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Abstract 

 

Ideally, clinical guidelines would be informed by well-designed randomized experiments. 

However, it is generally not possible to conduct a randomized trial for every clinically relevant 

decision. Decision makers therefore often have to rely on observational data. Guidelines that 

rely on observational data due to the absence of randomized trials benefit when the analysis 

mimics the analysis of a hypothetical target trial. This can be achieved by explicitly formulating 

the protocol of the target trial, and thoroughly discussing the feasibility of the conditions that 

must be met in order to validly emulate the target trial using observational data.  

 

In chapter one, we discuss the emulation of trials that compare the effects of different timing 

strategies, that is, strategies that vary the frequency of delivery of a medical intervention or 

procedures, and provide an application to surveillance for colorectal cancer. In chapter two, we 

discuss a study design that attempts to avoid bias by comparing initiators of the treatment of 

interest with initiators of an “active comparator” that is believed to be inactive for the 

outcome, in order to emulate a randomized trial that compares the treatment of interest with 

an inactive comparator. In chapter three, we describe a new method that combines 

randomized trial data and external information to emulate a different target trial. We apply this 
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method to a randomized trial of postmenopausal hormone therapy in order to emulate a trial 

of a joint intervention on hormone therapy and statin therapy. 
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Methods to estimate the comparative effectiveness of clinical strategies 

that administer the same intervention at different times 
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Abstract 

Clinical guidelines that rely on observational data due to the absence of data from randomized 

trials benefit when the observational data or its analysis emulates trial data or its analysis. In this 

paper, we review a methodology for emulating trials that compare the effects of different 

timing strategies, that is, strategies that vary the frequency of delivery of a medical intervention 

or procedure. We review trial emulation for comparing (i) single applications of the procedure 

at different times, (ii) fixed schedules of application, and (iii) schedules adapted to the evolving 

clinical characteristics of the patients. For illustration, we describe an application in which we 

estimate the effect of surveillance colonoscopies in patients who had an adenoma detected 

during the NORCCAP trial.  
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1.    Introduction 

Clinical decisions are increasingly reliant on guidelines, but clinical guidelines are only as good 

as the available evidence on the comparative effectiveness of interventions.1 Ideally, such 

evidence would come from randomized controlled trials. When a randomized trial is not 

available, it may be possible to emulate it using observational data.2 This approach requires 

appropriate confounding adjustment, avoidance of selection bias in the definition of the 

groups to be compared, and formulation of a research question that is relevant for decision 

makers.  

 

Prior explicit attempts to emulate trials using observational data have studied, for example, 

postmenopausal hormone therapy,3 statins,4 epoetin,5 and antiretroviral therapy.6, Here we 

review the emulation of trials to compare strategies that differ in the timing of the intervention 

of interest. As an example, we will consider post-polypectomy surveillance by colonoscopy. 

During this procedure, adenomas (benign tumors of the colon)7 are detected and removed. 

Most adenomas will not develop into colorectal cancer, but most cancers arise from 

adenomas.8 In patients with removed adenomas, surveillance colonoscopies are recommended 

to detect and remove future adenomas before they become malignant. The optimal interval 

between colonoscopies is not known. Current guidelines both in the US9 and the EU10 are 

mostly based on expert opinion due to the scarcity of available evidence. 
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Besides reviewing a methodology to emulate trials for the comparison of strategies that 

administer the same intervention at different times, we also review a classification of these 

strategies. First, we consider point interventions to study the effectiveness of a single 

application of the treatment. Second, we consider sustained interventions to study the 

effectiveness of a fixed treatment schedule (e.g., colonoscopy at 3 years after the initial 

procedure). Third, we consider sustained interventions to study the effectiveness of a 

personalized schedule of treatment (e.g., colonoscopy every year if the most recent procedure 

detected large adenomas, otherwise every 3 years). To fix ideas, we review the methodology in 

the context of its implementation to a cohort of Norwegian individuals. We start by describing 

this cohort. 

 

2.   Data  

The Norwegian Colorectal Cancer Prevention (NORCCAP) screening study was a randomized 

clinical trial of once-only sigmoidoscopy screening versus no sigmoidoscopy, conducted in 

Oslo and Telemark counties in Norway between 1999 and 2001. Our analysis includes 

participants in the sigmoidoscopy arm in whom at least one adenoma was detected (n=2190). 

As part of the trial, endoscopies were conducted in these individuals until the bowel was free 

from adenomas. We excluded patients with history of serious gastrointestinal disease, known 

genetic predisposition to colorectal cancer, and cancer detected as a result of screening in 

NORCCAP.  
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In addition to the available data (age, sex, county, smoking, family history of colorectal cancer, 

and findings at NORCCAP colonoscopies), we conducted a manual chart review at all hospitals 

in Oslo and Telemark—guided by claims data from the governmental single-payer agency 

HELFO—to collect data on the date, findings (e.g., size and type of adenomas) and indication 

of all subsequent colonoscopies and sigmoidoscopies. Of the post-screening endoscopies, 

64% were for surveillance purposes (3% sigmoidoscopies and 61% colonoscopies), 30% were 

clinically indicated because of symptoms (27% colonoscopies, 3% sigmoidoscopies), and 6% 

were due to a recent incomplete endoscopy (4% colonoscopies, 2% sigmoidoscopies).  

 

Our outcome of interest was incidence of colorectal cancer. For many surveillance 

interventions, the use of cancer incidence as an outcome is questionable because of potential 

lead time bias:11 cancer cases will be detected earlier in patients with more intensive 

surveillance, which will make surveillance appear less beneficial. In this case, however, the use 

of the outcome cancer incidence is justified because most of the beneficial effect of 

surveillance colonoscopy seems to be due to removing adenomas before they become 

malignant12, with only a small component of the effect due to earlier detection of prevalent 

cancer. Death from colorectal cancer could not be studied as an outcome because there were 

too few cases.  

 

We refer to the date of the last NORCCAP colonoscopy as time of “first eligibility” for our 

analyses. For each individual, follow-up ends at colorectal cancer, death, sigmoidoscopy, 
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emigration, or December 2011, whichever occurred first. Because we are trying to estimate the 

effects of post-baseline colonoscopies, which were not randomly assigned to the trial 

participants, ours is an analysis of observational data. The flow chart in Figure 1.1 describes the 

enrollment of participants in our study. Table 1.1 displays the characteristics of the eligible 

individuals.  
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Figure 1.1: Flowchart of selection of the 2190 eligible individuals from the intervention arm of 
the NORCCAP trial 

	  

 

  

  

100210	  NORCCAP	  
participants

Sigmoidoscopy	  in	  
1999-‐2001:	  
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Adenomas	  Detected
	  in	  2211	  individuals

Cancer	  detected
In	  41	  individuals

No	  adenoma	  or	  
cancer	  detected	  in	  	  
18320	  individuals

2190	  individuals	  met	  
eligibility	  criteria	  

21	  did	  not	  meet	  
eligibility	  criteria:

1987	  were	  cancer	  
free	  and	  alive	  in	  

2011:

21	  had	  a	  diagnosis	  
of	  colon	  cancer	  by	  

2011	  

182	  deaths	  from	  
other	  causes	  by	  

2011:
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Table 1.1: Characteristic of 2190 eligible individuals from the intervention arm of the 
NORCCAP trial 

 

Number of men 1322 (60%) 
Average (SD) age at first eligibility, years 57.2 (3.8) 

Median (IQR) duration of follow-up, 
months 

134 (126-143) 

Incident cases of colorectal cancer 21 
 detected at surveillance colonoscopy 1 
Deaths 187 
 from colorectal cancer 5 
Number of colonoscopies during follow-
up 

819 

Number of sigmoidoscopies 75 
Number of people with at least one 
colonoscopy after first eligibility 
 

577 

Number of people whose first follow-up 
colonoscopy was for surveillance  
 

395 

Median (IQR) time to first colonoscopy, 
months 

68 (51-91) 

Number of colonoscopies per individual   
0  1613 (74%) 
1 389 (18%) 
2 140 (6%) 
3+ 48 (2%) 
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3.   Three hypothetical randomized trials 

The design of any trial is determined by the causal question of interest, which in turn is 

determined by the population, the strategies being compared, and the outcome of interest to 

the decision makers.13 For surveillance tests, the strategies are defined by the timing of the 

test. Some strategies involve a point intervention at baseline, whereas other strategies involve 

interventions that are sustained over time according to either a fixed schedule (e.g., do not 

perform a colonoscopy for five years after baseline, then perform a colonoscopy at the end of 

year 5) or a schedule that depends on each individual’s time-evolving clinical characteristics 

(i.e., schedule the time of every colonoscopy according to the findings at the previous 

colonoscopy). We refer to sustained strategies with a fixed schedule as static and to those with 

a subject-specific schedule as dynamic. 

 

Here we review 3 types of hypothetical trials that compare static and dynamic strategies and 

therefore address different questions regarding the effectiveness of surveillance colonoscopy. 

In all trials, eligible individuals are followed until death, loss to follow-up (i.e., emigration out of 

Norway), sigmoidoscopy, occurrence of the outcome (here, diagnosis of colorectal cancer), or 

Dec 31st 2011, whichever occurred earlier. In all trials, individuals receive a colonoscopy 

whenever it is clinically indicated (e.g., due to symptoms) but a surveillance colonoscopy only 

according to the trial protocol. A graphical representation of each trial is shown in Figure 1.2. 
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Trial type #1: Point interventions assigned at a fixed time after first eligibility 

 

Individuals who survived 36 months since first eligibility are randomized to either 1) immediate 

surveillance colonoscopy, or 2) no surveillance colonoscopy. Additional eligibility criteria are no 

colorectal cancer, colonoscopy, or sigmoidoscopy during the 36 months before randomization. 

Individuals who reach age 70 or develop any invasive non-colorectal cancer before baseline 

also become ineligible (other comorbidities might be added to the exclusion criteria). For each 

individual, follow-up starts at the time of randomization, i.e., baseline is 36 months after first 

eligibility.  

 

More generally, one can consider trials in which baseline is month z, where z ranges between 

36 and 84. The effect estimates from these trials will only apply to survivors without symptoms 

or cancer by z months after first eligibility. These trials will help determine the effect of 

undergoing a colonoscopy among the survivors, but it does not directly inform the decision of 

when to undergo the colonoscopy. The next trial does so.  

 

Trial type #2: Sustained static strategies assigned at first eligibility 

Baseline is the time of first eligibility. Individuals are randomized to either 1) surveillance 

colonoscopy 36 months after baseline, or 2) surveillance colonoscopy 84 months after baseline. 

Individuals in both arms who reach age 70 or develop malignancies other than colorectal 

cancer may have surveillance colonoscopies at any time as determined by their physician. More 

generally, one can consider additional arms in which 36 is replaced by any value x between 36 
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and 84. We could also consider similar trials in which baseline is any month after first eligibility. 

For example, one could consider a trial in which individuals who have survived 36 months after 

first eligibility are randomized to either 1) immediate surveillance colonoscopy, or 2) 

surveillance colonoscopy at month 84 after first eligibility (48 months after baseline at 36 

months). We will only consider trials with baseline at first eligibility.  

 

Both trials type #1 and #2 compare fixed surveillance schedules, but they address different 

questions. Trial #1 helps individuals who have survived z months after adenoma removal 

decide whether they should undergo a surveillance colonoscopy at that time. Trial #2 helps 

individuals who just had their adenomas removed decide how long they should wait before 

having a surveillance colonoscopy (if they plan to have only one surveillance colonoscopy). 

Neither trial type considers strategies that assign different surveillance schedules to different 

individuals (i.e., dynamic strategies). The next trial type does so. 

 

Trial type #3: Sustained dynamic strategies assigned at first eligibility 

Individuals at first eligibility are randomized to either 1) receive surveillance colonoscopies 

according to the following rules: 

 

�   First surveillance colonoscopy at 36 months if the adenomas detected at baseline 

sigmoidoscopy were low risk (1 or 2 small adenomas without villous features) and 12 

months earlier (at month 24) otherwise.  
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�   Follow-up surveillance colonoscopy 36 months after the previous colonoscopy 

(surveillance or clinical) if low-risk adenomas were detected, 12 months earlier (24 

months after the previous colonoscopy) if high-risk adenomas (more than two, or large, 

or containing villous features) were detected, and 12 months later (48 months) if no 

adenomas were detected. 

 

or 2) surveillance colonoscopies according to similar rules, but where 36 months is replaced by 

84 months. During the follow-up, individuals in both arms of the trial may also receive a 

colonoscopy whenever it is clinically indicated due to symptoms. Individuals who reach age 70 

or develop malignancies other than colorectal cancer after baseline may have surveillance 

colonoscopies at any time as determined by their physician. For each individual, follow-up 

starts at the time of randomization, i.e., baseline is the time of first eligibility.  

 

More generally, one can consider additional arms in which 36 is replaced by x with x ranging 

from 36 to 84, or trials in which the time until the next surveillance colonoscopy is obtained by 

adding or subtracting y (rather than 12) months.  
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Figure 1.2: The three trial types considered in Chapter 1 

	  

 

Circles represent randomization, dotted lines represent periods when the strategy specifies all 
interventions (e.g., colonoscopy or no colonoscopy), solid lines represent periods when the 
strategy does not specify the intervention (e.g., anything goes, colonoscopy or no 
colonoscopy). 

  

Type	  1	  

Type	  3

Time

Type	  2

Intervention

Same	  	  as	  above,	  but	  for	  x2

Interventions	  at	  subject-‐specific	  times,	  depending	  on	  evolving	  covariate	  history	  and	  x1

Intervention

Intervention	  at	  time	  x2

Trial	  z1

Ti
m
e	  
of
	  fi
rs
t	  e

lig
ib
ili
ty Trial	  z2

Randomization	  
if	  eligible	  at	  
time	  z1

Randomization	  
if	  eligible	  at	  
time	  z2

Intervention	  at	  
time	  x1



14	  
	  

4.   Emulating the design of the hypothetical trials 

In this section we review how to emulate the design of each of the above hypothetical trials by 

setting up a database with the same structure as that of the trial. In the next section, we review 

how to mimic the analysis of the hypothetical trials.  

 

Trial type #1: Point intervention assigned at a fixed time after first eligibility 

We emulated 49 “trials,” one starting at each month z between months 36 and 84 after first 

eligibility. For the “trial” starting in month z, we identified the individuals who met the 

eligibility criteria at baseline, i.e., all individuals with adenomas detected and removed at first 

eligibility who were alive and had not yet had a post-screening colonoscopy/sigmoidoscopy or 

been diagnosed with colorectal cancer by z months of follow-up. For each “trial,” individuals 

were classified into the colonoscopy arm if they received a colonoscopy during month z and 

into the control arm otherwise. 

 

We identified 2028 eligible individuals. On average, each participated in 45 “trials,” of which at 

most 1 was in the colonoscopy arm. The number of eligible individuals who received a 

colonoscopy at baseline ranged between 0 (in several “trials”) and 16 (in “trial” z=61). See 

Appendix Table 1 for details. Unfortunately, all “trials” had zero cancers among the exposed, 

which means the data from NORCCAP cannot be used for a meaningful emulation of Trial type 

#1.  
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Trial type #1 has the advantage of being easy to emulate and analyze when sufficient 

observational data are available. This approach has been used in observational studies to 

estimate the observational analog of the intention-to-treat effect of statin therapy4 and 

postmenopausal hormone therapy.3 Here we will not consider this trial type further. 

 

Trial type #2: Sustained static strategies assigned at first eligibility 

We emulated a randomized trial with 49 arms, in which the participants were assigned at first 

eligibility to colonoscopy at a randomly assigned time ranging from month 36 to 84 after first 

eligibility. Classifying the 2190 eligible individuals into a single arm is not possible because, at 

baseline, each individual’s data are consistent with all 49 arms. To overcome this problem we 

created an expanded dataset with 49 clones of each individual who did not receive a 

colonoscopy at baseline, and assigned each of them to a different arm.14 The 2190 eligible 

subjects contributed 107,309 clones to this “trial.” See Appendix Table 2 for details. 

 

The clones in the expanded dataset were censored at the time their data deviated from the 

strategy to which they were assigned. For example, in arm 84, 12.9% of participants were 

censored for having a surveillance colonoscopy too early (before month 84), 73.5% of 

participants were censored for failing to have a surveillance colonoscopy in time (in month 84), 

and 0.5% were censored for having a sigmoidoscopy. Those who received a colonoscopy for 

clinical reasons or developed malignancies other than colorectal cancer were subsequently 

considered “immune” from censoring.  
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Trial type #3: Sustained dynamic strategies assigned at first eligibility 

 

We emulated a trial with 49 arms, one for each value x in the dynamic strategies defined 

above. The 2190 individuals were classified into the arm that was consistent with their 

observed data. Like in the previous trial, individuals cannot be assigned to a single arm at 

baseline, so we created an expanded dataset with 49 clones of each individual and assigned 

each of them to a different arm. The clones were censored at the time they deviated from the 

strategy to which they were assigned. For example, in arm 84, 11.3% of participants were 

censored for having a surveillance colonoscopy too early, 79.7% of participants for failing to 

have a surveillance colonoscopy in time, and 1.3% for having a sigmoidoscopy. The 2190 

eligible subjects contributed 107,309 clones to this “trial.” See Appendix Table 3 for details.  

 

5.    Emulating the design of hypothetical trials with a grace period 

So far we have implicitly assumed that it is possible to administer a colonoscopy at a precisely 

specified time point, e.g., month 36. However, in many clinical settings, this may not be 

feasible. We may therefore be more interested in emulating trials with a grace period, that is, a 

window of m months during which the patient may undergo colonoscopy. For example, in Trial 

type #2, patients would be assigned to interventions of the form “surveillance colonoscopy 

between x and x+m months after baseline.” Trials with a grace period more accurately reflect 

clinical practice in which administrative delays and patient availability may prevent an 

immediate intervention.  
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Strategies with a grace period are emulated using “clones” as described above, but with 

different criteria for censoring. Suppose we use a grace period of m=6 months. An individual 

who received a surveillance colonoscopy in month 40 now has data consistent with arm 36 

because subjects assigned to this arm are allowed to have a colonoscopy at any time between 

months 36 and 42. Therefore his clones assigned to arms 36 to 40 will not be censored 

whereas his clone assigned to arm 41 will be censored because he received a surveillance 

colonoscopy before the assigned time.  

 

The addition of a grace period requires us to specify the distribution of the interventions during 

the grace period. For example, we might ask whether most colonoscopies are performed 

during the first two months of the grace period, or whether they are more equally distributed 

during the grace period. In our application, we will specify a uniform distribution of 

colonoscopies during the grace period.14 

 

In both Trials #2 and #3 with a 6-month grace period, each of the 2190 eligible individuals in 

the original dataset contributed 49 clones, for a total of 107,310 clones to the expanded 

dataset. In trial #2, the average censoring time ranged between 41.9 months for x=36 to 89.1 

months for x=84. In arm 84, 12.9% of participants were censored for having a surveillance 

colonoscopy too early (before month 84), 71.5% of participants were censored at month 90 for 

failing to have a surveillance colonoscopy in time, 0.1% were censored after month 90 for 

having a second surveillance colonoscopy, and 0.6% were censored for having a 
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sigmoidoscopy. Across the 49 arms, there were 381 incident cases of colorectal cancer in the 

clones, which occurred in 12 unique individuals.  

 

In Trial #3, the average censoring time ranged from 34.2 months for x=36 to 78.1 months for 

x=84. For arm 84, 11.3% of participants were censored for having a surveillance colonoscopy 

too early, 77.6% for failing to have a surveillance colonoscopy in time, and 1.4% for having a 

sigmoidoscopy. In total, there were 254 incident cases of colorectal cancer in 13 unique 

individuals. See Appendix Tables 2 and 3 for details. 

 

6.   Emulating the analysis of the hypothetical trials 

After reviewing how to create observational databases with the same structure as hypothetical 

randomized trials, we review how to use those databases to estimate the cumulative incidence 

curves (or their complement, the survival curves) that would have been observed under each 

strategy if all individuals had fully adhered to their original arm assignment. In a slight abuse of 

notation, we index the strategies by the variable x, which was defined in the previous sections. 

For example, in Trial #2, x = 78 corresponds to the strategy “surveillance colonoscopy between 

78 and 78+6 months after baseline.” 

 

In a true randomized trial with many arms x, we could estimate these curves nonparametrically 

(Kaplan-Meier curves) or parametrically by fitting a pooled logistic model of the form 

𝑙𝑜𝑔𝑖𝑡	   Pr 𝑌*+, = 0|𝑌* = 𝐷* = 0, 𝑥 = 𝛼4,* + 𝛼,𝑓 𝑥 	  +	  𝛼7𝑓(𝑥)×𝑡, where t denotes time (in months), 
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Yt is an indicator of colorectal cancer by t, Dt an indicator of death by t, 𝛼4,* is a time-varying 

intercept (estimated, for example, via restricted cubic splines for time with knots at 30, 60, 90 

and 120 months), 𝑓(𝑥) is a function of x (for example, a second degree polynomial), and 

𝑓(𝑥)×𝑡 is a product term to allow the hazard ratio to vary during the follow-up. For example, 

for the first 36 months of follow-up, the hazard is known to be identical under all strategies, but 

it may change after that if colonoscopy has a non-null effect on colorectal cancer incidence. 

We would then calculate the predicted values for each value of x and compute their product in 

order to estimate the survival curves. Pointwise 95% confidence intervals for the curves can be 

obtained via a non-parametric bootstrap. In our emulated trials, however, the above logistic 

model needs to be adjusted by both baseline and post-baseline (time-varying) confounders. 

The procedure then needs to be modified as we now describe.  

 

Adjustment for covariates 

In both trials #2 and #3, we need to adjust for covariates that jointly predict surveillance 

colonoscopy At (and therefore censoring) and subsequent outcome. Some of these variables 

are fixed at the baseline of each trial; others vary during the follow-up. Let L0 represent the 

vector of baseline covariates, which include age at baseline, sex, family history of colorectal 

cancer, history of smoking, and findings at NORCCAP colonoscopies (number of adenomas, 

size, histology and presence of villous elements). Let Lt represent the vector of time-varying 

covariates, which include an indicator for incident non-colorectal malignancies, and a vector of 
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the findings from the most recent colonoscopy (number of adenomas, size of largest adenoma, 

histological grade and presence of villous elements).  

 

To adjust for L0, one could fit the pooled logistic model 𝑙𝑜𝑔𝑖𝑡	   Pr 𝑌*+, = 0|𝑌* = 0	  , 𝑥, 𝐿4 = 𝛼4,* +

𝛼,𝑓 𝑥 +	  𝛼7𝑓(𝑥)×𝑡 + 𝛼<𝐿4	  to the expanded dataset of each trial separately. To obtain the 

survival curves under each strategy x, one would then calculate the predicted values for each 

value of x, standardized them by L0 and compute their product. However, the time-varying 

covariates Lt cannot be added to the logistic model because these variables may be affected 

by prior treatment10,11 (a colonoscopy may change the findings at future colonoscopies, for 

example by removing adenomas; see Appendix). We therefore need to use IP weighting to 

adjust for Lt. 

 

The subject-specific, time-varying IP weights are 𝑊* = 	  
,

> 𝐴@ 𝐴@A,, 𝐿@, 𝑌@ = 𝐷@ = 0
*
@B4 . 

Informally, the denominator of the weights is each subject’s conditional probability of having, 

at each time t, his or her own surveillance colonoscopy history. We use overbars to denote 

history, i.e., 𝐿* =(L0, L1, L2, …., Lt). 

 

The factors in the denominator of the weights were set to 1 in months following age 70, a non-

surveillance colonoscopy, or the diagnosis of malignancies other than colorectal cancer 

because the individual has a probability 1 of remaining uncensored during those months. The 

factors in the denominator were also set to 1 during the first 9 months after a colonoscopy is 
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received, because no surveillance colonoscopies were performed during this period (only 

colonoscopies due to symptoms or to incompleteness of the preceding colonoscopy). In 

previous applications of IP weighting for strategies with grace periods, the investigators were 

interested only in strategies that were not sustained beyond the initial decision to treat.14 

Therefore, the contributions to the weights were set to 1 for all time periods after treatment 

was first received. 

 

For all other months, we estimate the denominator by fitting a logistic model for the 

conditional probability of receiving a colonoscopy to the original, unexpanded study 

population. We fit the model 

𝑙𝑜𝑔𝑖𝑡	   Pr 𝐴* = 1|𝐴*A,, 𝐿* = 𝛽4,* + 𝛽,𝑔(𝐴*A,)𝑃* + 	  𝛽7𝐿4 + 	  𝛽<𝐿*𝑃* 

where 𝛽4,* is a time-varying intercept estimated via restricted cubic splines with knots at 30, 60, 

90, and 120 months, 𝑔(𝐴*A,) is the time since the most recent colonoscopy, and covariate 

history 𝐿*	  is summarized via the time-varying covariates Lt and the baseline variables L0, which 

include age (restricted cubic splines with knots at 50, 55, 60, and 65 years), sex, family history 

of colorectal cancer (yes/no), history of smoking (yes/no), findings at the NORCCAP 

colonoscopies (indicators for 3 or more adenomas, adenoma greater than 10mm, adenoma 

with villous component, and histological grade (1 if high grade dysplasia, 0 otherwise). The 

variables 𝑔 𝐴*A,  and 𝐿*	  are entered to the model only in a product (“interaction”) term with Pt, 

an indicator for prior colonoscopy (1 if the individual had a colonoscopy before t, 0 otherwise), 
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such that the terms are zero in individuals who have not had a previous surveillance 

colonoscopy. 

 

Because the IP weights already adjust for the baseline covariates L0, we did not include them as 

covariates in the outcome model. That is, we fit the weighted pooled logistic model 

𝑙𝑜𝑔𝑖𝑡	   Pr 𝑌*+, = 0|𝑌* = 0	  , 𝑥 = 𝛼4,* + 𝛼,𝑓 𝑥 +	  𝛼7𝑓 𝑥 ×𝑡. To check the robustness of our 

estimates to different choices of functional form for time and x, we explored different 

parameterizations of the outcome model, including a quadratic functional form for time, cubic 

terms for x, and additional interaction terms between f(x) and time.  

 

Grace Period 

Because our strategies of interest include grace periods, the above IP weights Wt need to be 

modified.14 Specifically, the numerator of the factors corresponding to months included in the 

grace period need to change to ensure that surveillance colonoscopies will be uniformly 

distributed during the grace period. For trial #2, the numerator of factors corresponding to 

month j of the grace period is replaced by ,
F+,A@

 with j = 0, 1, …5 when At =1, and replaced by 

FA@
F+,A@

	  when At = 0. For trial #3, where there can be multiple surveillance colonoscopies, we use 

the same approach during all grace periods. 

	  

Estimates from NORCCAP data 
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Table 1.2 shows the 5- and 10-year risks of colorectal cancer for arms 36 and 84 in Trials #2 and 

#3. For both static and dynamic strategies, earlier surveillance colonoscopy resulted in a lower 

risk. The estimated survival curves for selected arms of trials #2 and #3 are shown in Figure 1.3. 

As expected, the survival curves are essentially identical over the first three years, as the 

strategies are the same during this time period. Results were similar in sensitivity analyses using 

different functional forms for f(x) and time.  

 

Note that, had the dataset included no cancer diagnoses after surveillance colonoscopy, the 

conclusion that delaying colonoscopy increases risk would be foregone. In our dataset, only 

one individual who has a surveillance colonoscopy between months 36 and 84 subsequently 

developed colorectal cancer, and he was censored before getting cancer under most clinically 

relevant strategies. Any changes to the strategies that led to him not being censored, would 

result in substantial changes to the estimates. Therefore our analysis needs to be replicated in 

a larger dataset.  

 

  



24	  
	  

Figure 1.3: Estimated survival curves for Trials #2 and #3 
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Table 1.2: Estimated risk of colorectal cancer at 5 and 10 years under selected surveillance 
strategies, intervention arm of the NORCCAP trial  

	  

 Risk, % (95% CI)  
x=36 

Risk, % (95% CI) 
x=84 

Risk difference, % 
(comparing x=36 
with x=84) 
(95% CI) 

Risk ratio  
(comparing x=36 
with x=84)  
(95% CI) 

Static Strategies 
At 5 years 
At 10 years 

  
0.15 (0.03-0.37) 
0.31 (0.05-0.69) 

 
0.30 (0.08-0.59) 
0.63 (0.27-1.14)  

 
-0.15 (-0.31 – 0.00)  
-0.32 (-0.67 – 0.01) 

  
0.47 (0.06-0.87) 
0.49 (0.10-1.01)  

Dynamic Strategies 
At 5 years 
At 10 years 

 

 
0.12 (0.00-0.36) 
0.30 (0.05-0.90) 

 
0.25 (0.01-0.50) 
0.44 (0.17-0.76) 

 
-0.13 (-0.30 – 0.01) 
-0.14 (-0.46 – 0.03) 

 
0.49 (0.03-1.18) 
0.67 (0.10-1.76) 
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7.    Conclusions 

After a medical procedure or medication has been shown to be effective, the next question is 

usually how often it should be administered. In this paper, we reviewed an approach that, when 

applied to a sufficiently large and rich dataset, helps decide among various timing strategies. 

Specifically, we outlined the design and analysis of hypothetical randomized trials to compare 

different strategies, and provided a methodology for emulating these trials using observational 

data.  

 

As a motivating example, we compared the effectiveness of different strategies for scheduling 

surveillance colonoscopies in patients with adenomas, a clinical question for which the 

available evidence is sparse.9,15-20 Our analysis suggests that more frequent surveillance 

colonoscopies leads to a greater reduction in colorectal cancer risk; as expected, the analysis 

also suggests that dynamic strategies are more effective than static strategies. However, our 

analysis is more an example of implementation than an attempt at providing definite answers 

to the clinical question because the sample size of our study was small.  

 

The application of the methods outlined in this review allowed us to specify a research 

question that is directly relevant to decision makers interested in timing questions. Though 

these methods allow adjustment for both baseline and time-varying covariates, the possibility 

of unmeasured confounding remains as in any observational study.  
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Abstract 

Because non-initiators of treatment differ from initiators in terms of unmeasured variables 

including access to healthcare and health-seeking behavior, guidelines for the conduct of 

observational research often recommend using an “active” comparator group consisting of 

people who initiate a treatment other than the medication of interest. In this paper, we discuss 

the conditions under which this approach is valid if the goal is to emulate a trial with an inactive 

comparator. We provide four different conditions under which a target trial in a subpopulation 

can be validly emulated from observational data, using an active comparator that is known or 

believed to be inactive for the outcome of interest. The average treatment effect in the 

population as a whole is not identified, but under certain conditions this approach can be used 

to emulate a trial either in the subset of individuals who were treated with the treatment of 

interest, in the subset of individuals who were treated with the treatment of interest but not 

with the comparator, or in the subset of individuals who were treated with both the treatment 

of interest and the active comparator. We discuss whether the required conditions can be 

expected to hold in pharmacoepidemiologic research, with a particular focus on whether the 

conditions are plausible in situations where the standard analysis fails due to unmeasured 

confounding by access to health care or health seeking behaviors. 
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1.   Introduction 

Randomized trials to evaluate the effectiveness or safety of an active treatment can be 

classified into two groups: trials that compare the treatment of interest with an active treatment 

which is a clinical alternative to the treatment of interest (head-to-head trials), and trials that 

compare the treatment of interest with an inactive comparator such as placebo or usual care 

without treatment. Observational data are often used to try to emulate both types of 

randomized trials. Head-to-head trials may be emulated via comparisons of individuals 

initiating the treatment of interest versus initiating the active comparator. Trials with inactive 

comparators may be emulated via comparisons of individuals initiating versus not initiating the 

active treatment. 

 

While all trial emulations using observational data are subject to bias, emulating trials with 

inactive comparators is especially challenging because people who initiate treatment may be 

different from non-initiators in ways that are difficult to assess: access to healthcare, health-

seeking behaviors, time since and accuracy of the measurement of confounders, outcome and 

comorbidities. As a result, the observational estimates may be biased by unmeasured 

confounding and differential mismeasurement of key variables.1 This bias is of particular 

concern in studies that rely on administrative data.2,3 

 

A proposal to reduce these biases in observational research is the use of active comparators 

even when the goal of the research is to emulate a trial with inactive comparators. To do so, 
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investigators often choose an active comparator that is thought to be inactive for the outcome 

under consideration and therefore, generally, will not be a clinical alternative to the treatment 

of interest. It has been argued that using such active comparators may mitigate bias because 

initiators of the treatment of interest and of the active comparator are expected to have a 

similar health status4 and use of the health care system5, and comparable quality of 

information.  

 

The use of active comparators has been endorsed in several guidelines for the conduct of 

observational research, including the GRACE principles,1 AHRQ’s “Protocol for Observational 

Comparative Effectiveness Research”,2 PCORI’s “Standards for Causal Inference in Analyses of 

Observational Studies”3 and the FDAs “Best practices for conducting and reporting 

pharmacoepidemiologic safety studies”.6 Table 2.1 summarizes several published examples of 

observational studies that used active comparators to emulate trials with inactive comparators. 

 

However, these guidelines do not describe the method in detail. For example, none of these 

documents explicitly differentiate between the use of active comparators to emulate head-to-

head trials or to emulate trials with inactive comparators. In addition, they do not provide a 

precise definition of the causal effect that is to be estimated when active comparators are used, 

and therefore cannot characterize the conditions that are necessary in order to identify this 

causal effect. Finally, the guidelines neither specify whether the treatment group should 

exclude individuals who also take the comparator drug nor whether the analysis should be 
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restricted to individuals with indications for both active treatments. As a result, different 

versions of active comparator approaches exist (see Table 2.1). 

 

In this paper, we consider the possible designs of observational studies that use active 

comparators to emulate trials with inactive comparators. We characterize the causal effect that 

is targeted by each design and the comparability assumptions under which the design-specific 

causal effects are identified from the data. Since we are interested in identification and not 

inference we shall ignore sampling variability by supposing the study population is sufficiently 

large that sampling variability can be ignored.  

 

As a running example, we will consider a target trial whose goal is to compare usual care plus 

initiation of statin therapy (A=1) vs. usual care without initiation of statin therapy (A =0) on the 

5-year risk of coronary heart disease Y (1: yes, 0: no) in some well-defined study population, say 

an insurance or medicare data base. We shall sometimes use “treated” as shorthand for 

“subjects who initiated treatment with statins.” 
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Table 2.1: Examples of observational studies that use active comparators to emulate 
randomized trials with inactive comparators 

	  

Study Treatment group  Comparator group 

 

Outcome 

Glynn et al 

(2001)12 

Initiators of several 

classes of cardiac drugs 

Initiators of glaucoma 

drugs 

Death 

Glynn et al 

(2006)13 

Initiators of lipid-

lowering medications 

Initiators of any other 

medications who do not 

use lipid-lowering 

medications 

Death 

Solomon et al 

(2006)5 

Initiators of 

NSAIDS/Coxibs 

Initiators of 

glaucoma/hypothyroidis

m therapy who do not 

take NSAIDs/Coxibs 

Hospital 

admission for 

myocardial 

infarction or 

stroke 

Schneeweiss et 

al (2007)14 

Initiators of statins who 

do not use glaucoma 

therapy 

Initiators of glaucoma 

therapy who do not use 

statins 

Death 

Setoguchi 

(2007)15  

Initiators of statins who 

do not use glaucoma 

therapy 

Initiators of glaucoma 

therapy who do not use 

statins 

Lung, breast 

and colorectal 

cancer 
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2.   Emulating a trial with inactive comparators in a subset of the study population  

To fix ideas, we first review the counterfactual approach to causal inference. We shall let the 

counterfactuals Ya=1 and Ya=0 denote the outcome of interest Y when treated and not treated 

with statins respectively. We make the consistency assumption that a subject’s observed 

outcome Y is equal to Ya=1 if the subject initiated statin treatment; otherwise Y is equal to Ya=0 .  

 

We first consider two causal effects that are often of interest. The first of these is the average 

treatment effect (ATE) in the entire study population E[Ya=1] - E[Ya=0], ie the difference between 

the 5-year risk of coronary heart disease had everyone undergone usual care plus initiation of 

statin therapy (E[Ya=1]), and the 5-year risk of coronary heart disease had everyone undergone 

usual care alone (E[Ya=0]). To identify the average causal effect in the entire population we need 

to be able to identify both E[Ya=0] and E[Ya=1] from the observed data. If the ATE is identified, 

we are able to emulate a trial comparing initiation of statins with usual care in the entire study 

population.  

 

The second is the average causal effect in the treated population E[Ya=1 |A=1]- E[Ya=0 |A=1] 

which is often referred to as the effect of treatment on the treated (ETT). The ETT compares 

the five-year risk of coronary heart disease under statin therapy and usual care in the subgroup 

of the population who were observed to initiate treatment with statins. Since by consistency 

the average Ya=1 among subjects observed to have A=1 is equal to the mean of Y among these 
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subjects, we have that E[Ya=1 |A=1] is equal to E[Y|A=1] and the ETT is E[Y |A=1]- E[Ya=0 |A=1]. In 

other words, confounding by unmeasured factors is not an issue for E[Ya=1 |A=1] and thus to 

identify the ETT it is sufficient to identify the mean E[Ya=0 |A=1] of Ya=0 from the observed data. 

If the ETT is identified, we will be able to emulate a trial in the subset of the study population 

who initiated statin treatment.  

 

As discussed above, the observational difference in risk of coronary heart disease between 

statin initiators and non-initiators, E[Y|A=1] – E[Y|A=0], may be biased for the ATE contrast 

E[Ya=1] – E[Ya=0] and for the ETT E[Ya=1|A=1] – E[Ya=0 |A=1]. The bias may persist even if the 

observational contrast were computed within levels of the measured confounders L available in 

the data base, i.e., E[Y|A=1, L=l] – E[Y|A=0, L=l], owing to within-stratum confounding by 

unmeasured factors and measurement error. For notational simplicity, in this paper we often 

suppress L=l from the conditioning event, but consider that all observational contrasts are 

calculated in a subset of the population L=l.  

 

3.   Three Designs 

In an attempt to eliminate the bias, we can consider three possible active comparator designs. 

In the following we let B denote the active comparator drug so that subjects with B=1 initiate 

the active comparator and subjects with B=0 do not. Consider subjects who have yet to initiate 

either treatment at some fixed time from start of follow-up divided into 4 groups: Group (1) 
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consists of subjects who initiate A but not B, Group (2) consists of subjects who initiate B but 

not A, Group (3) consists of subjects who initiate both A and B and Group (4) consists of 

subjects who initiate neither A nor B. Note that if A and B are alternative therapies for the same 

illness then it may be that there exist no subjects initiating A and B at once. Since, as discussed 

in the introduction, we are considering the case in which A and B do not treat the same 

condition, we will assume there do exist simultaneous initiators.  

 

In all designs we compare the observed mean of the outcome in some subset of the treated 

with the mean outcome among the untreated subjects who initiate the comparator drug. In 

design 1, we use the mean outcome in all subjects treated with statins. In design 2, we use the 

mean outcome in treated subjects who do not take the comparator drug. In design 3, we use 

the mean outcome in treated subjects who take the comparator drug. Thus we replace the 

usual observational contrast E[Y|A=1] – E[Y|A=0] by one of the following design specific 

observational contrasts: 

 

Design 1: E[Y|A=1] – E[Y|A=0, B=1] 

Design 2: E[Y|A=1, B=0] – E[Y|A=0, B=1] 

Design 3: E[Y|A=1, B=1] – E[Y|A=0, B=1] 
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We next discuss the causal effect targeted by each design. Recall that B is an active treatment 

which is known or thought to be inactive for the outcome Y. In our running example we take B 

to be an active therapy for glaucoma that is inactive for our outcome coronary heart disease. 

The above observational contrasts do not generally identify the ATE, ie average causal effect of 

A=1 versus A=0 in the entire study population, E[Ya=1] – E[Ya=0]. However, under certain 

comparability conditions described below, each of these contrasts identifies the average causal 

effect of A=1 versus A=0 in a particular subset of the treated population that depends on the 

design: Under design 1, it is the entire population treated with treatment A (groups 2 and 3); 

under design 2 it is the subset of treated population who do not initiate treatment B (group 2), 

and under design 3 it is the subset of treated who initiate treatment B (group 3).  Figure 2.1 

illustrates the groups compared and the trials that are emulated by each design.  

 

We now describe the comparability conditions under which each of the above design specific 

observational contrasts identifies these effects. Let pab ≡ E[Ya=0|A=a, B=b]. For example, p01 is 

the mean of Ya=0 among subjects who initiate glaucoma therapy (treatment B) but do not 

initiate statins (treatment A). Consider the four comparability conditions: 

i.   p11=p01 

ii.   p10=p01  

iii.   p10=p01=p11  

iv.   p10=p01=p11 =p00  
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We now show that certain of these conditions identity the subpopulation causal effects 

described earlier.  

 

The effect of A among those initiating A and B 

Condition (i) states that among subjects initiating B, those also initiating treatment A have the 

same mean of Ya=0 as those not initiating A. Under comparability condition (i), the contrast 

E[Y|A=1, B=1] – E[Y|A=0, B=1] of Design 3 identifies the effect of active treatment A=1 versus 

no treatment A=0 among the subset initiating both A and B. In our example, this is the average 

causal effect of statins versus no statins among subjects who initiated both statins and 

glaucoma therapy.  

 

Lemma 1: If p11=p01 then E[Y|A=1, B=1] – E[Y|A=0, B=1]= E[Ya=1-Ya=0|A=1, B=1]. 

Proof: 

E[Y|A=1, B=1]   = E[Ya=1|A=1, B=1]   by consistency 

E[Y|A=0, B=1]  = E[Ya=0|A=0, B=1]   by consistency 

= E[Ya=0|A=1, B=1]   by (i) 
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The effect of A among those treated with A but not B 

Condition (ii) states that subjects initiating B but not A have the same mean of Ya=0 as those 

initiating A but not B. Under condition (ii), the contrast E[Y|A=1, B=0] – E[Y|A=0, B=1] identifies 

the effect of active treatment A=1 versus no treatment A=0 among those initiating A but not B. 

In our example, this effect is the average causal effect of statins versus no statins among 

initiators of statins who did not initiate glaucoma therapy.  

 

Lemma 2: If p10=p01 then E[Y|A=1, B=0] – E[Y|A=0, B=1]= E[Ya=1-Ya=0|A=1, B=0].  

Proof:  

E[Y|A=1, B=0]   = E[Ya=1|A=1, B=0]   by consistency 

E[Y|A=0, B=1]  = E[Ya=0|A=0, B=1]   by consistency 

= E[Ya=0|A=1, B=0]   by (ii) 

Lemma 2 is essentially due to Rosenbaum (2007).7,8 

 

The effect of A among those treated with A 

Under condition (iii), we obtain the above results plus we identify the effect of treatment on the 

entire treated population (A=1). Under this condition, the contrast E[Y|A=1] – E[Y|A=0, B=1] 

identifies the effect of active treatment A=1 versus no treatment A=0 among those who 

initiated A in the observational data. In our example, this is the average causal effect of statins 
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versus no statins among all initiators of statins. As noted earlier, this causal estimand is 

commonly referred to as ETT 

 

Lemma 3: If p10=p01=p11 then not only are the results of Lemma 1 and 2 true but in addition 

E[Y|A=1] – E[Y|A=0, B=1]= E[Ya=1-Ya=0|A=1] 

Proof:  

E[Y|A=1]   = E[Ya=1 | A=1]   by consistency 

E[Y|A=0, B=1]   = E[Ya=0 | A=0, B=1]   by consistency 

= E[Ya=0 | A=1]   by (iii) 

 

It is easy to see that condition (iii) both implies and is implied by conditions (i) and (ii). If the 

even stronger condition (iv) holds, the observational contrast E[Y|A=1] – E[Y|A=0] identifies the 

effect of A in the treated. In other words, if condition (iv) holds we would not need to collect 

data on B to identify the ETT  

 

Lemma 4: If p10=p01=p11 =p00 then E[Y|A=1] – E[Y|A=0] = E[Ya=1-Ya=0|A=1] 

Proof: 

E[Y|A=1]   = E[Ya=1 | A=1]   by consistency 
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E[Y|A=0]   = E[Ya=0 | A=0]   by consistency 

   = E[Ya=0 | A=1]   by (iv)  
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Figure 2.1: Venn diagrams showing the groups compared and the subpopulation to which the 
effect estimates apply 
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4.   The comparability conditions 

 

The results in the previous section depend on comparability conditions (i)-(iv). Since these 

conditions, like other comparability conditions, can be neither empirically verified nor refuted 

we should only adopt those that are plausible a priori. We now discuss the plausibility of these 

conditions.  

 

We begin by showing that unless the comparator B has no direct effect on the outcome of 

interest we could not expect any of the above conditions except possibly (i) to hold. This 

should not be surprising, as the causal null hypothesis for the comparator is essential to the 

intuition behind most active comparator study designs. To proceed we need some further 

definitions. Let Ya,b be the counterfactual representing the joint effect of A and B on Y. The 

counterfactuals Ya discussed earlier are determined by the counterfactuals Ya,b via consistency. 

Specifically, Ya = Ya, b=1 for subjects treated with B (B=1) in the observed data. For subjects with 

B=0 in the data, Ya = Ya, b=0. 

 

By definition, B has no direct effect on Y if Ya = Ya, b=0 = Ya, b=1 for each subject. If B had a direct 

effect, the condition p10=p01 becomes E[Ya=0,b=1|A=0, B=1] = E[Ya=0,b=0|A=1, B=0]. Since the 

counterfactuals Ya=0,b=1 and Ya=0,b=0 would differ, there is no a priori reason to expect the mean of 

Ya=0,b=1 in a subgroup to equals that of Ya=0,b=0 in a second subgroup. As conditions (iii) and (iv) 

hold only if condition (ii) does, they too are implausible if B has a direct effect. Henceforth, we 
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will assume the investigators have chosen a comparator B which has no direct effect on the 

outcome. 

 

Next turn to condition (iv). This condition is implausible because it implies that subjects who 

initiated neither treatment A nor treatment B are comparable to those who did, which as 

discussed in the introduction cannot be assumed, an observation which indeed motivated the 

need for active comparators. We therefore proceed to discuss the weaker conditions (i), (ii) and 

(iii), focusing on describing hypothetical situations where the weaker conditions (i), (ii) or (iii) 

hold but (iv) does not. In such settings, an active comparators design may be required.  

 

Consider two indistinguishable groups of subjects in the population with different means of 

Ya=0, and hence non-comparable. We label these groups G1 and G2. Conditions (i), (ii) and (iii) 

but not (iv) would hold if all G1 members refrain from initiating either A or B, whereas 

comparability condition (iv) holds in G2. Therefore, all subjects who initiated either A or B 

would be in G2 while those who initiated neither would be an indistinguishable mixture of 

groups G1 and G2. As an example, we might suppose all subjects with health seeking behaviors 

were in G2 and those without were in G1. However, since covariates such as health seeking 

behavior are not truly binary, and since sicker individuals will tend seek health care 

preferentially, it is implausible that the division into such groups will ever hold precisely.  
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An alternative way to think about condition (iii) is in terms of a treatment choice model as 

discussed by Rosenbaum using ideas introduced by Tversky and Sattath (1979).11 In these 

models, a subject first decides whether to refrain from all treatment or not, and then decides 

which treatment to take. The probability of refraining from treatment can depend on Ya=0, but 

after having decided to take a treatment the decision about whether to take A, B or both 

cannot further depend on Ya=0. Again, it is implausible that this model would hold exactly.  

 

Such a mechanistic treatment model can also be used to describe a situation where condition 

(ii) but not (iii) would hold. For example, this would occur the subject first decides whether to 

take one, two or no treatments; with the decision depending on Ya=0; and in the event that he 

decides to initiate one treatment proceeds to choose among A and B with a probability that 

does not depend on Ya=0. As discussed by Rosenbaum, this scenario might be plausible if A 

and B were alternative therapies prescribed for the same indication. However, these models 

become implausible when, as in this paper, the indication for treatment with the comparator B 

(e.g., glaucoma therapy) differs from that for active treatment A (statins).  

 

The requirements for condition (i) are less restrictive. This condition would hold if among 

initiators of treatment B, initiators and noninitiators of treatment A are exchangeable with 

respect to the outcome Y, ie if Ya=0 ∐ A | B=1. This condition will be true under the following 

scenario: Suppose that initiators and noninitiators of statins are not exchangeable because of 
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differences in health care access (an unmeasured variable). If all initiators of treatment B have 

access to health care then, in the subset of initiators of B, initiators and noninitiators of A do 

not differ with respect to health care access. Therefore, conditional on prognostic factors other 

than health care access, comparability condition (i) would hold among initiators of B even if 

health care access remains unmeasured. Note in addition that B having a direct effect on Y has 

no bearing on the plausibility of condition (iv)  

 

All conditions in this paper will be violated if there exist unmeasured common causes of A and 

Y other than those that can be controlled by conditioning on B=1. Moreover, conditions (ii), (iii) 

and (iv) will all be violated if there exist unmeasured common causes of B and Y other than 

those that can be controlled by conditioning on A=1. Therefore, to justify the use of designs (2) 

or (3), the investigators will have to control for all indications for treatment A and all indications 

for the active comparator B. If medications A and B have different indications, this will usually 

produce a violation of the necessary positivity condition: Nobody will be treated with statins 

unless they have elevated cholesterol, and nobody will be treated with glaucoma therapy 

unless they have glaucoma. Investigators are therefore required either to limit the analysis to 

those individuals who have indications for both medications, or alternatively make the 

additional assumption that having glaucoma is independent of the outcome (such that it does 

not need to be controlled for). 
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Finally, we want to point out that all independence assumptions in this section are defined in 

terms of counterfactual variables that are specific for each outcome Y under consideration. It is 

often the case that a comparator will be independent of one outcome, but not another.  

 

5.   Using active comparators to reduce misclassification bias 

Besides potentially making the treatment groups more comparable in terms of unobserved 

covariates, the second argument for using active comparators in observational studies is that it 

may protect against a certain form of differential misclassification bias. Specifically, people who 

have not started a drug recently may not have all their comorbidities entered in the database, 

for instance because they have not had a recent physical examination. In observational 

research using health care databases, such individuals are generally considered not to have the 

condition; this phenomenon will therefore usually result in misclassification of the variable 

rather than missing data.  

 

Differential misclassification due to lack of access to healthcare will generally not affect 

measurement of the treatment: People who do not have access to healthcare will correctly be 

recorded as not being treated. In contrast, the outcome Y will often be measured with error for 

reasons related to access to health care.  
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Let Y* be the measured value of the outcome. The active comparators design can be used to 

eliminate differential misclassification of the outcome if condition (4) holds, ie p10=p01=p11 =p00 , 

and Y is measured accurately if the patient has access to health care, such that E[Y* | A=a,B=b] 

= E[Y | A=a,B=b] for all strata except a=0, b=0 where Y is measured with error.  

 

An example of such a situation is as follows: Suppose non-initiators of statins are 

disproportionally more likely to be uninsured than initiators, and uninsured individuals with 

chest pain are less likely to seek medical attention. In such a situation, the non-initiator group 

will be less likely to be diagnosed if they have silent myocardial infarctions and E[Y* | A=0,B=0] 

< E[Y|A=0,B=0]. In such a situation the standard analysis will have a bias that makes treatment 

appear falsely more effective at reducing the incidence. We may hope to eliminate this bias by 

using a comparator group consisting of glaucoma therapy initiators, as glaucoma therapy 

initiators are known to have adequate access to health care and will be diagnosed with the 

same accuracy as statin users if symptoms occur.  

 

This type of bias does not occur when the outcome (e.g., death) is measured accurately in all 

individuals. In this setting, concern about misclassification is not a compelling reason to use an 

active comparator design.  
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It is also possible for the confounders to be misclassified for the same reasons discussed above 

for the outcome. However since doctors can only make treatment decisions based on the 

information that they have available, the measured value of the variable is usually the proximal 

cause of treatment initiation; controlling for the mismeasured version is therefore generally 

preferable to controlling for the true value. For this reason, mismeasurement of confounders 

due to lack of access to healthcare is not a concern for most uses of health care databases.  

 

Finally, in situations where differential misclassification may be eliminated by the use of an 

active comparators design, it is usually the case that a similar objective can be achieved simply 

by restricting the study to individuals who had a certain level of health care utilization prior to 

baseline.  

 

6.   Discussion 

Observational studies that compare two active drugs often have less confounding than studies 

that compare a drug to no treatment. However, these two types of studies estimate different 

effects. We encourage investigators to think closely about what effects they are estimating 

when using “active comparators” to emulate a target trial of treatment versus no treatment. In 

this paper, we have provided the conditions under which such a trial can be validly emulated 

using a comparator group that consists of initiators of an active treatment that is inactive for 

the outcome of interest.  
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We have discussed four different conditions that allow the identification of subtly different 

causal effects. In most settings, condition (i) will be the most plausible one (it holds under a 

standard exchangeability assumption, and it does not rely on the assumption that the 

comparator treatment has no effect on the outcome), but an approach based on condition (i) 

will reduce sample size considerably and will restrict the interpretation of the estimated effect 

to the small subset of the population who share characteristics with those subjects who 

initiated both treatment A and treatment B in the observational data. Conditions (ii), (iii) and (iv) 

will be difficult to justify in most settings. Condition (ii) is weaker than condition (iii), and 

therefore less likely to be violated, but condition (iii) identifies a potentially more relevant 

causal effect.  

 

One potential way to test whether these conditions hold approximately would be to obtain 

observational data containing all relevant covariates including access to health care and health-

seeking behavior, and see whether an analysis that strips the dataset of these variables is able 

to use the methods proposed in this paper to obtain the same results as the standard analysis 

for estimating the causal effect in the corresponding subgroup.  

 

In any design that uses active comparators in observational data, it will be difficult to analyze 

multiple outcomes within the same study. This is because the active comparator has to be 
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chosen specifically in the context of subject-matter knowledge about the relationship between 

the comparator and the outcome under study, and justifications for using an active comparator 

comparator B for one outcome Y do not readily transfer to using the same comparator for a 

different outcome. 

 

In summary, investigators who employ an active comparators design to emulate a trial with 

inactive comparators should exercise caution.  
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Abstract: 

In 2002, the Women’s Health Initiative clinical trial was stopped early after it became clear that 

hormone replacement therapy was associated with an increased risk of coronary heart disease 

(CHD). This result was contrary both to prior observational studies and expert beliefs about 

biological pathways, and several hypotheses have been proposed to explain the study. In this 

paper, we examine if the results from WHI can be explained by differences in statin initiation 

between the randomization arms. Because of unmeasured confounding for the statin-CHD 

relationship, standard methods are unable to answer this question. We therefore provide a new 

g-estimation-based methodology for estimating the controlled direct effect, which relies on 

incorporating external information on the effect of the mediator. Specifically, we are able to 

provide a valid estimate for the direct effect of hormone replacement therapy on CHD, even in 

the presence of unmeasured confounding for the statin-CHD relationship. Despite substantial 

differences in LDL-cholesterol and statin initiation between the randomization arms, we find 

that statins had little impact on the results of the trial.  
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1.   Introduction: 

The Women’s Health Initiative (WHI) clinical trial randomized 16,608 women with intact uterus 

to either hormone replacement therapy (HRT) with conjugated equine estrogens and 

medroxyprogesterone acetate (E+P), or placebo. In July 2002, this trial was stopped early, after 

finding a 29% greater incidence of coronary heart disease (CHD) among women in the E+P 

hormone therapy arm.1 As data collection for the intervention phase became more complete, 

the HRs were 1.24 (95% CI: 1.00 – 1.54)2 and 1.18 (95% CI, 0.95-1.45)3 in updated analyses. 

 

Several hypotheses have been suggested to explain the findings from the WHI trial. Much 

interest has been on the timing of HRT initiation.4,5 An alternative hypothesis is that the results 

could be explained by differences in post-randomization initiation of HMG-CoA Reductase 

Inhibitors (statins). Hormone therapy is known to reduce serum levels of LDL cholesterol,6 and 

doctors are less likely to prescribe statins in patients with low LDL cholesterol. Statins are 

known to lower the risk of CHD.7 Women in the treatment arm of the WHI had lower post-

randomization levels of LDL than those in the placebo group, presumably due to the LDL-

lowering effect of oral estrogens; thus, they may have had a lower probability of initiating statin 

treatment. This could potentially explain the trial finding.  

 

If the results from the WHI trial are explained by differential statin usage, this would not mean 

that the trial was somehow less valid. Indeed, any effect of HRT, even if it is due to its effects 

on statin initiation, is part of the causal effect that a randomized trial is designed to estimate. 
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However, a natural interpretation of such a conclusion would be that HRT makes it more 

difficult to identify those women who would benefit from Statin treatment. This would suggest 

either that the prognostic value of LDL is reduced or that the LDL threshold value for statin 

initiation needs to be adjusted in women receiving HRT. Moreover, if the results from the trial 

are explained by differential statin initiation, this may go some way towards rehabilitating the 

observational studies that preceded WHI, which in most cases were conducted before statins 

became widely available and therefore would not be expected to capture the hypothetical 

component of the effect that is mediated by statins.  

 

To examine the hypothesis that the trial findings could be explained by differential use of 

statins, we estimated the direct effect of estrogen relative to statin usage. Because of 

unmeasured confounding for the statin-CHD relationship, the direct effect of estrogen is not 

identified from the WHI data alone. We therefore provide a new methodology based on 

incorporating external information about the effects of statins, which enables us to estimate the 

direct effect of estrogen even in the presence of mediator-outcome confounding. This external 

information was obtained from another large randomized trial, the Anglo-Scandinavian Cardiac 

Outcomes Trial – Lipid Lowering Arm (ASCOT-LLA),8 which compared Atorvastatin to Placebo. 

We considered 3 outcomes: CHD (defined as acute myocardial infarction requiring overnight 

hospitalization, silent myocardial infarction identified through serial electrocardiograms, or 

death due to CHD), stroke, and all-cause mortality.  
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2.   Study Setting, Intermediate Biomarkers and Statin Usage: 

From 1993 to 1998, 16,608 women aged 50-79 were randomized to HRT with E+P or Placebo 

as part of the Women’s Health Initiative. Of the participants, 1,115 used statins at baseline and 

were excluded from our analysis, leaving us with a sample size of 15,493. Participants were 

followed from randomization until the event of interest, death, loss to follow-up or July 2002, 

whichever occurs first. As part of follow-up, participants completed annual questionnaires on 

changes to their medical history including initiation of statins; therefore, if a woman started 

statins in the same year she had a heart attack it is difficult to tell what happened first. Some 

covariates, including post-baseline serum lipids and cholesterol, were only collected in a 

random subsample (the Core Analytes), consisting of 6.6% of the study participants.  

 

Baseline characteristics of participants in the WHI trial are shown in Table 3.1. A summary of 

the key post-baseline biomarkers as measured in the Core Analytes subsample is shown in 

Table 3.2. On average, one year after baseline women in the E+P arm had 12.7 percentage 

points lower LDL-c (95% CI: 10.5%-14.6%), 7.3 percentage point higher HDL-c (95%CI: 5.5-

9.0%), and 5.4 percentage points lower total cholesterol (95% CI: 2.5% - 11.5%) than women in 

the placebo arm. Results at year 3 were nearly identical to those at year 1.9 These intermediate 

biomarkers suggest a substantial beneficial effect of HRT on lipid profiles.  

 

By the end of follow-up, 10.2% of the placebo arm and 15.9% of the HRT arm had initiated 

statin treatment. This implies a cumulative incidence difference for statin initiation of 5.7% (95% 
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CI: 4.6% - 6.8%). A Kaplan-Meier curve with statin initiation as the outcome is shown as figure 

3.1; this graph shows that throughout the course of the trial, women in the placebo arm were 

more likely to initiate statins than women in the E+P arm. The difference between the arms is 

highly unlikely to be due to sampling variability; one hypothesis to explain the graph is that 

doctors were less likely to prescribe statins to users of HRT because their lipid profiles were 

improved.  

 

These findings are all consistent with what one would expect to see if the effect of HRT is partly 

mediated by differential statin initiation, but there are multiple other explanations that are also 

consistent with the data. For example, statin initiation could be a marker for high cholesterol 

without being a significant mediator of the causal effect of HRT. The descriptive statistics alone 

are not sufficient to differentiate the statin hypothesis from other explanations, and we 

therefore turn to a formal mediation analysis in the next sections. In order to do so, we will 

incorporate external information on the causal effect of statins.  

 

Based on a meta-analysis by the Cholesterol Treatment Trialists’ Collaboration, we assumed 

the causal Hazard Ratio associated with statin usage was 0.70 for CHD, and that this hazard 

ratio was relatively homogenous between different subgroups.10 We assumed hazard ratios of 

0.76 and 0.91 for stroke and all-cause mortality, respectively.  
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For certain analyses, we were required to identify a trial on statin usage where the published 

results included separate Kaplan Meier curves for each outcome. Among trials that met this 

requirement was the ASCOT-LLA8, from which we extracted information about the effect of 

statins. Briefly, ASCOT-LLA was a multicenter randomized controlled trial which randomized 

10,305 hypertensive patients aged 40-79 years old to 10mg atorvastatin once daily, or 

placebo. This trial estimated that initiation of statin treatment was associated with an intention-

to-treat hazard ratio of 0.64 for non-fatal myocardial infarction and fatal CHD (95% CI: 0.50-

0.83). Adherence-adjusted effect estimates from ASCOT-LLA have not been published. A 

summary of baseline characteristics in this trial is shown in Table 3.3. Only 18.8% of participants 

were women, this represents a major difference between the ASCOT-LLA and WHI study 

populations; we were unable to find a statin trial that was limited to women.  
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Table 3.1: Characteristics of Participants in WHI E+P trial who did not take statins at baseline 
(n=15493) 

 

Variable E+P (n=7926) Placebo (n=7567) 

 Age 

Median 

Interquartile Range 

63 

57-69 

63 

58-69 

White 6659 (84.0%) 6659 (84.1%) 

BMI (kg/m2) 28.5 (5.8) 28.5 (5.9) 

Systolic blood pressure, 
mmHg 127.6 (17.6) 127.8 (17.5) 

Diastolic blood pressure, 
mmHg 75.6 (9.1) 75.8 (9.1) 

Current smoker 880 (10.5%) 838 (10.5%) 

Statins  

By end of follow-up 1188 (15.7%) 799 (10.1%) 

CHD 

Before baseline  

During follow-up 

 504 (6.9%) 

 165 (2.1%) 

520 (6.4%) 

125 (1.7%) 

Stroke  

Before baseline 

During follow-up 

54 (0.7%) 

132 (1.7%) 

66 (0.9%) 

96 (1.3%) 

Deaths 

 By end of follow-up  210 (2.6%) 203 (2.6%) 

 

Parenthesis are either percentages or standard deviations, depending on variable type. 
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Table 3.2: Laboratory results in Core Analytes subsample (N=1319) 

 

  

Mean at 
baseline 
(Pooled 
across 
randomization 
arms) 

SD 

Change 
Difference 
(Average 
percentage 
change in 
E-P arm, 
minus 
Average 
Percentage 
Change in 
Placebo 
arm) 

95% CI 

Total cholesterol 
(mg/dl) 

222 37.1  -5.4% -4.0%, -7.0% 

LDL-c (mg/dl) 134.7 32.9 -12.7% -10.5%, -14.5% 

HDL-c (mg/dl) 55.3 13.6 7.3%  5.5%, 9.0% 

Serum Triglycerides 
(mg/dl) 

130.9 59.4 -6.9% -2.5%, -11.5% 

 

Note: Direct access to data from the Core Analytes subsample was not obtained. Figures are 
from published results. For baseline measurements, the averages are pooled over 
randomization status.  

 

  



65	  
	  

Table 3.3: Baseline characteristics of participants in the ASCOT-LLA trial. Parenthesis are 
percentages or standard deviations, depending on variable type 

	  

 Atorvastatin (n=5168) Placebo (n=5137 

Women 979 (18.9%) 963 (18.7%) 

Age 
≤60 
>60 

 
1882 (36.4%) 
3286 (63.6%) 

 
1853 (36.1%) 
3284 (63.9%) 

White 4889 (94.9%) 4863 (94.7%) 

Total cholesterol (mg/dl) 212.7 (30.9) 212.7 (30.9) 

LDL-cholesterol (mg/dl) 131.5 (27.1) 131.5 (27.1)) 

HDL-cholesterol (mg/dl) 50.3 (15.5) 50.3(15.5) 

BMI (kg/m2) 28.6 (4.7) 28.7 (4.6) 

Systolic blood pressure, 
(mmHg) 

164.2 (17.7) 164.2 (18.0) 

Diastolic blood pressure, 
(mmHg) 

95.0 (10.3) 95.0 (10.3) 

Current smoker 1718 (33.2%) 1656% (32.2%) 
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Figure 3.1: Statin initiation over time in the WHI trial 

	  



	  

3.   Standard Analysis  

Baron and Kenny (1986)11 described a method for estimation of the direct and mediated effects 

that has become widely utilized and cited. Briefly, they suggest using a series of regression 

models to check for mediation by assessing (1) whether the exposure is associated with the 

outcome, (2) whether exposure is associated with the suspected mediator and (3) whether the 

effect of the exposure is attenuated when conditioning on the mediator. In the WHI trial, this 

approach to mediation analysis is not valid; even if post-baseline cholesterol had been 

measured in all individuals the Baron-Kenny approach would have been invalid because LDL 

confounds the effect of statins but acts a mediator on the causal pathway from HRT to CHD.12  

 

In order to illustrate certain aspects of the data set, we conducted the analysis suggested by 

Baron-Kenny, both in the full WHI data set and in women not taking statins at baseline. Note 

that in the previous section, we have already determined that exposure to HRT causes 

increased incidence CHD, and that exposure to CHD causes reduced incidence of statin 

initiation, corresponding to the first two Baron-Kenny criteria for mediation. Regression 

parameters corresponding to the Baron-Kenny analysis are shown as Table 3.4. Survival curves 

predicted from the parameters of these models are shown as Figures 3.2-3.3.  

 

These models show that history of statin usage is highly correlated with CHD among women in 

WHI: When the statin variable is used as originally coded in the dataset, the hazard ratios 

associated with statin use exceed 2.5. This is almost certainly an artifact of the previously 
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mentioned data collecting process, which makes it hard to sort out the temporal sequence of 

events if statin initiation and CHD occur during the same year. It is therefore very likely that this 

correlation is driven in large parts reverse causation, ie that women are initiating statin 

treatment because they have been diagnosed with CHD.   For the remainder of our analyses, 

we therefore used a statin variable that was delayed by a year. Using this lagged version of the 

variable, the hazard ratio associated with statin usage remains above 1. Given that statins are 

known to be protective, this is a clear indication that women initiating statins are at higher risk 

than those who don’t, ie that the effect of statins is highly confounded.  

 

After we deleted women taking statins at baseline, the unadjusted hazard ratio for HRT in our 

data set is 1.24 (0.98-1.56). We note that the coefficients for the effect HRT are not attenuated 

by conditioning on statin initiation; in fact, the effect of HRT is if anything slightly amplified in 

three of the models after conditioning on statin initiation. This must be seen in light of the 

known confounding for the effect of the mediator. The Baron-Kenny analysis therefore does 

not allow us to conclude either way, and we turn to a different approach to mediation analysis 

in the next section. 

 

We also conducted an analysis in a dataset where people were censored at the time they 

initiated statin treatment. In this dataset, the Hazard Ratio associated with HRT was 1.28 (95% 

CI: 0.99 - 1.65) when using the original statin variable to determine censoring time, and 1.23 

(95% CI: 0.97 – 1.56) when using the delayed variable.  
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For reference, we also provide the incidence rates for CHD, both overall and during person 

time on statins: In women not taking statins at baseline, the incidence rate of CHD during WHI 

was 0.0033 per person year. In women who initiated statins during WHI (based on the 

unaltered variable), the incidence rate after initiation was 0.0081 per person year. If we delay 

the statin variable by a year, the incidence rate after statin initiation is 0.0038 per person year.  
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Table 3.4: Hazard Ratios associated with HRT and Statins in different pooled logistic models in 
the WHI data set 

 Outcome: 
CHD 
 
Predictors: 
HRT  

Outcome: 
CHD 
 
Predictors: 
Statins  

Outcome: 
Statins 
 
Predictors: 
HRT 

Outcome:  
CHD 
 
Predictors:  
HRT and Statins 

Outcome:  
CHD 
 
Predictors: 
HRT, Statins and Interaction 
Term 

HRT Statins HRT HRT Statins HRT Statins Interac
tion 
Term 

Full WHI 
dataset 
(n=16608) 

Untransformed 
Statin variable  

1.20 
(0.96- 
1.49) 

2.66  
(2.08- 
3.39) 

 
 
- 

1.24  
(1.01- 
1.55) 
 
    

2.69 
(2.1-
3.44)  

1.26  
(0.99-
1.64) 

2.77 
(1.90-
3.87) 

0.95 
(0.58-
1.55) 

Lagged Statin 
variable1 

1.20 
(0.96- 
1.49) 

1.90  
(1.43 - 
2.52)  

 
 
- 

1.22 
(0.98 
- 
1.45) 
    
 

1.92 
(1.41-
2.57) 

1.28  
(1.00-
1.62) 

2.15 
(1.41-
3.12) 

0.80  
(0.46-
1.40) 

WHI 
excluding 
those on 
statins at 
baseline  
(n = 15493) 

Untransformed 
Statin variable 

1.24  
(0.98- 
1.56 

2.69  
(1.93 - 
3.74) 

0.62 
(0.56 
-0.67) 

1.30 
(1.03 
- 
1.64) 
    
 

2.79 
(2.00-
3.88) 

1.26  
(0.99-
1.64) 

2.54 
(1.55-
3.95) 

1.21 
(0.64-
2.32) 

Lagged Statin 
variable 

1.24  
(0.98 
- 1.56 

1.11 
(0.65- 
1.92) 

0.61 
(0.55 
-0.68) 
 

 1.24  
(0.98- 
1.56) 
    

1.12  
(0.66-
1.98) 

1.26  
(1.00-
1.62) 

1.34  
(0.66-
2.58) 

0.68  
(0.22-
2.10) 

 

1The statin variable was lagged by 12 month in all individuals except those taking statins at 

baseline, in whom initiation was known to occur before month 1 such that reverse causation 

cannot occur 

 

 

  



71	  
	  

Figure 3.2: Survival curves predicted from standard models (with untransformed statin 
variable, model without interaction term)
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Figure 3.3: Survival curves predicted from standard models (without interaction terms, with 
lagged statin variable)  
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Figure 3.4: Kaplan Meier curves for WHI E+P trial (showing both original data, and data where 
women are censored at the time of statin initiation, delayed by 12 months) 
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4.   Identification of the Controlled Direct Effect 

Let T be the primary time scale of the WHI trial (time since randomization), and let K be a 

secondary time scale for time since initiation of statin therapy. Let A represent the baseline 

(intention-to-treat) treatment assignment with HRT and Mt be a time-varying indicator for 

whether the woman has initiated statin treatment by time T. The counterfactual survival time 

under estrogen treatment is labelled Ta=1, and the counterfactual survival time under no 

estrogen treatment is labelled Ta=0. The variable TA refers to the counterfactual survival time 

when evaluated at the treatment value for HRT that the woman received (ie the value that was 

randomly assigned); under the consistency condition TA is equal to the observed survival time 

T. TA,m=0 refers to a similar counterfactual survival time where the treatment value for hormone 

replacement therapy is evaluated at the observed value, and statins are not initiated.  

 

In the ASCOT-LLA trial, time since statin initiation is equal to time since randomization; the 

primary time scale of the ASCOT-LLA trial therefore corresponds to the secondary time scale K 

from the WHI trial. On the K time scale, the intention-to-treat indicator for statin initiation is 

time-fixed and we can therefore drop the time subscript (ie, Mk=M at all time points), otherwise 

all variables are identical between the trials. Km=0 and Km=1 are counterfactual variables for the 

survival times from statin initiation; sometimes we will be discussing the distribution of these 

survival times in terms of their equivalent causal survival functions under statin treatment and 

no statin treatment, S0(k) and S1(k) respectively. Let H(k)= S0
-1(S1(k)) be the quantile-quantile 

function that describes the relationship between these two survival time distributions. This 
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function takes a time point k as input, finds the quantile of people in the statin arm who failed 

at that time, and gives as output the time point at which the corresponding quantile has the 

event under no statin treatment.  

 

Our aim is to estimate what the effect of HRT would have been in the WHI trial in the absence 

of post-randomization initiation of statin therapy, i.e., the “controlled direct effect”13 of 

hormone replacement therapy. In other words, we are interested in emulating a hypothetical 

“target trial” that is different from the one that was actually conducted, such that the protocol 

of the target trial specifies that participants cannot initiate statin treatment. This will require us 

to identify the counterfactual distribution of survival time under hormone replacement therapy 

and no statin treatment f(Ta=1,m=0), and the counterfactual distribution of survival time under no 

hormone replacement therapy and no statin treatment f(Ta=0,m=0), in terms of observed data.  

 

The target trial can be emulated using WHI data alone if one has measured all joint predictors 

of hormone replacement therapy and CHD, and all joint predictors of statin initiation and CHD. 

Randomization of treatment assignment ensures that there is no confounding of the intention-

to-treat effect of hormone replacement therapy. The primary confounders of the Statin-CHD 

relationship are the serum lipids and cholesterol measurements. Since these covariates were 

only measured in a subset of 6.6% of the WHI trial, the controlled direct effect is not identified 

from the WHI data, and methods such as marginal structural models cannot be used.  
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However, the controlled direct effect of hormone replacement therapy is identified from a 

combination of the WHI data and the ASCOT-LLA data under the following conditions:  

 

•   Ta, m=0 ∐ A for all values a (in the WHI trial), 

•   Km=0 ∐ M (in the ASCOT-LLA trial)  

•   Equal treatment effects for statins between the following three groups: 

o   Participants in the ASCOT-LLA trial 

o   Initiators of statins in the Estrogen arm of the WHI trial 

o   Initiators of statins in the Placebo arm of the WHI trial 

 

Conditions (1) and (2) are both expected to hold due to random treatment assignment in the 

respective trials. The viability of condition (3) will depend on the similarity of the two trial 

populations in terms of baseline effect modifiers, and on the similarity between the initiators of 

statins in the two arms of the WHI trial in terms of time-dependent effect modifiers. We discuss 

the plausibility of this condition in the appendix. We next provide an outline of how the target 

trial can be emulated under these three conditions.  

 

First, observe that because of randomized treatment assignment in the ASCOT-LLA trial 

(Condition (2)), H(k) is identified from the ASCOT-LLA data. Under an assumption of rank 

preservation, this will allow us to compute the counterfactual survival time under no statin 
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treatment for participants in the treatment arm of the ASCOT-LLA trial: For any individual who 

initiated statins and later had the event at time K, the survival time under no statin initiation is 

given by Km=0 = H(K).  

 

Our next step is to use this quantile-quantile function as a link between the WHI dataset and 

the ASCOT-LLA trial. Among women who initiate statin therapy during WHI, the counterfactual 

survival time TA,m=0 is by definition equal to NA + KA, m=0: In words, this says that the time they 

would have survived without the event under no statin treatment is equal to the time they 

initiated statins, plus the time they would have survived under no treatment. If the treatment 

effect is the same in all subgroups defined in condition (3), the quantile-quantile function can 

be applied to compute the counterfactual survival time under no statin treatment among 

women in the WHI trial who initiated statins: KA, m=0 = 𝐻 𝐾I . Therefore, we know that: 

TA,m=0 = J
K	  +	  L MK 	  N>	  O*P*NQO	  RSTS	  NQN*NP*SU	  (VW	  SXYPZ	  *TSP*FSQ*	  S>>S[*O)

\K	  N>	  O*P*NQO	  RSTS	  Q]*	  NQN*NP*SU	  (VW	  []QONO*SQ[W)  

 

In other words, when H(k) is known, we can apply the G-estimation blip-down function to 

remove the effect of statins from all women in the WHI data set. To do this, we will need two 

pieces of information: The woman’s time of statin initiation N (because NA=N under 

consistency) and her observed event time (because TA = T under consistency, and 𝐾I	  can be 

calculated as TA-NA). Note that TA,m=0 cannot be calculated in participants who are censored. In 

these women, we can get a lower bound on TA,m=0 by calculating what it would have been if 
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they failed immediately after they were censored; this therefore serves as their adjusted 

censoring time. We discuss bias due to censoring later in the paper. 

 

In the data set where we have removed the effect of statins, we will observe the distribution 

f(Ta=1,m=0|A=1) in the stratum where A=1, and f(Ta=0,m=0|A=0) in the stratum where A=0. Under 

our exchangeability Condition (1) these distributions are equal to f(Ta=1,m=0) and f(Ta=0,m=0) 

respectively. Therefore, the randomized trial that compares these two counterfactual 

distributions can be emulated using any comparison between the groups A=1 and A=0 in the 

modified data set. 

 

5.   Estimation of the Controlled Direct Effect 

We proceed to give the quantile-quantile function a parametric form by specifying a structural 

nested accelerated failure time model (SNAFTM) for the effect of statins. We specify the model 

H(k) = 𝑒	  _`∗> b 	  b
4 dk , which can be equivalently stated as  

 

K0 = 𝑒	  _`∗c`∗> b 	  M
4 dk 

 

In this model, effects are measured as the multiplicative expansion of survival time due to 

treatment. 𝛹b	  is a vector parameter for the time-dependent effect of statins, and f(k) is the 

functional form for the interaction with time (we used indicator variables for time units of length 
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6 months). Because of randomized assignment of treatment (Condition 2) , 𝛹b is identified from 

the ASCOT-LLA data. Since we did not have access to the raw ASCOT-LLA data set, the 

published Kaplan-Meier curves were used to estimate 𝛹b. The procedure is explained in the 

appendix.  

 

Turning to the WHI data, we then used the g-estimation step down procedure based on 𝛹b to 

create a modified data set where failure times and censoring times were changed to remove 

the effect of statins. In this data set, we conducted both a non-parametric analyses in the form 

of Kaplan Meier estimators of the survival function, and fit the pooled logistic regression model 

𝑙𝑜𝑔𝑖𝑡	   Pr 𝑌* = 1|𝐴, 𝑌*A, = 0 = 𝛽4,* + 𝛽,𝐴	  . Since A was randomly assigned, the parameter 	  𝛽, 

this model can be interpreted as the parameter γ1 of the structural Cox model 𝜆P,FB4 𝑡 =

𝜆],FB4 𝑡 ×𝑒fg×P, where 𝑒fg	  is the Hazard Ratio associated with the use of HRT when Statins are 

withheld. We also fit multivariate Cox models conditional on baseline covariates.  

 

Our approach takes the effect of statins to be fixed at the point estimate of ASCOT-LLA, such 

that our estimators do not incorporate uncertainty due to sampling variability in that trial. A 

sensitivity analysis was conducted to determine the extent to which our conclusions depend on 

the assumed value for the effect of statins. We did this by increasing and decreasing the values 

of each parameter for the effect of statins in increments of 50% of the observed value, ranging 

from 0% (ie, statins have no effect) through 100% (the observed effect of statins in the 

randomized trial) to 200% (double the effect seen in the trial).  
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6.   Administrative Censoring: 

Since the WHI trial was stopped in July 2002, all surviving individuals are administratively 

censored at that calendar date. The vast majority of censoring in WHI was administrative. A 

Kaplan Meier curve with censoring as the outcome is shown as Figure 3.5. On the time scale of 

the study, the time of administrative censoring is a variable: A woman who enrolled in 1995 will 

have at most 8 years of follow-up, whereas one who enrolled in 1998 will have at most 5 years 

of follow-up. Let the variable Ct indicate administrative censoring at time t, and Ct
a,m=0 be a 

counterfactual variable to denote whether the woman would have been administratively 

censored at time t when we intervene to prevent statin usage.    

 

If a woman is censored because of the end of the study (rather than being lost to follow-up), 

this is not expected to be correlated with cardiovascular risk unless one expects a secular trend 

in incidence. It is therefore commonly assumed that administrative censoring is non-

informative, a convention we will adopt by assuming Ct ∐ Ya, ie that the probability of being 

censored at any time t is independent of the cardiovascular risk. In our dataset, we tested the 

assumption of non-informative censoring by running an analysis where every individual is 

weighted by their probability of not being censored (estimated by a logistic model conditional 

on statin usage and baseline covariates).  When using stabilized weights, the weighted 

outcome model was identical to the unweighted model to three decimal places, providing 

some support for the assumption of non-informative censoring.  
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However, even if administrative censoring in the actual trial is non-informative, censoring in the 

emulated target trial may be informative because women taking statins have their censoring 

time accelerated. In other words, in the emulated trial, Ct
a,m=0 ∐ Ya, m=0 does not hold. Therefore, 

if doctors prescribed statins to women who were at higher cardiovascular risk, our procedure 

will lead to women at high risk being censored earlier than women at low risk.  

 

Structurally, the only cause of informative censoring in the emulated trial is the procedure we 

performed to accelerate failure times. Since this process depended only on the history of statin 

usage, we know that 𝐶*	  P,FB4	  ∐	  𝑌P,FB4	  |𝐴,𝑀* . We can therefore eliminate the bias by weighting 

all uncensored observations by 𝑤* = 	  
,

lm[op
	  q,rstB4	  |	  I,cp)

	  * . Since the history of statin usage at 

time t can be summarized by an indicator for ever having initiated and the time since initiation 

(if they have initiated by time t) , these weights can be estimated by fitting the model 

𝑙𝑜𝑔𝑖𝑡	   Pr[𝐶* = 0 |	  𝐴,𝑀*) = 𝛽4,* + 𝛽,𝐴 + 𝛽7 ∗ 𝐼	   𝑡 > 𝑁 +	  𝛽< ∗ 𝐼 𝑡 > 𝑁 ∗ (𝑡 − 𝑁) in the modified 

data set. 

 

Table 3.5 shows the parameter estimates from the model for the weight numerator. Tables 3.6 

and 3.7 show the distribution of stabilized and unstabilized weights at time 60, 72 and 84 

(along the transformed time scale), and at the last observation for any individual. Note that 

some of these weights are very large, potentially leading to unstable estimates. 
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Figure 3.5: Kaplan Meier curve for censoring  
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Table 3.5: Parameter estimates from weight models (Pooled logistic models, Odds ratios) 

	  

 R Ever use of statin 

(Lagged 

indicator) 

Time since 

initiation 

(lagged) 

Numerator 0.858 - - 

Denominator 0.896 2.898 1.022 
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Table 3.6: Distribution of stabilized weights over time 

	  

Time Observations  Mean  Median 90th 

Percentile 

99th 

Percentile 

Max 

observation 

60 10638 1.01  0.96 0.96 3.60 15.75 

72 5446 1.27 0.91 0.91 2.99 118.54 

84 2182 1.48 0.87 0.87 45.96 60.23 

At last 

observation 

15493 1.83 0.93 1.61 9.29 805.96 
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Table 3.7: Distribution of unstabilized weights over time 

 

Time Observations  Mean  Median 90th 

Percentile 

99th 

Percentile 

Max 

observation 

60 10638 1.47 1.36 1.41 5.10 23.63 

72 5446 3.48 2.29 2.52 8.73 345.94 

84 2182 12.30 6.10 7.47 322.67 577.50 

At last 

observation 

15493 10.17 1.84 12.22 80.18 8699.39 

 

 

  



86	  
	  

7.   Structural Nested Cumulative Failure Time Models 

Structural nested cumulative failure time models (SNCFTM) are an alternative to accelerated 

failure time models. These models are less sensitive to administrative censoring, but require a 

rare outcome assumption. In this section, we proceed to estimate the controlled direct effect of 

HRT using similar principles as above, but using a SNCFTM for the effect of statins in place of 

the SNAFTM. All variables are the same as in the previous section; in addition, we will further 

define the baseline covariates using the letter L. This is not because we are worried about 

confounding, but rather to discuss assumptions that have to be made about possible effect 

modification by L.  

 

Picciotto et al (2012)14 describe the general form of a SNCFTM. In our case, since we are using 

a time-fixed intention to treat variable for the effect of statins, we will be able simplify the 

models considerable from those considered by Picciotto. Let E 𝑌bz 𝐿,𝑀  be the average 

counterfactual risk of developing the outcome by Y time k, given the observed covariate and 

treatment history at the time of statin initiation, had everybody initiated treatment with statins. 

The general model for the intention-to-treat effect of statin initiation is then given by:  

 

𝑒f`({,c;	  }∗)	  = 
~[�̀�,|{,c]	  
~[�̀t|{,c]

 

 

where 𝛾b 𝐿,𝑀; 	  𝜓 ∗ 	  is a function of treatment and covariate history indexed by the 
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(possibly vector-valued) parameter ψ whose unknown true value is ψ*. An immediate 

consequence of this model is that 𝐻b ψ ∗ = 	  𝑌b×	  
,

S�`(�,�;	  �∗)
 has the same conditional mean 

(given baseline covariates and treatment history) as the counterfactual probability of having the 

event by time k, ie E[𝑌bzB4|𝐿,𝑀]. Picciotto et al refer to 𝛾b 𝐿,𝑀; 	  𝜓 ∗  as the “blip down 

function” and provide several different variations of functional forms. If we assume 
~[�̀�,|{,c]	  
~[�̀t|{,c]

	  is 

constant over time, 𝑒f`({,c;	  }∗) is then equal to the hazard ratio, which can be estimated either 

from a specific trial, or from a meta-analysis. If we further assume that the hazard ratio is 

constant between levels of baseline covariates L, we can use the simple model 𝑒f`({,c;	  }∗)	  = 

𝑒	  }×c.  

 

We next proceed to remove the effect of statins from the WHI data, by assuming that the blip-

down function 𝑒f`({,c;	  }∗)	  is equal between the following three groups: 

  (1) Women initiating statins in the HRT arm of WHI 

  (2) Women initiating statins in the Placebo arm of WHI  

  (3) Participants in the Statin trial  

 

For any possible time of statin initiation in WHI (denoted n), we define the subset of the study 

participants who are eligible to initiate statins, ie those who have not had the event and who 

have not already initiated statins prior to n. Consider their probability of having the event by 

time k (where k>n), under the intervention where statins are not initiated at any time point after 
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n, conditional on whether they initiated treatment. Mathematically, this is written as 

E[𝑌bI,F`B4|	  𝐿 = 𝑙, 𝑌Q = 0,𝑀QA, = 0,𝑀Q = 𝑚].  

 

For those women who initiated statins, we can blip down their observed data E[𝑌bI|𝐿 = 𝑙, 𝑌Q =

0,𝑀QA, = 0,𝑀Q = 1] to the counterfactual mean E[𝑌b
�,zB4|𝐿 = 𝑙, 𝑌Q = 0, 	  𝑀QA, = 0,MQ = 1] by 

replacing the distribution of events at time k with 𝐻b 𝜓 ∗ .	  Among women who did not initiate 

statins, the observed data E 𝑌bI 𝐿 = 𝑙, 𝑌Q = 0,𝑀QA, = 0,𝑀Q = 0 	  is equal to the counterfactual 

mean	  E[𝑌b
�,zB4|𝐿 = 𝑙, , 𝑌Q = 0,𝑀QA, = 0,𝑀Q = 0] by consistency; therefore, the observed 

distribution does not need to be altered in these women.  

 

In most applications of g-estimation, it is necessary to implement the blip-down procedure 

sequentially, working backwards from the last possible time of treatment. However, in our 

specific case, because treatment can only be initiated once, any individual will at most be 

blipped down at one time point. Therefore, the analysis can be pooled it over time n.  

 

We implemented this analysis as follows: first we fit a pooled logistic model for the probability 

of CHD in individuals taking statins (ie where t>n). We then used this model to predict the 

instantaneous risk at all time points t, and multiplied this predicted risk by the reciprocal of the 

hazard ratio for statins. We next ran 10000 Monte Carlo simulations, where each individual had 

one Bernoulli trial at each time point, with the time-dependent failure probabilities were given 
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by the predicted risks. Follow-up ends at the time of the (simulated) event, or observed time of 

follow-up, whichever occurs first. The observed data was retained in individuals not taking 

statins. In each resulting data set we fit a Cox model with randomization arm as the predictor, 

averaging the parameter estimates over all simulations. 95% confidence intervals were 

obtained using a non-parametric bootstrap with 250 samples. 

 

8.   Results: 

We first replicated the results from the WHI trial by fitting an unadjusted Cox model, with the 

randomized treatment assignment as the only predictor. This model showed a Hazard Ratio of 

1.24 (95% CI: 0.98-1.56), corresponding to the published results  

 

Table 3.8 shows the estimated direct effects of estrogen on CHD and on the secondary 

outcomes (stroke and all-cause mortality). In the unweighted SNAFTM analysis, adjusting the 

survival times to remove the effect of statins resulted in a minor reduction in the hazard ratio, 

to 1.22 (95% CI: 0.96-1.54). Including the baseline covariates in the outcome model had 

negligible impact.  Note that when the weights are applied, the results change in 

unpredictable directions. This is likely due to a near-violation of positivity. In the case of the 

unstabilized weights, the change of the direction of the effect may be related to the fact that 

these weights, which do not use time in the numerator, giving more importance to the latter 

parts of the survival curve where HRT is protective.  In light of the surprisingly large differences 
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between different weighted analyses, we advise that the results from the SNAFTM analysis 

should be interpreted with caution. 

 

Figure 3.6 shows the unadjusted and adjusted Kaplan Meier curves for the analysis based on 

accelerated failure time models. In the SNCFTM analysis, the adjusted hazard ratio based on 

10000 Monte Carlo simulations was 1.22 (95% CI: 0.97-1.50). The adjusted Kaplan Meyer curve 

based on the SNCFTM model is shown as Figure 3.7.  

 

Tables 3.9 and 3.10 show sensitivity analysis where we varied the assumed effect of statins, to 

show how sensitive our estimates are to our assumption that we have reliable external 

information on the effect of statins. We note that both in the case of the SNCFTM and the 

unweighted SNAFTM,  even large changes to the assumed effect of statins lead to qualitatively 

similar effect estimates. 

 

Much of the impact of our adjustment is concentrated in the later years: When censoring all 

women at 5 years and 6 years, adjustment has negligible impact on the hazard ratio for CHD. 

Results at 5 years are shown as Table 3.11.  This is reflected in the survival curves, where the 

the adjusted survival curve is essentially superimposed on the unadjusted arm during the first 

years of the trial. 
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Because we sometimes cannot be sure that statin initiation happened before the heart attack 

(and because statin initiation sometimes happens because of a heart attack) we delayed the 

variable Mt by a year in the primary analysis. In a sensitivity analysis, we used the originally 

recorded time of statin initiation; this had negligible impact on the SNAFTM analysis. In the 

case of the SNCFTM analysis, this led to substantially increased risks in both arms of the study, 

but had little impact on the hazard ratio. It is not surprising that the SNCFTM analysis is more 

affected by using the original statin variable, as the parameter 	  𝛼7 in the model 

𝑙𝑜𝑔𝑖𝑡	   Pr 𝑌*|𝑌*A, = 0, 𝐴,𝑀 = 𝛼4,* + 𝛼, ∗ 𝐴	  +	  𝛼7 ∗ I 	  𝑀* ≠ 0 ∗ +	  𝛼< ∗ I 	  𝑀* ≠ 0 ∗ (𝑡 − 𝑁) will be 

seriously affected by “reverse causation bias”, whereas no similar parameter for the effect of 

statins is estimated from the WHI data in the accelerated failure time model.  
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Table 3.8: Hazard Ratios for Secondary Outcomes 

	  

Outcome Unadjusted 

Hazard 

Ratio (in 

subset who 

did not 

take statins 

at 

baseline, 

n=15493) 

Adjusted 

Hazard 

Ratio 

(SNAFTM) 

 
Unweighted 

Adjusted 

Hazard 

Ratio 

(SNAFTM) 

 
Weighted by 

stabilized 

weights 

Adjusted 

Hazard 

Ratio 

(SNAFTM) 

 
Weighted by 

stabilized 

weights 

truncated at 

40 

Adjusted 

Hazard 

Ratio 

(SNAFTM) 

 
Weighted by 

unstabilized 

weights 

Adjusted 

Hazard 

Ratio 

(SNAFTM) 

 
Weighted by 

unstabilized 

weights 

truncated at 

40 

Adjusted 

Hazard 

Ratio 

(SNCFTM) 

CVD 1.24  

(0.98- 

1.56) 

1.22  

(0.96- 

1.54)  

1.25 

(0.99- 

1.59) 

1.23 

(0.97-

1.56) 

0.95 

(0.75- 

1.21) 

0.96  

(0.70- 

1.35) 

1.22  

(0.97-

1.50) 

Stroke 1.33  

(1.03 – 

1.73) 

1.32 

(1.02- 

1.72) 

1.38 

(1.06- 

1.80) 

1.44  

(0.94- 

2.22) 

1.53 

(0.99- 

2.02) 

1.42  

(1.02- 

2.36) 

1.33  

(1.04-

1.66) 

All-

Cause 

Mortality 

0.98  

(0.82- 

1.18) 

0.98  

(0.81-

1.18) 

0.98 

(0.81-

1.18) 

0.98 

(0.81-

1.18) 

0.98 

(0.75- 

1.29) 

0.97 

(0.73- 

1.27) 

0.97  

( 0.81- 

1.14) 
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Table 3.9: Sensitivity Analysis for unweighted SNAFTM models 

 

Outcome Unadjusted 

analysis 

Adjusted to 

50% of 

statin effect 

in trial 

Adjusted to 

100% of 

statin effect 

in trial 

Adjusted to 

150% of 

statin effect 

in trial 

Adjusted to 

200% of 

statin effect 

in trial 

 CHD 1.24  

(0.98-1.56) 

1.22 

(0.97-1.55) 

1.22  

(0.96-1.54)  

1.21 

(0.96-1.53) 

1.21 

(0.96-1.53) 

Stroke 1.33  

(1.03 – 1.73) 

1.33 

(1.02-1.72) 

1.32 

(1.02-1.72) 

1.32 

(1.02-1.71) 

1.32 

(1.02-1.71) 

All Cause 

Mortality 

0.98  

(0.82-1.18) 

0.98  

(0.82-1.18) 

0.97 

(0.81-1.18) 

0.97  

(0.81-1.18) 

0.97  

(0.81-1.18) 
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Table 3.10: Sensitivity analysis for SNCFTM model 

	  

Outcome Unadjusted 

analysis 

Adjusted to 

HR=0.85 

Adjusted to 

HR=0.70 

(result from 

meta-

analysis) 

Adjusted to 

HR= 0.55 

Adjusted to 

HR=0.40 

CHD 1.24  

(0.98-1.56) 

1.23 

(0.94 -1.51 

1.22  

(0.97-1.50) 

1.21 

( 0.92-1.44) 

1.17 

(0.93--1.41) 

 

 

Outcome Unadjusted 

analysis 

Adjusted to 

HR=0.89 

Adjusted to 

HR=0.76 

(result from 

meta-

analysis) 

Adjusted to 

HR= 0.63 

Adjusted to 

HR=0.50 

Stroke 1.33  

(1.03 – 1.73) 

1.33 

(1.07 - 1.68) 

 

1.33  

(1.04-1.66) 

1.32 

(1.07-1.65) 

1.31 

(1.05 - 1.63) 

 

Outcome Unadjusted 

analysis 

Adjusted to 

HR=0.94 

 

 

Adjusted to 

HR=0.91 

(result from 

meta-

analysis) 

Adjusted to 

HR= 0.87 

Adjusted to 

HR=0.82 

All-Cause 

Mortality 

0.98  

(0.82-1.18) 

0.98  

(0.88 - 1.10) 

0.97  

(0.81- 1.14) 

0.97  

(0.88 - 1.11) 

0.97  

(0.87 -1.09) 
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Table 3.11: Adjusted hazard ratios at the end of year 5 

 

Outcome Unadjusted 
Hazard 
Ratio (in 
subset who 
did not 
take statins 
at 
baseline, 
n=15493 

Adjusted 
Hazard 
Ratio 
(SNAFTM) 
 
Unweighted 

Adjusted 
Hazard 
Ratio 
(SNAFTM) 
 
Weighted 
by 
stabilized 
weights 

Adjusted 
Hazard 
Ratio 
(SNAFTM) 
 
Weighted 
by 
stabilized 
weights 
truncated 
at 40 

Adjusted 
Hazard 
Ratio 
(SNAFTM) 
 
Weighted 
by 
unstabilized 
weights 

Adjusted 
Hazard 
Ratio 
(SNAFTM) 
 
Weighted 
by 
unstabilized 
weights 
truncated 
at 40 

CVD 1.47  
(1.13-1.92) 

1.46 
(1.12-1.91) 

1.46 
(1.12-
1.91) 

1.46 
(1.12-
1.91) 

1.46 
(1.12-1.91) 

1.46 
(1.12-1.91) 

Stroke 1.41 (1.05, 
1.89) 

1.39 
(1.04-1.85) 

1.39 
(1.04-
1.85) 

1.37 
(1.03-
1.84) 

1.37 
(1.03-1.84) 

1.39 
(1.04-1.84) 

  



96	  
	  

Figure 3.6: Adjusted Kaplan-Meier curve from SNAFTM models (Unweighted) 
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Figure 3.7: Adjusted Kaplan Meier curve from SNCFTM model 
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9.   Discussion: 

We have provided a new method for determining whether the results of a randomized trial can 

be explained by post-baseline variation in a mediator variable. This method is valid regardless 

of whether there is unmeasured confounding of the mediator-outcome relationship as long as 

one has an unbiased external estimate of the effect of the mediator. We applied this new 

method to data from the WHI trial, to estimate the direct effect of HRT relative to statin 

initiation and thereby determine if the trial results could be explained by differences in statin 

usage between the randomization arms. This question is of interest not only for its clinical 

implications, but also as due to its implications for the interpretation of observational studies 

on HRT that preceded WHI.  

 

In the WHI trial, women in the E+P arm were less likely to initiate statins than women 

randomized to placebo. This is plausibly explained by differences in lipid profiles, as women in 

the estrogen arm have significantly lower LDL cholesterol. In other words, doctors appear to 

withhold statins in women taking estrogen because their cholesterol levels are lower. However, 

our analysis suggests that differential initiation of statins cannot explain the trial findings: The 

minor reductions in the hazard ratios are unlikely to be clinically relevant, and must be seen in 

light of the wide confidence intervals.  

 

This may seem counterintuitive in light of the substantial difference in utilization between the 

arms. In order to resolve this apparent paradox, we want to point out that most of the effect of 
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HRT in the WHI trial was seen during the first few years after baseline. During this time, few 

women had initiated statins in either arm of the study. This is reflected in our analysis by the 

finding that adjustment to remove the effect of statins had negligible impact during the first 

few years of follow-up.  

 

As any analysis, our study has limitations. Our approach takes the effect of statins as being 

fixed at the point estimate of the trial in which it was estimated, we therefore do not 

incorporate sampling variability from that trial. However, our sensitivity analysis show that 

varying the assumed effect of statins had relatively little impact on the conclusions. Moreover, a 

large number of randomized trials have been conducted on statins, with relatively consistent 

findings, which suggest that the effect of statins is known with at least some degree of 

certainty.   

 

A further limitation is that the SNAFTM blip-down procedure induces informative censoring in 

the resulting dataset, and the weights we estimated to adjust for this bias had inconsistent 

impact on the models, making it difficult to interpret the estimates.  However, it is reassuring 

that the SNCFTM model, which is not subject to the same type of informative censoring bias, 

had relatively similar results.    

 

The crucial assumption underlying this analysis is that the effect of statins is equal between 

initiators of statins in the WHI trial and the participants in the statin trial, on the effect measure 
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that was used to transport the effect. We note that meta-analyses of statin trials provide some 

evidence that the effect of statins is relatively constant between different subgroups on the 

hazard ratio scale. 

  

Despite the limitations of the study, it seems unlikely that any of them would have caused a 

bias that would substantially alter the interpretation of the results.  We conclude that at least in 

some subset of women, hormone replacement therapy with estrogen and progestin has a 

direct effect on coronary heart disease, which is not explained by failure to initiate statin 

treatment.   
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APPENDIX TO CHAPTER 1 
	  

	  

The need for inverse probability weights 

 

To see why inverse-probability weighting is required to adjust for previous findings at 

colonoscopy, consider the directed acyclic graph in Appendix Figure 1. At is an indicator for 

colonoscopy at time t, Lt is an indicator for the (possibly unknown to the investigator) presence 

of adenomas at time t, Lt* is an indicator for the presence of known adenomas at time t. 

Adenomas only become known through colonoscopy: If At=1 then Lt+1* = Lt, otherwise Lt+1* = 

Lt*. U represents the common causes of adenomas and colorectal cancer, such as genetics. Y is 

an indicator of colorectal cancer by the end of follow-up. 

 

According to this causal diagram, Lt+1* is a confounder for the effect of At+1 on Y: Knowledge of 

adenomas at time t+1 predicts colonoscopy at time t+1, and is also a marker for actual 

adenomas Lt, which cause cancer at time k>t. However, confounding adjustment via 

conditioning on the collider Lt+1* would open the biasing path Atà Lt+1
*ßLt àY. Note that, to 

avoid clutter, we chose not to include the direct arrow from At-1 (not shown on graph) to Lt, 

which would only increase the number of biasing paths.  

 

Another possible problem is that conditioning on Lt+1* may partially block the effect of At 

through the path AtàLt+1
*àY. The arrow Lt+1

*àY exists because the detection of polyps 

necessarily leads to polypectomy, which affects the risk of cancer at later times.  
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Figure	  A.1:	  Causal	  directed	  acyclic	  graph	  to	  represent	  the	  effect	  of	  At	  (colonoscopy	  at	  time	  t	  followed	  by	  
polypectomy	  if	  necessary)	  on	  colorectal	  cancer	  Y.  

	  
	  

 
 

In this graph, Lt is an indicator for the presence of adenomas and Lt* is an indicator for the 

presence of known adenomas at time t. 
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APPENDIX TO CHAPTER 3 
 

On The Homogeneity of the Causal Effect 

The meta-analysis of Statin trials conducted by the Cholesterol Treatment Trialists collaboration 

(CTT)7 suggests that the effect of statins is relatively homogenous between different patient 

groups on the Hazard Ratio scale 7 . However, this is not sufficient to establish the validity of 

our analysis, which requires the effect to be homogenous on the accelerated failure time scale. 

We next proceed to discuss the conditions under which homogenous effects on the Hazard 

Ratio scale implies homogenous effects on the accelerated failure time scale.  

 

It is well established that if failure times follow an exponential or Weibull distribution, then the 

parameters of an accelerated failure time model will equal the parameters of a proportional 

hazards model1. Therefore, if one assumes an exponential distribution, homogenous hazard 

ratios on the hazard ratio scale will necessarily lead to homogenous parameters in the 

accelerated failure time model. However, since hazards tend to increase with age, exponential 

failure times is an assumption which is difficult to justify. We therefore conducted a simulation 

study to determine the extent to which the parameter of the an accelerated failure time model 

will be non-homogenous between different risk groups, if the effects are homogenous on a 

hazard ratio scale. 2 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Rosner B. Fundamentals of biostatistics. Boston: Brooks/Cole, Cengage Learning; 2011. 
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In the WHI data set, the observed rate of CHD was 0.0032 per person year. We created a 

simulated randomized trial comparing statin usage to no statin usage in two groups of people: 

A high risk group with a baseline rate of 0.004 events per person year, and a low risk group 

with 0.002 events per person year. In both groups, we assumed that CHD incidence rate 

increases by 5% every year from baseline. In both statin arms, all hazards were multiplied by a 

hazard ratio of 0.70.  

 

In this simulated data set, we then fit an accelerated failure time mode in each subgroup. 

These two accelerated failure time models had very similar parameters for the expansion of 

survival time, both slightly below 0.7. This is consistent with the conjecture that if the effects 

are homogenous on the hazard ratio scale, they will also be relatively homogenous on the 

accelerated failure time scale  
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Estimation of Ψb using published Kaplan Meier Curves 

 

The full specification of our model for the effect of statins is  

K0 = 𝑒	  _g∗c`∗� 4�b�� +_�∗c`∗� ��b�,7 +	  _�∗c`∗� ,7�b�,� +⋯	  M
4 dk 

Here, each Ψ parameter represents the contraction or expansion of survival time associated 

with statin treatment during a 6-month time interval since statin initiation.  

 

Using graphical software with a ruler and a rectangular drawing tool applied to the published 

Kaplan Meier curves, we mapped each time point in the Estrogen arm to the time point where 

the corresponding quantile in the Placebo arm failed. Our assumption of rank preservation 

gives us license to interpret this as the failure time that would have been observed under no 

treatment. 

 

For example, in order to estimate the parameter	  𝛹, , which is the effect during the first 6 

months, we begin by placing the corner of a rectangle on 6 months on the X-axis. We then 

draw a line segment perpendicular to the X-axis, and place the second corner of this rectangle 

where it intersects with the Kaplan Meier curve for the estrogen arm. We then draw another 

line segment parallel to the X-axis, and place the third corner at the point where it intersects 

with the Kaplan Meier curve for the Placebo arm. The fourth corner of this rectangle will be the 

failure time under no treatment.  
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If we imagine that the individual who failed at month 6 in the Statin arm was mapped to a 

counterfactual survival time under no treatment in month 3, we can now estimate the treatment 

effect 𝛹b	  during the first 6 months by solving the equation 3 = 𝑒	  _g	  𝑑𝑘�
4 . In this case, we will 

find that 𝛹, = 	  −0.69.	   

 

Knowing the value of 𝛹,	  , we can then go on to estimate 𝛹7. To do this, we repeat the process 

at the 1 year mark by solving K0 = 𝑒	  _g∗c`∗� 4�b�� +_�∗c`∗� ��b�,7 	  ,7
4 for 𝛹7, where 𝛹,	  has been 

substituted by its estimate -0.69 

 


