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Abstract

Background: In addition to HLA genetic incompatibility, non-HLA difference between donor and recipients of
transplantation leading to allograft rejection are now becoming evident. We aimed to create a unique genome-wide
platform to facilitate genomic research studies in transplant-related studies. We designed a genome-wide genotyping
tool based on the most recent human genomic reference datasets, and included customization for known and
potentially relevant metabolic and pharmacological loci relevant to transplantation.

Methods: We describe here the design and implementation of a customized genome-wide genotyping array,
the ‘TxArray’, comprising approximately 782,000 markers with tailored content for deeper capture of variants
across HLA, KIR, pharmacogenomic, and metabolic loci important in transplantation. To test concordance and
genotyping quality, we genotyped 85 HapMap samples on the array, including eight trios.

Results: We show low Mendelian error rates and high concordance rates for HapMap samples (average
parent-parent-child heritability of 0.997, and concordance of 0.996). We performed genotype imputation across
autosomal regions, masking directly genotyped SNPs to assess imputation accuracy and report an accuracy of >0.962
for directly genotyped SNPs. We demonstrate much higher capture of the natural killer cell immunoglobulin-like
receptor (KIR) region versus comparable platforms. Overall, we show that the genotyping quality and coverage of
the TxArray is very high when compared to reference samples and to other genome-wide genotyping platforms.
(Continued on next page)
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Conclusions: We have designed a comprehensive genome-wide genotyping tool which enables accurate association
testing and imputation of ungenotyped SNPs, facilitating powerful and cost-effective large-scale genotyping of
transplant-related studies.
Background
Since the Organ Procurement and Transplantation Net-
work (OPTN) began its registry in 1987 until mid-2014
over 575,000 solid organ transplantations have been
performed in the United States [1]. Although there have
been considerable improvements in patient treatment
pre- and post-transplant surgery and immunosuppres-
sant therapies (IST), various grades of rejection are ob-
served in up to 40 % of transplanted individuals within
the first year post transplant [2], and affects approxi-
mately 60 % of transplanted individuals over the course
of the graft lifetime thereby representing a major risk
factor for graft damage and eventual graft loss [3, 4].
There are also significant risks post transplant ranging
from severe adverse events to side-effects of ISTs includ-
ing nephrotoxicity, hyperlipidemia, and new onset of
diabetes after transplantation (NODAT) [5, 6].
Recent advances in genomic technologies and large-

scale human reference maps such as the International
HapMap Project have led to the development of genome-
wide association studies (GWAS) utilizing cost-effective
arrays that allow for the rapid interrogation of several
hundreds of thousands single nucleotide polymorphisms
(SNPs) and copy number variants (CNV) across the hu-
man genome [7–9]. Large scale whole genome sequencing
studies show that approximately 3.5 million and approxi-
mately 10 million common and rare polymorphisms are
typically observed between two unrelated individuals of
European and African ancestries, respectively [10]. Each
donor-recipient (D-R) pair of genomes contains vast per-
mutations of non-synonymous amino-acid differences and
other potential sources for allogenicity, beyond the highly
characterized human leukocyte antigen (HLA) region,
conventionally considered to contain the main genetic fac-
tors underpinning allograft rejection. Rejection is observed
in following HLA-matched transplantations between full
sibling, suggesting that histocompatibility may depend
on non-HLA genetic differences. This includes a num-
ber of minor histocompatibility antigens, such as the
H-Y antigens [11], which have been studied in the con-
text of renal transplantation. Such findings from these
studies identifying non-HLA histocompatibility loci
suggest that non-HLA genetic disparities exist between
D-Rs, and that these differences may manifest as the
presentation of polymorphic peptides that the recipient’s
immune system recognizes as non-self even in the pres-
ence of IST. Indeed, analyses of overall 10-year kidney
graft failure rates for cadaver donors showed that 18 % of
graft failures were due to HLA factors, as observed
through mismatched living donor grafts; and 43 % were
attributable to non-immunological factors, and 38 % of
the failures were due to immunological reactions against
non-HLA factors as seen in HLA-identical sibling grafts
[4]. The natural killer cell immunoglobulin-like recep-
tor (KIR) region comprising a family of 13 genes on
chr19q13.46 are known to interact with HLA Class I
molecules, and many unique KIR haplotypes identified
have been linked to transplantation outcomes [12, 13]
Additional non-HLA/KIR polymorphisms have also
been shown to impact transplantation outcomes since
through the generation histo-incompatibilities [14–16].
Investigations of non-HLA genetic determinants of clinical
outcomes following organ transplantation have yet to be
performed in any systematic well powered fashion to date.
A recent genome-wide study of NODAT was con-

ducted in a prospective cohort of 529 kidney transplant
recipients, 57 of whom developed NODAT with 26
SNPs identified in the discovery stage (P <1 × 10−5),
eight of which retained association on replication, of
which seven intriguingly are in loci known to have a
role in Beta-cell apoptosis [17]. A number of genetic
variants impacting uptake, metabolism, and excretion
of immunosuppressant drugs have been identified [18].
While there are examples of robust associations in a
number of these studies, validation of a large number
of other putative associations in independent studies
are often not observed [19]. This is likely to contribute
to publication bias, underpowered discovery cohorts,
and failure to adjust for population stratification.
The use of current sequencing and dense genotyping

data from reference populations also makes it feasible
to further infer, or impute, tens of millions of add-
itional genotypes, which were not directly genotyped
on the initial platform [20–22], by the use of whole
genome imputation using highly characterized gen-
omic reference datasets such as the 1000 genomes pro-
ject (1KGP) and the Genomes of the Netherlands
(GoNL) [23, 24]. Array-based genotyping technologies
that have enabled conventional GWAS analyses also
permit flexibility in choosing the scope and density of
SNPs for disease or trait-specific arrays geared toward
particular research communities. Such arrays include
platforms such as the ‘cardiochip’ [25] and more re-
cently the Immunochip and Cardio-Metabochip arrays
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[26, 27] have unveiled hundreds of new genetic associ-
ations leading to deeper understanding of the genetic
architecture of new regions underpinning biological
and disease processes. These newest arrays, including
the Axiom Biobank and the UK Biobank genotyping
arrays enable more comprehensive capture of genetic
diversity across populations [28].
To create a unique genome-wide platform to facili-

tate genomic research studies in transplant-related
studies, we designed a genome-wide genotyping tool
customized for known and potentially relevant loci in
metabolic and pharmacological aspects of transplant-
ation including content relevant for D-R genomic in-
compatibility. We describe here the design and
implementation of a genome-wide 782,000 marker
array herein termed the ‘TxArray’ with tailored deeper
capture of variants in HLA, KIR, pharmacogenomic,
and metabolic genes/loci important in transplantation
while still allowing conventional hypothesis-free
GWAS to be performed. The genome-wide coverage of
this array was created using content from conventional
GWAS arrays [29, 30] with transplant-specific content
informed from a range of sources including compre-
hensive literature searching and by expert opinions on
priority pharmacogenomic loci. Our targeted custom-
ized modules are also designed to provide improved
coverage of functional variations based on updated
content from the 1KGP [10] and powerful analyses of
over 32,000 exomes [31, 32].
DNA from over 16,000 DNA samples has thus far

been genotyped using this array allowing for more
robustly powered in silico replication as well analyses
of rare variants and loss of function (LoF) variants
ablating all or parts or a given gene, and cross-cohort
meta-analyses in diverse populations. The majority of
these samples are contributed as a part of International
Genetics & Translational Research in Transplantation
Network (iGeneTRAiN), a major international collabor-
ation on the genomics of transplantation [33]. The
objectives of forming this consortium are: (1) to pool
expertise for selection of genes and SNPs; (2) to reduce
costs by producing a standardized genome-wide geno-
typing platform; (3) to facilitate ease of cross cohort
meta-analyses and replication for a large set of SNPs in
high priority candidate genes; and (4) to bolster
statistical power by combining as many of these appro-
priately harmonized datasets to discover new genes
involved in a range of phenotypes and outcomes
relating to solid organ and hematopoietic stem cell
transplantation (HCT). Here we formally describe the
rationale, design and content of our transplant geno-
typing array, and describe the imputation process as
well as evaluate its performance in capturing variation
across major populations.
Methods
Affymetrix genotyping platform and assay technology
The Axiom genotyping platform utilizes a two-color,
ligation-based assay using 30-mer Oligonucleotide
probes synthesized in situ onto a microarray substrate.
There are approximately 1.38 million features available
for experimental content with each feature approxi-
mately 3 μm2 with each SNP feature contains a unique
oligonucleotide sequence complementary to the se-
quence flanking the polymorphic site on either the
forward or the reverse strand. Solution probes bearing
attachment sites for one of two dyes, depending on
the 3' (SNP-site) base (A or T, versus C or G) are hy-
bridized to the target complex, followed by ligation for
specificity.

Array design and variant selection
The transplant-specific modules and genome-wide con-
tent for the TxArray was designed based on a tiered
system built on the main Affymetrix GWAS imputation
grids [30] for the major human populations as defined
by the Hapmap Project [9] and subsequent high density
population reference studies yielding high density gen-
omic datasets including representative individuals of
European ancestry (Utah residents with ancestry from
Northern and Western Europe (CEU)), of Asian descent
(Japanese from Tokyo, Japan (JPT)), and Han Chinese
from Beijing, China (CHB)), and of African ancestry
(Yoruba in Ibadan, Nigeria (YRI)) and Americans of
African Ancestry in SouthWest, USA (ASW)).
In addition to this core content, additional modules

of SNPs were added sequentially so that maximal econ-
omy of markers was retained by ensuring no redundant
SNPs were added. We describe the tiers sequentially
below:

A. Cross-platform ‘cosmopolitan’ genome-wide coverage
markers (approximately 350,000 markers)

Genome-wide imputation grid (approximately 296K
markers): The TxArray’s core imputation grid consists
of genome-wide approximately 296K SNPs shared in
common with the conventional Affymetrix Biobank
Array. These include a set of 246K SNPs, also included
in the UK Biobank array, that provide high-density
coverage (mean r2 >0.81 and 0.90) across European
populations (CEU) at minor allele frequencies (MAFs)
>1 % and 5 %, respectively.
Additional coverage for non-European populations: An
additional set of approximately 50K SNPs, covered in
the 1KGP Phase I reference panel, were additionally
extracted from the Affymetrix-Biobank array to
improve the mean coverage achieved in African and
other populations. These SNPs were chosen with the
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goal of achieving comprehensive overlap with already
existing UK Biobank Axiom Array and the Axiom Bio-
bank Array, to facilitate additional collaborative efforts
where joint or meta-analyses of samples genotyped
across these platforms and other conventional GWAS
platforms are required [29, 30].
Compatibility markers (approximately 18K markers):
This module was designed to optimize and standardize
genotyping quality control (QC) and sample validation
through the use of: Polymorphisms capturing Ancestry
informative markers (AIMs); fingerprinting panels;
mitochondrial, Y-chromosome; and miRNA binding
sites or targets regions were included.

B. Module-specific content from the UK Biobank core array
(approximately 36K markers)
These constitute markers identified based on reported
GWAS signals and candidate gene associations across
pharmacogenomic and metabolic phenotypes. Again, to
enable cross-platform analysis, where feasible, we also
included markers directly overlapping the UK-Biobank
array and additional markers for the transplant-specific
content. The following UK-Biobank array modules were
included; see Fig. 1 and the UK-Biobank Consortium for
details of included variants [29]:

1. HLA and KIR region markers (7,348 and 1,546
variants, respectively)

2. Known phenotype associations curated by the
National Human Genome Research Institute
(NHGRI) GWAS Catalog [34, 35], (8,136 variants)

3. Known CNVs (2,369 variants)
4. Expression-quantitative trail loci, or eQTLs (17,115

variants)
5. Lung-tissue specific or pulmonary function-associated

markers (8,645 variants)

Targeted MHC and transplant-specific modules
Specific modular content incorporated in the array dedi-
cated to address transplant community research goals.
Aside from the above-described modules overlapping
with the UK-Biobank array, we expanded modules dedi-
cated to non-HLA MHC region markers, deep coverage
of known and predicted LoF variants, and untranslated
regions (UTR)-specific module. Note that all positions
and variants referenced herein are based on the human
genome builds hg19/build37 (Fig. 2).

MHC and KIR content for fine-mapping and imputation
The TxArray provides the most current and densest
coverage of the extended MHC (Chr 6:25.5MB to 34MB
hg19/build37) [36, 37]. While the UK-Biobank array in-
cludes dense HLA-specific coverage, a number of MHC
genes and markers mapping variants outside of the HLA-
encoding regions are critical players in immune function
and some have known roles in histocompatibility (for ex-
ample, MICA, MICB). Thus, we included a comprehen-
sive set of MHC markers in addition to the conventional
HLA-coding regions (Fig. 2a).
Additionally, given the important role of KIR in allo-

recognition through its interaction with HLA, we included
additional KIR SNPs to enable fine-mapping, imputation,
and structural variation association analysis, as well as
interaction analyses across KIR and HLA Class I, which
has a known role in histocompatibility in HCT, as well as
other MHC loci.
To build this content and attempt to preserve signifi-

cant overlap with state-of-the-art, popular genotyping
platforms, we curated and included in our design con-
tent from the following resources and platforms (Fig. 2a
and Additional file 1: Table S1):

1. UK-Biobank array (8,894 total variants), including
7,348 HLA markers and 1,546 KIR markers.

2. Multiethnic HLA haplotype tagging SNPs [36]
(421 SNPs).

3. The Type 1 Diabetes Genetic Consortium (T1DGC)
Imputation panel (4,794 SNPs included directly
tiling or tagging by LD those SNPs in the HLA
imputation panel for SNP2HLA [38]).

4. Non-redundant MHC validated SNPs from existing
genotyping platforms used in large-scale studies: (1)
Metabochip (1,123 SNPs) and (2) Immunochip
(12,609 variants) [26, 27].

The content above includes 10,820 non-redundant
SNP markers. We maximized the coverage of this con-
tent using a non-redundant set of best-tagging variants
to achieve satisfactory tagging of the major HapMap
continental populations including African (ASW and
YRI), European (CEU), and Asian (CHD, JPT, CHB).
C. Transplant-specific content

Pharmacogenomic Drug absorption, metabolism, excre-
tion and toxicity markers, n = approximately 7,500 SNPs
including markers derived from PharmGKB [39]. As
these SNPs were of key relevance to this array, we also
included at least one or more tagging SNPs to cover
those common variants present in the 1KGP database.
Literature searching was also performed (see below) for
serious adverse events and pharmacogenomics studies
related to IST and other therapeutics relating to trans-
plantation. Previous candidate gene/pathway genotyping
results from the Deterioration of Kidney Allograft Func-
tion (DeKAF) study were also included (n = approximately
2,000 SNPs) [40–42].
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Candidate genes associated with transplant outcomes
Over 600 transplantation-related genetic association
studies were manually curated from PubMed using the
following search string: ‘transplant + DNA + donor +
recipient AND (liver OR hepatic OR lung OR pulmon-
ary OR heart OR cardiac OR kidney OR renal) AND
(SNP OR polymorphism OR variant)’. Key information
including PMID number, size and population examined,
loci and SNPs studied (including the respective rsID
numbers), and number of donors and recipient subjects
were collated. An emphasis was placed on sample size,
data quality and strength of the described associations
to facilitate more powerful meta-analyses with data
from existing publications.
To maximize the coverage in the CEU, YRI, and ASN
populations, we selected an additional non-redundant
set of 23.8K variants to boost coverage the total of
91.9K polymorphic sites included in these loci. The
SNPs were chosen based on an algorithm that attempts
to maximize the expected mean coverage across all
three key populations simultaneously instead of one at
a time. This was performed by selecting the tagging
SNP marker that tags most SNP markers from all three
populations first; this strategy enables identification of
minimal SNP sets for maximal cross-ethnic coverage
(see Additional file 1: Table S2).
In our comprehensive literature search we identified

primary research and review articles across each of the
major solid transplant organs, including heart, liver, kid-
ney, lung, among others as well as hematopoietic stem
cell transplantation. In addition to considering measure-
ments of graft survival and all cause, or organ failure
related mortality, we also considered genes previously
implicated in transplant associated complications, such
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as new-onset diabetes after transplantation (NODAT)
and response to transplant-related medications.
We included those previously identified gene candi-

dates and wherever no specific candidate gene has been
fine-mapped or independent replicated or validated, we
mapped known SNP associations to nearby coding loci
and included tagging variants and variants in LD to
boost local coverage. We considered a number of recent
studies that attempted to replicate GWAS findings [17,
19, 43], as well as a number of recent reviewers [44–47].
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Full details of all the polymorphisms on the array in-
cluding their chromosome position and additional anno-
tations are outlined in [33].

Functional variants modules
Aside from the modules noted as being shared with the
UK-Biobank, the following categories of variants were
included in the design for this component:

Affymetrix Biobank array content: We considered a
total of approximately 250,000 SNPs from the Axiom
Biobank Genotyping Array, including 86,000 putative
exonic SNVs and putative LoF variants. As not all of
these have been validated and many are not
polymorphic in the general populations, we used one of
the largest whole-exome sequencing reference datasets
available at the time of the design, comprising over
32,000 samples, to annotate and filter these variants
based on the observed minor allele counts (MACs). We
included only those variants with MACs greater than
five observations in this database, which yielded ap-
proximately 168K exonic or coding variants and over
16K putative LoF variants. A total of 178,680 unique
variants were selected in this module.
Human Gene Mutation Database (HGMD): We
curated variants of The HGMD LoF database (up until
1 August 2013). Again, as above, we only included
MAC observed greater than five times, for a total of
3,571 variants (See Additional file 1: Table S3).
Additional LoF variants: Using the above-noted
approximately 32,000 exome database, we identified
additional putative LoFs included in the Affymetrix
Biobank Genotyping Array, UK Biobank Axiom
Array, or HGMD databases; again, filtering the
observed SNVs and indels from analysis across over
32,000 human exomes [32] for at least MACs greater
than 5, we obtained a conservative set of 8,557 unique
putative exonic SNVs and/or putative LoF variants (See
Additional file 1: Table S3).
Untranslated Region (UTR) Coverage: To provide
maximal coverage of SNPs that may affect functional
gene expression, we additionally focused on the coverage
of 5’ (and 3’) UTRs defined as the exonic region between
the transcriptional start (stop) and translational start
(stop) sites as defined by either the RefSeq or
ENSEMBLE human genome (hg19) reference sequences
in June 2013. Using a MAF cutoff for inclusion of >1 %
or 5 % in CEU and AFR (ASW + YRI) populations,
respectively, we included a total of approximately
184,000 SNPs as shown in Additional file 1: Table S4 and
described in the Supplementary Material.
A priori associations: To focus on known phenotypes,
8,136 SNPs that reached a conventional GWS
threshold at P <5 × 10−8 (December 2012) for both
quantitative traits and disease-specific reported in
NHGRI GWAS Catalog were included.

Copy number variations (CNVs) and polymorphisms
(CNPs)
CNP tagging and regional coverage
To cover common genomic structural elements by SNP-
tagging we included 5,410 markers (See Additional file 1:
Table S5A) and we used an additional 21,960 variants to
cover approximately 2,200 manually curated CNV regions
as described in the Supplementary Materials.

E. GWAS booster
The GWAS ‘booster module’ includes a set of additional
markers (on top of the markers included in the main mod-
ules) selected by identifying the minimal set of markers
that will provide the optimal added coverage value (with
regard to the best overall coverage for whole genome im-
putation). Since the goal is to fill the array and gain add-
itional coverage with the minimal number of markers, we
used LD-based pair-wise tagging. Specifically, we focused
on improving the coverage of common variants (MAF >2
% in CEU and MAF >5 % in AFR populations) by select-
ively adding additional variants resulting in selection a
total of 135,363 additional markers based on the projected
improvements in the overall coverage (Additional file 2:
Figure S1). The online resource [33] outlines a compre-
hensive list of SNPs and genes for the TxArray.
This study conformed to the Helsinki Declaration as well

as to local legislation. Informed and written consent was
obtained independently for each iGeneTRAIN study par-
ticipant, with appropriate oversight and approvals from
respective local institutional review boards/Research Ethics
Committees to use either summary-level or anonymized
individual-level data. A number of our GWA studies are
mandated to release their datasets into dbGAP under their
funding conditions and subject to the ethical consents in
place. We will update these dbGAP uploads on the [33]
site every 3 months.

Results
Quality control
Assays for approximately 782,000 markers were manufac-
tured following recommendations based on the Affymetrix
Best Practices protocol [48] for performing genotype
marker QC using a merged set of 4,885 DNA samples
including those from the DeKAF study site and samples
genotyped expressly for the purpose of quality control
assessment. The latter consists of 85 samples from the
HapMap project. Genotype clustering efficiency was also
performed per manufacturer’s recommendations based on
unique parameters established for this specific custom-
design array, which consists of a high number of markers
covering loss of function and copy number variable regions
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that may not be polymorphic in the vast majority of the
population.

Genotype concordance with HapMap, 1KGP panels, and
duplicate samples
We genotyped 85 HapMap samples on the TxArray to
test concordance and genotyping quality. We included
48, 24, and 13 samples of European (CEU), Asian (JPT,
CHB), and African (YRI) ancestry, respectively. All
analyses were performed with PLINK (1.07/1.9) [49].
First, we examined eight trios (four CEU, four YRI) for
Mendelian errors. All 767,203 genotyped SNPs passing
QC based on manufacturer’s metrics were included and
Mendelian inconsistency was calculated based on the
number of total instances where a child’s genotypes at a
given SNP position are not attributable to that of either
parent, for instance if both parents have an AA geno-
type, while the child has AB. The number of SNPs
errors for each of the eight families varied between 264
and 4,672, which corresponds to a parent-parent-child
(P-P-C) heritability greater than 0.993 and an average
of 0.997 (Table 1).
Next, we investigated concordance between 279,061

genotypes overlapping between our genotyping array
and HapMap2 (r22, b36). We tested 22,944,075 sample-
SNP combinations for concordance and observed a
concordance rate of 0.996. Concordance rates for the
three populations (African, Asian, and European) were
very similar (Table 2). As our array is specifically set up
to test MHC and X chromosome SNPs, we also tested
SNPs in these two regions. Results are comparable to
the overall concordance: The concordance rate for the
MHC SNPs is 0.994, and 0.998 for SNPs on the X
chromosome (Table 2). We also performed this analysis
using data from the 1KGP reference panel and ob-
served comparably high concordance rates (Table 2).
Overall, we show that the genotyping quality of the
Table 1 Mendelian consistencies among HapMap family
samples genotyped

Ancestry FID HapMap
father

HapMap
mother

HapMap
child

SNP
errors
observed

P-P-C
heritability*
(%)

CEU 1334 NA12144 NA12145 NA10846 3,757 99.51

CEU 1340 NA06994 NA07000 NA07029 3,600 99.53

CEU 1340 NA07022 NA07056 NA07019 264 99.97

CEU 1463 NA12891 NA12892 NA12878 869 99.89

YRI Y004 NA18501 NA18502 NA18500 4,397 99.43

YRI Y009 NA18507 NA18508 NA18506 4,672 99.39

YRI Y045 NA19200 NA19201 NA19202 602 99.92

YRI Y058 NA19223 NA19222 NA19221 936 99.88

*Heritability calculated as (# correct /767203 total SNPs post-QC)
CEU, International HapMap CEPH European descent populations; FID, HapMap
family ID; P-P-C, parent-parent-child; YRI, Hapmap Yoruba African samples
TxArray is high, which enables accurate association
testing and imputation of ungenotyped SNPs using ref-
erence panels such as 1KGP and Go-NL consortia.
Fifty duplicate pairs across 12 cohorts were genotyped

using the TxArray. To assess the quality of the genotyp-
ing array, we tested concordance of all SNPs that were
non-missing in both samples. In assessments of between
approximately 742,000 and 765,000 SNPs we observed
that on average 99.657 % of SNPs were fully concordant
(that is, both alleles correspond), while 0.341 % of SNPs
had a single concordant allele and only 0.002 % of SNPs
were fully discordant.

Comparisons with conventional GWAS platforms
Coverage of the 1KGP panel markers
We compared the mean coverage (based on maximum
achievable r2) across common markers (either MAF
>0.05 or 0.01) in the 1KGP achieved by either the
marker content designed on the TxArray versus that by
a number of conventional genotyping platforms (that is,
Infinium 1M and 660K Beadchips (Illumina), and
Genome-Wide Human SNP Array 6.0 (Affymetrix)).
Figure 3a and b shows the composite coverage of

markers in the 1KGP panel by the markers genotyped
on the TxArray versus other conventional GWAS
products for European (CEU and Toscani in Italia
(TSI)), African (ASW/YRI), Admixed American (AMR)
(Colombians from Medellin, Colombia (CLM), Mexican
Ancestry from Los Angeles USA (MXL), and Puerto
Ricans from Puerto Rico (PUR)), and Asian (ASN)
(CHB, Southern Han Chinese (CHS), and JPT) individ-
uals using MAF cutoffs of >0.01 and >0.05 for the full
range of r2 cutoff thresholds (from r2 = 0 to 1). The
TxArray performed comparably next to these other geno-
typing SNP chips, which were designed to provide optimal
genome-wide coverage even though the TxArray devoted
a significant number of markers to transplant-specific,
rare loss of function and MHC/KIR specific content.

Coverage of exonic, MHC, and KIR locus markers
The TxArray also provided efficient coverage of markers
across the exonic, KIR, and MHC regions when com-
pared to the commonly-used Illumina 1M platform
(Fig. 4a, b, and c, respectively). While mean expected
coverage is comparable for the exonic and MHC regions,
the TxArray provides a significantly improved coverage
of markers across the KIR locus, which has been a re-
gion that has arguably received insufficient attention in
most transplant association studies.

Imputation
We performed genotype imputation across all autosomal
regions for 12 iGeneTRAIN studies (n = 12,048 post-QC
GWAS samples) using ShapeIT2/ IMPUTE2 with the



Table 2 Genotyping concordance rates across HapMap and 1000 Genomes Panel samples genotyped on the TxArray

SNPs Reference panel Ancestry Number of samples Total overlapping SNPs post-QC* Total SNPs concordant Concordance (%)

All HM2 ALL 85 22,944,075 22,843,908 99.56

All HM2 EUR 48 13,058,670 12,986,021 99.44

All HM2 ASN 24 6,414,064 6,396,803 99.73

All HM2 AFR 13 3,471,341 3,461,084 99.70

Chr X HM2 ALL 85 515,791 514,641 99.78

MHC** HM2 ALL 85 619,108 615,244 99.38

All 1KGP ALL 55 36,430,433 36,241,576 99.48

All 1KGP EUR 27 17,830,297 17,716,762 99.36

All 1KGP ASN 21 13,953,847 13,905,332 99.65

All 1KGP AFR 7 4,646,289 4,619,482 99.42

Chr X 1KGP ALL 55 937,853 933,799 99.57

MHC** 1KGP ALL 55 232,410 230,458 99.16

*Total number of SNPs tested such that each SNP that is non-missing for all samples is counted 85 times
**Defined as between chr6:25.5Mb and chr6:34Mb (hg19)
HM2, International HapMap 2 dataset; 1KGP, 1000 Genomes Project reference dataset
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1KGP reference panel (v3), resulting in approximately
38 million variant calls. We masked 0.2 % directly
genotyped SNPs, with separate imputation performed
with and without these 0.2 % SNPs to assess proxy
genome-wide imputation accuracy. We report an accur-
acy in the range of 96.24 % to 97.71 % for directly geno-
typed SNPs across the genome for the 12,048 GWAS
datasets imputed.
Fig. 3 Comparison of coverage of 1000 genomes project reference panel b
variants with MAF >0.05 (a) and >0.01 (b). Coverage (ordinate) for the 1000
using maximum r2 (abscissa), at an MAF cutoff of 0.05 (a) and 0.01 (b). Pop
(YRI) and Americans of African Ancestry in SouthWest, USA (ASW); (2) Adm
Mexican Ancestry from Los Angeles USA (MXL), and Puerto Ricans from Pu
Han Chinese (CHS), Japanese in Tokyo, Japan (JPT); and (4) European ances
(CTU), Central and Eastern European (CEU), and Toscani in Italia (TSI), as des
TxArray using 767,203 SNPs passing QC. ILMN_1M and ILMN660 refer to Illum
Affy_6.0 refers to the Affymetrix 6.0 SNP chip containing approximately 906,60
We looked at number of SNPs per MAF bins (0.01
intervals) in all imputed data. We observed that INFO
score (quality metric to estimate uncertainty in imput-
ation) for variants below MAF 0.05 declines but as MAF
increases, INFO score also increases. In most cases, all
variants above MAF 0.05 have INFO scores greater than
0.8 (data not shown). From masked analysis, we looked
at concordance among each masked SNP where INFO
etween TxArray and other genome-wide genotyping platforms for
Genomes Project Phase I integrated reference panel was assessed

ulations included: (1) African ancestry (AAM): Yoruba in Ibadan, Nigeria
ixed American (AMR): Colombians from Medellin, Colombia (CLM),
erto Rico (PUR); (3) Asian (ASN): Han Chinese in Beijing (CHB), Southern
try (CTI): Utah residents with ancestry from Northern Western Europe
cribed in the HapMap and 1KGP. The platforms compared include the
ina’s Infinium one million and the Illumina 660K genotyping platforms.
0 SNPs



Fig. 4 Comparison of coverage between TxArray and ILMN_1M genotyping platforms across exonic regions, the extended MHC and the KIR-encoding
locus. a Coverage (ordinate) for all exonic markers and UTR region markers in the 1000 genomes reference panel was assessed using max r2 (abscissa),
at an MAF cutoff of 0.05 (a) and 0.01 (b), in (1) European ancestry ((CEU) and Tuscany in Italia (TSI)); (2) African ancestry (AAM) (Yoruba in Ibadan, Nigeria
(YRI)) and Americans of African Ancestry in SouthWest, USA (ASW); (3) Admixed American (AMR) (Colombians from Medellin, Colombia (CLM), Mexican
Ancestry from Los Angeles, USA (MXL), and Puerto Ricans from Puerto Rico (PUR)); and (4) Asian (ASN) (Han Chinese in Beijing (CHB), Southern Han
Chinese (CHS), Japanese in Tokyo, Japan (JPT)) HapMap and 1KGP individuals. The compared platforms include the TxArray using 767,203 SNPs that
passed manufacturing and standard genotyping QC. ILMN_1M refer to Illumina’s Infinium one million SNP GWAS array. b Comparison of coverage
across variants within KIR-encoding regions using the TxArray (TX) or the Illumina 1M (ILMN_1M) genotyping platforms across the four major
HapMap populations (European (CTU): CEU+TSI; AAM: ASW+YRI; AMR: CLM+MXL+PUR; ASN: CHB+CHS+JPT). Coverage is based on mean r2 of
variants included in the 1000 genomes phase I reference panel with a MAF of >0.01 (top) or >0.05 (bottom). KIR genes included: (KIR2DP1,
KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DL1, KIR3DL2, KIR3DL3, KIR3DP1,
KIR3DS1, KIR3DX1). Coverage was compared for either all KIR region markers (left) or only those in exonic regions (right). c Comparison of
coverage across the extended MHC (25,500,000–34,000,000) using either the TxArray (TX) or the Illumina 1M (ILMN_1M) genotyping platforms
across the four major HAPMAP populations (CTU: CEU/TSI; AAM: ASW/YRI; AMR: CLM/MXL/PUR; ASN: CHB/CHS/JPT). Coverage rate is calculated based
on the mean achieved r2 for variants included in the 1000 Genomes Project (1KGP) Phase I reference panel with a MAF of >0.01 (left) or >0.05 (right)
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scores were greater than 0.8, and results indicated very
high concordance among all masked SNPs. Comparison
of imputation accuracy/metrics from two independent
pipelines (both using ShapeIT/IMPUTE2 with 1KGP as
the reference population) was performed for The Gen-
omics of Chronic Renal Allograft Rejection (Go-CAR)
Study at Penn State and Mount Sinai and >99.998 % of
imputed SNPs were concordant.
We looked at number of SNPs per MAF bins (0.01

intervals) in all imputed data as well as after performing
masked analysis where 0.1 % of genotyped markers were
removed and imputed again to assess the accuracy of
our imputation. We observed that INFO score (quality
metric to estimate uncertainty in imputation) for variants
below MAF 0.05 declines but as MAF increases, info score
also increases. In most cases, all variants above MAF 0.05
have info score greater than 0.8.
Using Beagle version 3.0.4, we imputed classical al-

leles and amino acid polymorphisms in HLA-A, HLA-B,
HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQB1, and HLA-DRB1 at a four-digit resolution, as well
as an additional 3,117 MHC SNPs. We used data collected
by the T1DGC as a reference panel, which include 5,225
individuals of European descent. Methods have been de-
scribed previously in more detail [38, 50].

Discussion
We have designed and implemented a genome-wide
SNP array tailored for deeper capture of variation in loci
of high priority in transplantation. Our primary goal in
the array design was to generate a low-cost genome-
wide array while maximizing coverage of known or puta-
tive transplant-related content. In attempts to unveil
allogenicity between D-R genomes we also augmented
the custom content from all available resources for rarer
LoF variants that may not be identified using traditional
association studies based on imputation. Flexibility in
SNP selection afforded the ability to: (1) ensure selective
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and consistent coverage for a range of prioritized loci
across multiple ancestries; (2) provide deeper coverage
beyond conventional HapMap populations; (3) to dir-
ectly assay specific SNPs derived from previously
published transplant studies; and (4) updated HLA and
KIR, pharmacogenomic, and LoF variants. We demon-
strate much deeper coverage in high priority regions
such as KIR and tag SNPs in these regions provide
much better coverage for populations of African ances-
try relative to existing GWAS products.
With the recent reports of bona fide associations trans-

plant outcomes and/or pharmacokinetics of immunosup-
pression medication with genetic polymorphisms in
transplant-related genes (for example, APOL1, IL28B,
CYP3A4/5) [51–54], one of the current challenges will be
to determine how these variants and loci at a molecular
and mechanistic level and how they interact with other
variants with drugs used in therapy and prevention, to-
wards intermediate and clinical phenotypes.
In designing the transplant SNP v1 array we have also

targeted all nsSNPs >MAF 0.01 using information from
both HapMap and 1KGP and have tagged to MAFs
>0.02 for a large number of key loci related to key trans-
plantation outcomes such as pharmacogenomic and
metabolic-related traits. We have also updated the HLA
and KIR content with the most-extensive content known
to date. As with other recent custom genotyping arrays
in cardiovascular diseases and metabolism as well as in
autoimmune diseases, the TxArray facilitates conduct of
powerful and cost-effective large-scale genotyping of
transplant-related studies. Such platform enable integra-
tion with additional ‘omics’ datasets such as transcripto-
mics, proteomics, and metabolomics to provide richer
analyses in a number of the studies using this tool. Add-
itionally, as other transplant related cohorts are utilizing
this TxArray for GWAS, validation of results and com-
prehensive meta-analyses will be much more robust.
The TxArray achieves dramatic reduction compared to
designing single-trait follow-up reagents, and provides
the opportunity for transplant community researchers to
perform unbiased genome-wide analysis and cross-
consortium independent replications.

Conclusions
We report the design and implementation of a state-of-
the-art, powerful oligonucleotide array that is opti-
mized to interrogate the genome for associations with
transplant-related phenotypes and outcomes. This
array, the TxArray, includes independent modules that
encompass fine-mapping SNPs mapping across the
MHC useful for HLA imputation, in drug-response as-
sociated loci for the study of pharmacogenomics and
adverse drug response, previously-reported genes asso-
ciated with transplant-related outcomes, among others,
that are of high priority among the transplant commu-
nity. With the advent of this array and the formation of
the iGeneTRAIN consortium, it is our aim that the
downstream application of such genomics technologies
can ultimately generate associations which will be ap-
plied as personalized and precision-oriented genomic
tools to solve clinical questions and improving patient
outcomes in transplantation.
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