft Developer Network
Technology Group (July 1994).

[2] Berchad, Brian. “The Increasing Irrelevance of
IPC Performance for Microkernel-Based Operat-
ing Systems.” School of Computer Science, Car-
negie Mellon University (March 1992).

[3] Bershad, Brian, C. Chambers, S. Eggers, C.
Maeda, D. McNamee, P. Pardyak, S. Savage, E.
Sirer. “SPIN – An Extensible Microkernel for Ap-
plication-specific Operating System Services.”
Dept. of Computer Science and Engineering, Uni-
versity of Washington, Seattle, Technical Report
94-03-03 (March 1994).

[4] Chen, J. Bradley, Yasuhiro Endo, Kee Chan,
David Mazières, Antonio Dias, Margo Seltzer, Mi-
chael D. Smith. “The Measured Performance of
Personal Computer Operating Systems.” Division
of Applied Sciences, Harvard University (August
1995).

[5] Chew, Khien-Mien, Avi Silberschatz. “Toward
Operating System Support for Recoverable-
Persistent Main Memory Database Systems”
(1992).

[6] Delaney, Kalen, et al. “Inside Microsoft SQL
Server 2000,” Microsoft Press (2000).

[7] Engler, Dawson R., Frans Kaashoek. “Extermi-
nate All Operating System Abstractions” (1995).

[8] Engler, Dawson, Frans Kaashoek, James O’Toole
Jr. “Exokernel: an operating system architecture
for application-level resource management”
(1995).

[9] Engler, Dawson, Frans Kaashoek, James O’Toole
Jr. “The Operating System Kernel as a Secure
Programmable Machine.” Proceedings of the
Sixth SIGOPS European Workshop (September
1994).

[10]Fellig, Daniel, Olga Tikhonova. “Operating Sys-
tem Support for Database Management Systems”
(2000).

[11] Forman, Joshua J. Mark A. Luber. “Support for
Database Management Systems in Modern Oper-
ating Systems.” CS265: Database Systems, Har-
vard University (October 2002).

[12]Grimm, Robert, Michael M. Swift, Henry M.
Levy, “Revisiting Structured Storage: A Transac-
tional Record Store,” University of Washington
(2000).

[13] Hsieh, Wilson, Frans Kaashoek, William Weihl.
“The Persistent Relevance of IPC Performance:
New Techniques for Reducing the IPC Penalty.”
MIT Laboratory for Computer Science (1993).

[14]Hulse, David. “Operating System Support for
Persistent Systems: Past, Present and Future”
(2000).

[15] Seltzer, Margo, Sleepycat Software. “High Per-
formance != Client/Server: The Case for Embed-
ded Databases.” High Performance Transaction
Systems Workshop Paper Submission. James
Hamilton (personal home page).
http://research.microsoft.com/
~jamesrh/hpts2001/submissions/MargoSeltzer.
htm#ref1 (October 2001).

[16]Seltzer, Margo, Christopher Small, Keith Smith,
“The Case for Extensible Operating Systems”
(1995).

[17] Small, Christopher, Margo Seltzer. “VINO: An
Integrated Platform for Operating System and
Database Research,” Harvard Computer Science
Laboratory Technical Report TR-30-94 (1994).

[18]Solomon, D. A. “Inside Windows 2000,” Micro-
soft Press (2000).

[19]“SQL Server Fast Facts.” http://www.micro-
soft.com/sql/evaluation/overview/2000/fastfact
s.asp (August 2000).

[20]“SQL Server Performance Tuning Questions &
Answers: Q&A #8,” Sql-Server-
Performance.Com. http://www.sql-server-
performance.com/q&a8.asp (December 2001).

[21]Stonebraker, Michael. “Operating System Sup-
port for Database Management” (1981).

[22]Vert, John. “Writing Scalable Applications for
Windows NT.” Microsoft Developer Network
Technology Group (June 1995).

[23]Yang, Li, Jin Li. “Operating System Support for
Databases Revisited” (2000).

