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Abstract

This paper summarizes the Part 1 of the proceedings of the 8th International Conference on Management and
Rehabilitation of Chronic Respiratory Failure, held in Pescara, Italy, on 7 and 8 May, 2015. It summarizes the contributions
from numerous experts in the field of chronic respiratory disease and chronic respiratory failure. The outline follows the
temporal sequence of presentations.
This paper (Part 1) includes sections regarding: Advances in Asthma and COPD Therapy (Novel Therapeutic Targets for
Asthma: Proteinases, Blood Biomarker Changes in COPD Patients); The problem of Hospital Re-Admission following
Discharge after the COPD Exacerbation (Characteristics of the Hospitalized COPD Patient, Reducing Hospital Readmissions
Following COPD Exacerbation).

Keywords: Asthma and COPD therapy, COPD exacerbations

Background
This paper summarizes the Part 1 of the proceedings of the
8th International Conference on Management and Rehabili-
tation of Chronic Respiratory Failure, held in Pescara, Italy
on 7 and 8 May, 2015. It summarizes the contributions
from numerous experts in the field of chronic respiratory
disease and chronic respiratory failure. The outline follows
the temporal sequence of presentations.

Recent developments in Asthma and COPD Therapy
Rationale
The optimal therapy of patients with obstructive air-
ways disease requires a thorough understanding of
the mechanisms underlying the diseases and blending
pharmacologic and nonpharmacologic therapies to address

the primary disease processes, systemic effects, and co-
morbidities.

Novel therapeutic targets for asthma: Proteinases
(Caroline A. Owen)
Key points

1. Proteinases produced by both host and non-host
cells contribute to the pathogenesis of asthma.

2. Among the host cell-derived proteinases linked to
asthma, metalloproteinases and chitinases (or
chitinase-like proteins) have been strongly linked to
asthma pathogenesis.

3. Non-host sources of proteinases that contribute to
the disease include fungi, insects, and bacteria.

4. Proteinases can either promote or limit the progression
of allergen-induced airway inflammation and remodeling
by regulating the activity of mediators of inflammation,* Correspondence: RZuWalla@stfranciscare.org
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leukocyte apoptosis, mucus metaplasia, TH2 airway
inflammation, or airway remodeling processes.

5. Host-derived metalloproteinases have potential to be
therapeutically targeted to improve the morbidity
and mortality associated with asthma.

Background
Asthma is the most common chronic respiratory disease,
and is the 5th most common cause of death due to respi-
ratory causes [1, 2]. Asthma severity reflects genetic and
environment influences. When a genetically-susceptible
individual inhales allergens, this may induce a TH2-type
immune response in the airways with release of IgE from
B-lymphocytes which triggers mast cell degranulation. Re-
lease of mast cell mediators induces the recruitment of
eosinophils, TH2 lymphocytes, dendritic cells, and mono-
cytes to the airways [3]. This inflammatory response is
associated with structural changes in the airway including
mucus metaplasia, sub-epithelial fibrosis, smooth muscle
cell hypertrophy and hyperplasia, and angiogenesis. Pro-
teinases derived from both host cells and non-host cells
(e.g., fungi, insects, and bacteria) have been linked to
asthma by: 1) studies showing changes in the expression
of proteinases in blood or lung samples from asthma cases
versus controls; and 2) studies of mice either over-
expressing or deficient in proteinases in models of allergen-
induced airway inflammation. Proteinases promote or limit
the development of all pathologies observed in asthmatic
airways. The section below will discuss the proteinases that
have been implicated in asthma pathogenesis, their activ-
ities in regulating disease, and the potential for targeting
proteinases as a novel therapeutic strategy in asthma.

Host cell proteinases and asthma
Among host cell proteinases linked to asthma, members of
the metalloproteinase (MP) superfamily [including matrix
metalloproteinases (MMPs) and proteinases with a disinte-
gin and a metalloproteinase domain (ADAMs] have been
most strongly implicated in asthma pathogenesis.

MMPs MMPs are a family of 24 proteinases (in humans)
having multiple domains including a catalytic domain with
an active site zinc atom. [4] MMPs degrade extracellular
matrix (ECM) proteins in the lung, and also play crucial
roles in regulating airway inflammation and remodeling
by cleaving cytokines and activating latent growth factors.
Most is known about the expression and activities of
MMPs −2, −7, −9, and −12 in asthma.

MMP-2 and −9 (gelatinase A and gelatinase B) MMP-2
is produced by airway epithelial cells, macrophages, T-
cells, and fibroblasts. MMP-9 is produced by the same
cells and also by eosinophils, polymorphonuclear cells,
monocytes, and dendritic cells. MMP-9 and −2 are

elevated in blood and lung samples from asthma pa-
tients [5]. MMP-9 sputum levels are higher in patients
with acute versus stable asthma, [6] and increase sig-
nificantly after challenge with house dust mite protein
in patients with allergic asthma [7]. Plasma MMP-9 levels
are also elevated during acute asthma attacks [8, 9]. Mice
deficient in MMP-2 and/or MMP-9 that have been sensi-
tized and challenged with allergens die from asphyxia.
These mice also have increased leukocyte counts in the
airway walls but reduced leukocyte numbers in the airway
lumens [10] when compared with allergen-treated wild
type (WT) mice. MMP-2 and −9 promote resolution of
airway inflammation by cleaving and activating cytokines
in the airways thereby creating chemokine gradients that
promote egress of leukocytes from the airway walls into
the lumen where they are removed by phagocytes such as
macrophages [11]. In chronic allergen challenged models,
MMP-9 −/− mice have reduced sub-epithelial fibrosis indi-
cating that MMP-9 promotes sub-epithelial fibrosis [12]
which may be due to MMP-9 activating latent growth fac-
tors such as transforming growth factor-β [13].

MMP-7 (matrilysin) MMP-7 is expressed by airway acti-
vated epithelial cells and macrophages. MMP-7 expression
is increased mainly in airway epithelial cells in asthmatics,
and MMP-7 levels are increased in nasal washing after rag-
weed allergen challenge [14]. Airway epithelial MMP-7 ex-
pression is increased in mice challenged with cockroach
allergen. CRA-challenged MMP-7 −/− mice have reduced
airway hyper-responsiveness (AHR) to aerosolized acetyl-
choline challenges and reduced allergic airway inflamma-
tion (AAI) compared with CRA-challenged WT mice [14]
indicating that MMP-7 limits AHR and AAI in mice [14].
MMP-7 increases AHR and AAI in mice by increasing the
expression of interleukin-25 (IL-25) and also by proteolytic-
ally activating IL-25 which induces the differentiation of
TH2 lymphocytes and increases their production of TH2
cytokines. MMP-7 also reduces the number of T-regulatory
lymphocytes in the airways of mice which restrain the acti-
vation of adaptive immune responses [14].

MMP-12 (metallo-elastase) MMP-12 is produced by ac-
tivated macrophages and are increased in asthmatics [15].
Allergen-treated MMP-12 −/− mice have reduced AAI and
AHR associated with reduced lung levels of chemokine
(C-C) ligand-3 (CCL3), CCL2, tumor necrosis factor-α
and IL-5. These results indicate that MMP-12 in-
creases AAI in mice likely by increasing lung levels of
pro-inflammatory cytokines [16].

ADAMs ADAMs are a family of >30 multi-domain pro-
teinases so called because they have a disintegrin and a
metalloproteinase domain [17]. They are type-I trans-
membrane proteinases expressed on cell surfaces. Most
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ADAMs have a MP domain, a disintegrin domain (which
binds to integrins to regulate cell adhesion and migra-
tion), an epithelial growth factor (EFG)-like-cysteine rich
domain, and a cytoplasmic tail which can regulate cell sig-
naling [17]. ADAM33 and ADAM8 have been strongly
linked to asthma.

ADAM33 ADAM33 was the first gene to be linked to
asthma. In 2002, single nucleotide polymorphisms (SNPs)
in the ADAM33 gene were found to be significantly asso-
ciated with asthma and bronchial hyper-responsiveness
[18]. ADAM33 is expressed by smooth muscle cells and
fibroblasts but not by epithelial cells or leukocytes. Studies
of Adam33 −/− mice treated with allergens found that
Adam33 does not regulate AAI or AHR in mice [19].
Based upon its expression profile, ADAM33 may regulate
airway remodeling in asthmatics [20] especially as it stim-
ulates endothelial cell proliferation [21] and thus may in-
crease angiogenesis in asthmatic airways.

ADAM8 ADAM8 is expressed by all leukocytes except
for T-cells and airway epithelial cells. While asthmatics
and controls have similar ADAM8 expression in airway
epithelium, ADAM8 expression is reduced in airway leu-
kocytes from asthmatic subjects versus controls [22]. Un-
like ADAM33, SNPs in the ADAM8 locus have not been
liked to asthma risk or phenotypes [23]. Two studies of
Adam8 −/− mice and mice over-expressing ADAM8
treated with allergens reported that ADAM8 has anti-
inflammatory activities [22, 24]. ADAM8 was reported
to increase activation of the intrinsic apoptosis path-
ways in eosinophils and macrophages and reduce the
half life of these cells in the airways [22]. However, two
studies reported that ADAM8 promotes AAI by either
increasing the migration of T-cells or eosinophils into
the airways [25] or increasing dendritic cell numbers in
the airways and airway levels of CCL11 (a chemokine
for eosinophils) and CCL22 (a chemokine for monocytes,
dendritic cells and activated T-cells) [26]. Whether ADAM8
contributes to airway remodeling processes in asthma is
not clear. However, ADAM8 has an active MP domain and
has potential to regulate sub-epithelial fibrosis or mucus
metaplasia by proteolytically regulating the biologic activ-
ities of growth factors and ligands for the epithelial growth
factor receptor [27].

Chitinases and chitinase-like proteins Chitinases are
proteinases that degrade chitin, an essential component in
the exoskeleton of insects and parasites. Chitin is made of
repeating units of β-(1–4)-poly-N-acetyl-d-glucosamine
and is the second-most-abundant polysaccharide in na-
ture. Humans and rodents express chitinases (as part of
anti-parasite response) and also chitinase-like proteins
that lack enzyme activity such as chitinase-like protein-1

(CHI3L1 or YKL-40) [28]. Lung and blood levels of these
proteins are increased in asthmatics and allergen-treated
mice. For example, YKL-40 expression in airway epithe-
lium is strongly increased in asthmatics and its levels are
correlated directly with asthma severity [29, 30]. Serum
YKL-40 levels correlate directly with sup-epithelial thick-
ness in asthmatic airways [29]. Polymorphisms in the
acidic mammalian chitinase (AMC) gene are associated
with asthma in humans [31]. YKL-40 promotes AAI in
mice by inhibiting T-cell, macrophage, and eosinophil
apoptosis/cell death, stimulating dendritic cell accumula-
tion and activation, and inducing alternative macrophage
activation [32]. AMC expression is increased in the air-
ways of allergen-treated mice [28]. Delivering a blocking
antibody to AMC to allergen-treated mice reduces IL-13
induced AAI and AHR indicating that AMC drives TH2-
type inflammation in allergen-exposed airways [32].

Non-host proteinases Proteinases produced by fungi,
insects, and bacteria can promote TH2 inflammation.
Common household fungi are a major source of active
proteinases present in household dust and the main
proteinase activity in dust resides in an ~85 kD multi-
mer of aspergillo-pepsin I secreted by the Aspergillus
genus [33]. Aspergillus-derived proteinases can serve as
adjuvants in asthmatic airways [34]. Aspergillus fugal
spores are inhaled, germinate in the airways, and release
proteinases that are required for the expression of robust
allergic disease which in turn enhances the clearance of
fungi from the airways via the production of IL-13 and
IL-5 and the development of eosinophilic inflammation.
Aspergillus proteinases may promote TH2 airway inflam-
mation by cleaving receptors on epithelial cells such as
CD23 (a low affinity IgE receptor) and protease activated
receptor-2 (PAR-2); a receptor which when cleaved by
proteinases auto-activates itself to increase signaling in air-
way epithelial cells [35]. Aspergillus-derived proteinase
may also cleave fibrinogen in extracellular fluids, and
the cleavage products generated can activate toll-like
receptor-4 (TLR4) on airway epithelial cells. Epithelial
cells, thus activated, release products that promote TH2
airway inflammation such as MMP-7, IL-25, thymic stro-
mal lymphopoetin, and complement component C3 [34].
In addition, serine proteinases produced by cockroaches,
fungi, and amoeba also activate PAR2 on epithelial cells to
promote AAI in experimental animals [36–38].

Proteinases as therapeutic targets in asthma Among
the proteinases linked to asthma, metalloproteinases (MPs)
have been most strongly linked to asthma pathogenesis
and could be targeted therapeutically. However, some MPs
have beneficial activities in mice with asthma (MMP-2,
MMP-9, and possibly ADAM8). Thus, it will be crucial to
limit the activities of only MPs that promote asthma
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development (MMP-7, MMP-12, and possibly ADAM33).
Small molecule metalloproteinases inhibitors (MPIs) have
developed for other diseases, [39, 40] but are unlikely to be
useful for asthma patients because current MPIs are not
very selective as the active sites of MPs are similar. More-
over, MPIs tested for other diseases were associated with
severe side effects (musculoskeletal syndrome) due to off
target inhibition of ADAMs and ADAMs with a
thrombospondin domain [41]. Other approaches to se-
lectively targeting proteinases include biologics such
as antibodies to reduce levels of proteinases that pro-
mote the disease process [42, 43]. It may also be pos-
sible to block cleavage of a key substrate by a
proteinases by delivering molecules than bind to and
protect the cleavage site of the key substrate of the
proteinase and/or modifying sites of the proteinase
other than its active site (exosites) involved in sub-
strate binding [44, 45].

Knowledge gaps, challenges, and future directions
Future studies should identify all of the proteinase cul-
prits in asthma and their crucial activities in regulating
airway pathologies. In particular, we know little about
the activities of proteinases in regulating the chronic
airway remodeling events that contribute to morbidity
in asthma patients [46]. To facilitate the selection of
proteinases to be targeted therapeutically, it will be
crucial to determine whether proteinases linked to asthma
have beneficial or harmful activities in other diseases. In
this respect, it is noteworthy that some MMPs that pro-
mote AAI and AHR in mice (MMP-7, and −12) have
beneficial activities in promoting host defense against
pathogens by activating bactericidal proteins or killing
bacteria [47, 48].
There are also gaps in our knowledge about the

mechanisms that regulate proteinase expression in
asthma. Epigenetic regulation of gene expression has
been described in asthma, [49] but little is known about
epigenetic regulation of proteinases in asthma. Epigen-
etic regulation mechanisms include gene promoter
(de)methylation, histone (de)acetylation and (de)meth-
ylation, and the expression of small non-coding RNAs
such as micro-RNAs that increase degradation of
mRNA transcripts [49–51]. One study linked changes in
micro-RNA expression in lungs from allergen-treated
mice to alterations in MMP expression [52]. If epigenetic
regulation of proteinases is confirmed in asthmatic air-
ways, approaches to epigenetically up regulate the expres-
sion of proteinases that reduce the disease expression or
to silence the expression of proteinases that promote
pathologies in asthmatic airways, represents a promis-
ing avenue for future therapeutic intervention in
asthma [53–55].

Blood biomarker changes in COPD patients (Caroline A. Owen)
Key points

1. A biomarker can be defined as a characteristic that
is objectively measured and evaluated as an indicator
of normal biologic processes, pathogenic processes,
or pharmacologic responses to a therapeutic
intervention.

2. Biomarkers could assist with the management of
COPD patients by identifying smokers at risk for
developing the disease, assisting with the diagnosis of
patients with early-stage disease, phenotyping of
COPD patients, selecting subgroups of COPD
patients that are most likely to respond to new
therapies for clinical trials, and monitoring responses
to therapy.

3. Biomarkers studies for COPD can be classified into
several groups: 1) cellular; 2) proteomic; 3) genomic; 4)
transcriptomic; and 5) metabolomic biomarkers.

4. Currently we lack predictive or prognostic biomarkers
that can be measured in biologic samples and have
been validated for managing COPD patients or
monitoring their responses to therapy.

5. Based upon the current literature, combinations of
biomarkers coupled with clinical parameters likely
will be the most useful for predicting the course of
the disease and its response to therapy in individual
patients.

Background
COPD is currently the 4th most common cause of mor-
tality [56]. Current therapies improve symptoms but do
not alter the course of COPD. Most new therapies that
have been tested thus far for COPD have not been
shown to have efficacy in clinical trials [57–59]. There
are many barriers to the development of more effective
therapies for COPD including inadequate phenotyping
of COPD patients due to heterogeneity of the disease
(emphysema versus airway disease), and failure to select
subgroups of patients with phenotypes that are most
likely to respond to the therapy. Also, we lack methods
to measure COPD activity versus severity. Currently, a
single clinical biomarker, the forced expiratory volume
in one second [FEV1] is used to diagnose, classify, and
measure responses to therapy. However, FEV1 measure-
ments are often variable and slow to change in response
to therapy. Other clinical parameter used measure the
effectiveness of therapies (e.g., mortality or exacerbation
frequency) may not be very sensitive and/or require the
recruitment of large numbers of subjects to show a
treatment effect. New biomarkers for COPD have re-
cently been evaluated using high throughput “omics” ap-
proaches that may address some of these barriers.
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Biomarkers and their potential to improve the management
of COPD patients
The NIH defines a biomarker as a characteristic that is
objectively measured and evaluated as “an indicator of
normal biologic processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention”
[60]. A clinically-useful biomarker must be reprodu-
cible in stable disease, and longitudinal assessments
must confirm that a single sample gives a representa-
tive result in clinical practice. Biomarkers could im-
prove the management of COPD patients by: 1) aiding
the diagnosis of COPD; 2) phenotyping COPD patients
for research studies to better understand the disease
processes; 3) predicting rate of progression of the dis-
ease; 4) identifying sub-groups of COPD patients that
might respond to new therapies; and 5) more rapidly
and accurately monitoring responses to existing and
new therapeutic strategies especially in clinical trials.
Biomarkers that have been studied for COPD can be
divided into several different groups: 1) cellular; 2)
proteomic; 3) genomics; 4) transcriptomic; and 5)
metabolomic biomarkers.

Cellular biomarkers

Sputum leukocytes Sputum polymorphonuclear (PMN)
leukocyte counts are increased in COPD patients and
smokers [61, 62]. Sputum PMN counts have been quan-
tified reliably in multicenter COPD clinical trials using
standardized methods, and are a relatively stable bio-
marker in COPD patients [61, 63]. The percentage of
PMNs in sputum samples correlates weakly with COPD
severity and health status scores, [61] but not with emphy-
sema severity, systemic inflammatory markers, acute ex-
acerbation (AECOPD) frequency, or lung function decline
[56]. In another study of smokers, the percentage of spu-
tum PMNs was higher in those with airflow obstruction,
chronic mucus hyper-secretion, and rapid rate of decline
in lung function [57].

Blood leukocytes COPD patients with high (>2 %)
blood eosinophil counts are at increased risk for severe
AECOPD and increased mortality from AECOPD [64].
Blood eosinophil counts are simple to assess and are
repeatable [65, 66]. COPD patients with blood eosino-
phil counts > 2 % have reduced AECOPD rates when
treated with inhaled steroids, [67] and their AECOPD
respond to oral prednisolone therapy [65, 68]. Blood
eosinophil counts may serve as a biomarker of asthma-
COPD overlap syndrome (ACOS) which is character-
ized by higher reversibility of airflow obstruction,
greater responses to inhaled corticosteroids than usual
COPD patients, and eosinophilic airway and systemic
inflammation [69].

Proteomic biomarkers
Many proteins detected in plasma samples distinguish in-
dividuals with COPD from controls and/or are linked to
clinical outcomes or phenotypes. These include markers
of systemic inflammation (fibrinogen, CRP, IL-6, and IL-8)
and lung-derived or pneumoproteins [surfactant protein C
(SP-D) chemokine (CC) ligand 18 (CCL-18) and Club cell
protein-16 (CC-16)] and other biomarkers such as soluble
receptor for advanced end glycation products (sRAGE).

Systemic protein biomarkers Fibrinogen, CRP and IL-6
are acute phase proteins that are synthesized by hepato-
cytes. Plasma fibrinogen levels are the most robust bio-
marker for COPD identified so far in terms of relative
longitudinal stability, and levels are significantly associated
with symptoms, exercise capacity, AECOPD rates, the
BODE index, and mortality [70] [71]. Elevated CRP plasma
levels are associated with reduced lung function, [72] lower
exercise capacity, [73, 74] higher risk of future AECOPD
[75] and higher risk of COPD-related hospitalizations [76].
Elevated CRP levels are positively associated with all-cause
[77, 78] and COPD-related mortality [79]. Elevated plasma
levels of IL-6 (and also fibrinogen and CRP) were independ-
ently associated with mortality over 3 years in the Evaluation
of COPD Longitudinally to Identify Predictive Surrogate
Endpoints (ECLIPSE) COPD cohort after adjusting for clin-
ical variables that predict death in COPD patients [70].

Pneumo-proteins SP-D is produced by type II pneumo-
cytes and Club cells. In the ECLIPSE cohort, SP-D levels
were higher in COPD patients than healthy smokers and
higher plasma levels predicted AECOPD but not mortality
[80]. CC16 is produced by Club cells and has anti-
inflammatory activities thereby protecting mice from
cigarette smoke (CS)-induced COPD [81, 82]. Plasma
CC16 levels are lower in current than former smokers
with Global Initiative for Chronic Obstructive Lung
Disease (GOLD) stage II-III [83]. Plasma CC16 levels
in former smokers with COPD were indirectly (and
weakly) related to COPD severity [83]. CC16 plasma
levels were indirectly related to rate of decline in lung
function over 9 years in patients with mild to moderately-
severe COPD in the Lung Health Study (LHS) [84]. CCL18
(or PARC) is predominantly produced in the lungs by mac-
rophages and dendritic cells. Elevated plasma CCL18 levels
have been associated with reduced FEV1 in COPD patients,
higher BODE scores [85], more frequent AECOPD [86],
and are independently associated with lung function and
mortality [87].

sRAGEs RAGE signaling is linked to endothelial dys-
function in diabetes and metabolic syndrome. A soluble
form of RAGE (sRAGE) is generated by proteolytic shed-
ding of RAGE from cell surfaces [88]. sRAGE serves as a
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decoy receptor that binds to RAGE ligands preventing them
from signaling via cell surface RAGE. Plasma sRAGE levels
are reduced in COPD patients and levels are inversely
related with high resolution computerized tomography
(HRCT) scan-defined emphysema [89].

Genomic markers
Genetic markers include single nucleotide polymorphisms
(SNPs) which have been linked to COPD by genome-wide
association studies (GWAS). GWAS support a genetic basis
for smoking behavior, susceptibility to develop COPD, and
different COPD phenotypes. SNPs in chromosomes 2q21
and 6p21 have been linked to age at smoking initiation, and
SNPs in cytochrome P450 genes to lifetime mean number
of cigarettes per day, current number of cigarettes smoked
per day, and smoking cessation [90]. Several genomic
regions are associated with COPD susceptibility at genome-
wide significance including family with sequence similarity-
13, member A (FAM13A; a gene of unknown function),
hedgehog interacting protein (HHIP), a negative regula-
tor of the hedgehog signaling pathway, the cholinergic
nicotinic acetylcholine receptor, CHRNA3/5, iron regula-
tory protein-2 (IREB2), Ras And Rab Interactor-3 (RIN3,
which is involved in endocytosis), transforming growth
factor-β2, matrix metalloproteinase-12 (MMP-12), AGER,
and a region on chromosome 19 [91–93]. Some of these
genetic variants are linked to COPD phenotypes including:
1) airflow limitation [CHRNA3/5, IREB2, HHIP (39)]; 2)
emphysema (CHRNA3/5, IREB2, TGFB2, MMP-12;
[91, 93] 3) fat-free body mass; 4) exacerbation fre-
quency; and 5) systemic disease (HHIP) [94]. Kim et al.
linked SNPs in the CC16 and SP-D loci to altered cir-
culating biomarker levels of CC16 and SP-D [95].
The function of some of the protein products of loci

that have been linked by GWAS to COPD susceptibility
have been linked to COPD pathogenesis by studying
mice deficient in these proteins in the CS exposure
models of COPD. For example, MMP-12 promotes em-
physema development in mice by degrading lung elas-
tin and generating fragments that are chemotactic for
monocytes [96, 97]. HHIP protects mice from CS-
induced emphysema by reducing lymphocyte numbers
and activation on the lung, and reducing the number
and size of lymphoid follicles. [98] RAGE promotes em-
physema development possibly by increasing the lung
inflammatory response to CS [99].

Metabolomic biomarkers
There is increased turnover of proteins and lipids in
COPD patients that can be detected in serum and urine
samples [100]. COPD patients have reduced serum levels
of lipoproteins and N,N-dimethylglycine, and branched-
chain amino acids (BCAAs) and increased serum levels

of glutamine, phenylalanine, 3-methylhistidine and ke-
tone bodies when compared with control subjects
[100, 101]. BCAAs, their degradation products, 3-
methylhistidine, ketone bodies, and triglycerides cor-
related negatively with cachexia and positively with
systemic inflammation [100]. Another study reported
that COPD patients had reductions in sphingomyelins
that were associated with emphysema phenotype, and
linked elevations in glycosphingolipids to severe COPD
exacerbations [102]. COPD patients also have decreased
urinary 1-methylnicotinamide, creatinine and lactate, but
increased urinary levels of acetate, ketone bodies, carno-
sine, m-hydroxyphenylacetate, phenylacetyglycine, pyru-
vate and a-ketoglutarate [101].

Transcriptomic biomarkers
Gene expression studies in sputum and blood samples
have linked a number of gene expression profiles to the
presence of COPD and/or to COPD phenotypes.

Sputum studies Gene array profiling in sputum samples
from GOLD stage 2–4 COPD ex-smokers in the ECLIPSE
cohort reported changes in 277 genes associated with
GOLD stage II vs. III-IV, and 198 genes with changes linked
to emphysema severity [103]. Eleven of these genes were
replicated in a second COPD cohort using real-time
PCR methods [103]. Four distinct and clinically-meaningful
combinations of clinical characteristics (especially airflow
obstruction but also emphysema severity, plasma fibrinogen
levels, chronic production of sputum, body mass index and
age) have been associated with large gene expression diffe-
rences in sputum samples in the ECLIPSE cohort [104].
Gene expression profiling on induced sputum samples
from the ECLIPSE COPD study identified functional ef-
fects (expression quantitative trait loci of known sus-
ceptibility genes including IREB2 and CHRNA5) [105].

Blood studies Using microarrays on blood samples in the
ECLIPSE cohort, 150 genes were differentially expressed in
frequent exacerbators versus non-exacerbators including
down regulation of lymphocyte signaling genes and up
regulation of genes involved in apoptosis [106].

Biomarker combinations
Combinations of biomarkers have stronger predictive
power than analysis of single proteins. The fibronectin/
CRP ratio was inversely related to all-cause and cardio-
vascular disease-related mortality in COPD [107]. The
systemic inflammome is a panel of 6 systemic inflamma-
tory markers (blood leukocyte counts, CRP, IL-6, IL-8,
fibrinogen and TNF-α) linked to COPD outcomes. In a
cohort of 1,755 COPD patients, 16 % of COPD patients
had persistent systemic inflammation (defined as the pres-
ence of two or more abnormal inflammatory markers),
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and during follow-up had higher all-cause mortality and
AECOPD rates than the 30 % without inflammation [77].
Another study reported that increased levels of five
inflammation-sensitive plasma proteins (fibrinogen, ce-
ruloplasmin, α1-antitrypsin, haptoglobin, orosomucoid)
predicted increased hospital admissions rates for COPD
patients during 25 years of follow up [108]. Pinto-Plata et
al. combined a clinical model (severity of airflow limita-
tion, carbon monoxide transfer factor, functional capacity,
the BODE index and AECOPD frequency) with a panel of
plasma protein biomarkers (blood leukocyte counts, and
plasma IL-6, fibrinogen, CCL18, CRP, IL-8 and SP-D) to
predict mortality. Adding IL-6 (but not the other protein
markers) to the clinical model independently added pre-
dictive power [85].

Summary, conclusions, challenges and future directions
Biomarkers may offer relatively non-invasive means for
phenotyping COPD patients, assessing disease activity
versus severity, and monitoring responses to therapy. Al-
though progress is being made in identification of COPD
biomarkers, no single biomarker studied to date is suffi-
ciently powerful to serve as a diagnostic tool for COPD.
Plasma fibrinogen levels could be useful to identify those
more likely to exacerbate. Combinations of protein bio-
markers coupled with clinical parameters may prove to
be most useful in COPD. Advancing biomarkers from
discovery to clinical practice is challenging. It requires
that the biomarker be validated using hundreds of speci-
mens from carefully-phenotyped COPD patients, and
reproducible, specific, sensitive, and stable during sam-
ple storage. Standard operating procedures need to be
developed for sample collection, processing, and storage.
Assays for measuring biomarkers need to be validated at
different clinical sites. Analysis of clinical samples from
carefully-phenotyped COPD patients using high through-
put “omics” technology and integration of these results with
clinical data may be the optimal approach to develop per-
sonalized signatures that can serve as a biomarker of patho-
biologic processes unique to each patient, and to assist in
managing the patient with effective targeted therapies.

The problem of hospital re-admission following discharge
after the COPD exacerbation
Rationale
Patients discharged following an exacerbation of COPD
are at high risk for re-hospitalization within 30 days.
This has a substantial negative impact, in terms of qual-
ity of life and financial costs. For example, in the US,
hospitals will not receive reimbursement for COPD pa-
tients re-hospitalized within 30 days. This symposium
will define the problem and explore ways to reduce sub-
sequent hospitalizations, morbidity and mortality.

Characteristics of the Hospitalized COPD Patient (Richard
ZuWallack)
Key points

� Hospitalized patients with COPD frequently had been
hospitalized for exacerbations in the preceding year

� A history of previous hospitalizations for
exacerbations for COPD is the strongest predictor of
subsequent hospitalizations

� Severity of airflow obstruction (FEV1 percent-predicted)
does not appear to be significantly lower in hospitalized
patients compared with series of ambulatory outpatients
with COPD

� Certain comorbid conditions, such as heart failure
and diabetes, appear to be more prevalent in
hospitalized than ambulatory COPD patients

� Following a hospitalization for COPD, patients are at
high risk for dying after discharge from the hospital

Chronic obstructive pulmonary disease (COPD) is a pro-
gressive condition punctuated by exacerbations. Often these
exacerbations are severe and resulted in hospitalization. This
discussion will center on the clinical characteristics of the
hospitalized COPD patient: Is he/she different qualitatively
or quantitatively from that patient who is able to stay out of
the hospital? This brief review will approach this question
by 2 methods:

1. Through evaluating the clinical characteristics of
hospitalized COPD patients and then comparing
these characteristics with those of patients remain
as outpatients. This method has the advantage of
coming closer to what we want to know: Exactly
what features, if any, separate a hospitalized patient
from the non-hospitalized patient. Unfortunately,
this approach is limited by relatively small numbers of
subjects the difficulty in getting a good comparator
group and seasonal, regional, and healthcare system
differences in hospitalization practices.

2. Through evaluating predictors of hospitalization in
large series of COPD outpatients. This has the
advantage of providing large numbers of subjects
evaluated as outpatients; however an in-depth
analysis of patient factors is often not done as part
of these large series.

Tables 1, 2 and 3 provide a comparison of patient
characteristics from 2 series: 1) A relatively large, longi-
tudinal, observational, multicenter study of 606 patients
who had been hospitalized for a COPD (Almagro and
colleagues); [109] and 2) A very small observational
study of hospitalized COPD patients (Chawla and col-
leagues) [110]. A large, pharmaceutically-sponsored
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study on stable outpatients with COPD [111] is used as
a comparator group.
Probably the most outstanding statistic from Table 1 (and

of this review) is the marked discrepancy in the number of
hospitalizations in the two series of hospitalized patients
versus that of the outpatient series: 71 % and 62 % (respect-
ively) of the hospitalized patients had been hospitalized at
least once for 1 or more COPD exacerbations in the
preceding year, while only 22 % of stable outpatients
with COPD had been hospitalized for this reason and
the preceding year. Thus, the history of previous hospi-
talizations for COPD exacerbations is a very powerful
predictor of subsequent hospitalizations. In this case,
history repeats itself. Of course, this association does
not give causal factors: Does this reflect greater disease
severity in the “frequent flyers,” or does it reflect other
potentially important factors, such as adherence to
therapy, comorbid conditions, systemic effects of the

disease, proper outpatient management of the disease,
or access to medical care?
Of note, mean FEV1, expressed as a percent of its ref-

erence value, was not different in hospitalized and non-
hospitalized patients. Furthermore, the percentages of
patients in GOLD (Global Initiative for Obstructive Lung
Diseases) spirometric stages 2–4 were strikingly similar in
the hospitalized patients in Spain and the ambulatory pa-
tients evaluated as part of the pharmaceutical study. This
suggests that the degree of airflow limitation is less import-
ant a factor in hospitalization versus non-hospitalization.
Certainly other important factors are causal when it comes
to need for hospitalization in COPD. While patients with
GOLD stage 2 were most common, this probably reflects
the greater numbers of COPD patients with less severe air-
flow limitation. One potentially-important marker of
disease (not just COPD) severity is the six minute walk
distance, which independently predicts survival in this

Table 1 Clinical Characteristics of Patients Hospitalized for COPD (ESMI and SFH) Compared with Stable Outpatients (ECLIPSE)

ESMI (Spain) SFH (USA) ECLIPSE

Hospitalized Hospitalized Out-Patients

Number of subjects 606 54 2138

Male (%) 90 36 65

Age (years) 73 70 63

Current smokers (%) - 34 36

Body mass index (BMI, kg/m2) 28 32 27

Alone at home (%) 13 69 -

1+ hospitalization prev yr for COPD (%) 71 62 22

1+ exacerbation previous year (%) - 83 47

First hospitalization for COPD (%) 21 - -

No prior diagnosis of COPD (%) 8 10 -

Alone at home (%) 13 34 -

ESMI, The EPOC en Servicios de Medicina Interna study [109]; SFH, St. Francis Hospital, Hartford, CT USA [110]. Prev, previous; The dashed line indicates no data available for
that variable

Table 2 Disease severity factors in hospitalized and non-hospitalized patients with COPD

ESMI (Spain) SFH (USA) ECLIPSE

Hospitalized Hospitalized Out-Patients

On O2 rx (%) 39 53 -

FEV1 % predicted 43 47 48

G2; G3; G4 (%) 45; 44; 11 - 44; 42; 14

FEV1/FVC≥ 0.70 (% of sample) - 21

Could not/would not do 6 MWT (%) - 20 -

6MWT distance (meters) - 157 All: 370

G2: 406

G3: 357

G4: 290

O2, Oxygen; FEV1, Forced expiratory volume in one second; FVC, Forced vital capacity
G2, Global Initiative for Obstructive Lung Disease (GOLD) spirometric stage 2 (FEV1 ≥ 50 % and < 80 %); G3, GOLD spirometric stage 3 (FEV1 ≥ 30 % and < 50 %);
G4, GOLD spirometric stage 4 (FEV1 < 30 %). 6MWT, six minute walk test
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disease [112]. The mean walk distance in the small series
by Chawla was 157 m, which is considerably lower than the
350 m threshold that predicts long-term survival in COPD
patients beginning pulmonary rehabilitation [112] and is
considerably lower than that of outpatients (including Gold
stage 4 outpatients) in the pharmaceutical company. This
decrease in six minute walk distance in hospitalized COPD
patients probably reflects the systemic manifestations of the
exacerbation and/or co-morbid events that contributed to
the hospitalization.
Of interest is the finding in the Chawla series that 21 %

of patients admitted with a clinical diagnosis of COPD did
not meet spirometric criteria (i.e., an FEV1/FVC < 0.70)
for COPD on pre-discharge spirometry. While this might
be due, in part, to technical issues – incomplete exhalation
in some patients, leading to a falsely-high FEV1/FVC, it
probably also reflects a potential bias of diagnosing a
cigarette smoker with acute respiratory symptoms as
having COPD when other potential etiologies should be
explored.
Table 3 compares comorbid conditions listed in the

three series. Perhaps the discrepancies that stand out
most are the higher percentage of inpatients with diag-
nosed heart failure and diabetes. While these differences
might reflect shared comorbidities in the COPD popula-
tion in general [113], this does not explain the higher
percentages in the hospitalized patient. Possible reasons
behind this observation include increased disease burden
leading to the hospitalization, greater scrutiny in the
hospital in identifying other medical problems, or mis-
diagnosis, such as diagnosing heart failure for a COPD
exacerbation in a cigarette smoker.
Table 4 evaluates clinical features of the hospitalized

COPD patient from a different perspective. Selected data
from the ECLIPSE study, which followed a large number

of stable outpatients with COPD longitudinally over three
years, are presented here [111, 114].
Again, a history of hospitalization for a COPD exacer-

bation was the strongest predictor of subsequent
hospitalization for the same reason. Greater dyspnea,
measured by the Modified Medical Research Council in-
strument [115], and worse health status, measured using
the St. George’s Respiratory Questionnaire [116], also
appear to be predictive factors. Interestingly, the mean
six minute walk distance in these ambulatory
patients, which was only a little lower in those even-
tually hospitalized than in those who remained outpa-
tients, was considerably higher than in the small
sample of hospitalized patients. This suggests that a
bi-directional causality with regard to functional sta-
tus and health care utilization: lower functional exer-
cise capacity predicts subsequent hospitalization in
COPD and hospitalization has a profound effect on
functional exercise capacity.
With respect to mortality risk, the hospitalized COPD

patient is a considerably higher risk of dying after hos-
pital discharge than the patient who remains in an out-
patient status. For example, in a prospective study of
135 hospitalized patients for COPD, mortality at six
months, one year, and two years was 13.4 %, 22 %, and
35.6 %, respectively [117]. Another post-hospitalization
COPD study involving 8325 patients admitted beginning
in 1991 revealed a 23 % mortality at one year and a 51 %
mortality within 5 years. Contrast these data with those
from a pharmaceutical study of 5993 COPD outpatients
(mean age 65 years; 30 % current-smokers; FEV1 39%
predicted) where the mortality over the 4-year treatment
period was 12.8 % and 13.6 % in the treatment group
and placebo groups, respectively [118].
In summary, the hospitalized patient with COPD has

frequently been hospitalized before for this condition,
and this factor appears to be the most potent predictor
of subsequent hospitalizations in this population. Air-
flow limitation appears to be a less important factor than
the history of previous hospitalizations. Mortality follow-
ing a hospitalization for COPD is high.

Reducing Hospital Readmissions Following COPD
Exacerbation (Carolyn Rochester)
Hospitalizations for acute exacerbations of COPD are a
major cause of morbidity and mortality and incur signifi-
cant healthcare costs. Readmissions within 30 days of hos-
pital discharge following acute exacerbations of COPD are
common, occurring in 17-30 % of cases [119, 120]. In the
United States, an estimated one fifth of all Medicare bene-
ficiaries are readmitted within 30 days, with an estimated
annual cost of more than 15 billion dollars [119]. Since
2009, the 30-day readmission rates for congestive heart
failure, pneumonia, and myocardial infarction have been

Table 3 Comorbid conditions in hospitalized and ambulatory
COPD patients

ESMI (Spain) SFH (USA) ECLIPSE

Hospitalized Hospitalized Out-Patients

Ischemic cardiac disease (%) 21 37 15-17

Heart failure (%) 33 33a, 16b 4-5a

Atrial fibrillation (%) 21 - -

Chronic kidney disease (%) 16 28 -

Peripheral vascular disease (%) 17 - -

Diabetes (%) 28 24 12c

Hypertension (%) 63 40 -

Depression; anxiety (% %) 15; 18 17; 17c

Dementia (%) 4 15 -
aDiagnosis suggested by brain naturetic protein > 500 units
bClinical diagnosis by cardiologist
cEstimated from Reference [180]
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reported as a quality performance measure within the US
Affordable Care Act; [121] COPD readmission rates have
since been added to this list [122]. As of fiscal year 2015,
the Centers for Medicare and Medicaid Services has
begun penalizing hospitals by decreasing financial reim-
bursement to those with high rates of unplanned readmis-
sion following hospitalizations for COPD exacerbation
[123]. As such, identifying the factors associated with in-
creased risk of readmission and patients with these risks is
important so as to try to identify treatment plans that will
reduce individuals’ risk, improve patient care and in turn re-
duce healthcare costs.
Numerous factors are associated with an increased risk

of hospital readmission for patients with COPD [123–128].
Prior exacerbation history and medical comorbidities are
among the most important risks. Other patient-related
factors include more severe airflow obstruction, use of
supplemental oxygen, older age, low socioeconomic sta-
tus, marital status, low physical activity levels, functional
disability, and impaired quality of life [128, 129]. Health-
care provider-related factors include lack of prescription
of short- or long-acting bronchodilator or inhaled cortico-
steroid within 30 days of discharge, or history of prescrip-
tion of oral corticosteroid or antibiotic on discharge [123].
Health-system-related factors include hospital length of
stay less than 2 or more than 5 days, lack of timely pa-
tient follow-up after discharge, and suboptimal transi-
tions of care [123]. However, it is difficult to predict
readmission risk for individual patients. A variety of re-
admission risk prediction models have been published;
most, however perform poorly, possibly in part due to
insufficient inclusion of factors associated with overall
health, functional and socioeconomic status [130].
Thus, it is not possible to reliably predict which pa-
tients will require readmission based on any single pre-
diction model.

Therefore, at present, the issue of reducing 30-day hospital
readmissions for patients with COPD can be seen as a “good
news/bad news” situation. The “good news” is that several
individual interventions have been shown to reduce COPD
exacerbation risk, which in turn has the potential to reduce
the risk of hospitalization. Healthcare professionals can pay
rigorous attention to individual patients’ risk factors for re-
admission (as detailed above) and target interventions to
address all of those factors. First and foremost, healthcare
professionals must inquire about each patient’s exacerbation
history, including the typical symptoms, frequency, prior
emergency care visits or hospitalizations; triggers for exacer-
bations must be identified and addressed (eg. avoidance of
allergens or selected environmental conditions and/or treat-
ment of GERD), and “dyspnea crises” related to anxiety and
dynamic hyperinflation must be recognized and managed.
Patients’ use of maintenance medications for COPD should
be assessed and pharmacotherapy adjusted where needed,
since inhaled long-acting beta-agonists, long-acting inhaled
anticholinergic medications and inhaled corticosteroids re-
duce the risk of exacerbations by approximately 15-25 %
[131–136]. For those with frequent recurrent exacerbations
despite optimized inhaled medications, consideration should
be given to treatment with other agents shown to re-
duce exacerbations including macrolide antibiotics [137]
or phosphodiesterase-4 inhibitors [138]. Smoking cessa-
tion [139] and influenza vaccination [140, 141] also reduce
COPD exacerbation risk. Anxiety and depression are com-
mon among patients with COPD and are associated with
increased hospitalization risk yet are often under-treated;
[142, 143] identifying and treating these conditions also
has potential to reduce the risk of readmission. One intri-
guing recent study using the Medicare Premier Research
database demonstrated that the provision of oral nutri-
tional supplements during hospitalizations for COPD ex-
acerbation decreased the hospital length of stay and the

Table 4 Patient Characteristics in Outpatients with COPD that may Predict Re-Hospitalization

Not hospitalized Hospitalized

n = 1,468 n = 670

Age (years) 63 64

Percent female 35 35

BMI (kg/m2) 27 26

Current smoker 37 34

mMRC dyspnea ≥ 2 (%) 46 69

Reflux or heartburn (%) 24 29

Hospitalized for exacerbation over prev yr (%) 9 30

History C-V disease (%) 32 37

FEV1 % predicted 51 42

6 MWD (m) 383 341

SGRQ total score 45 55

BMI, Body mass index; mMRC, Modified Medical Research Council; C-V: cardiovascular; SGRQ, St. George’s Respiratory Questionnaire
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probability of 30-day readmission among a large sam-
ple of Medicare patients over age 65 with a primary
hospitalization diagnosis of COPD [144]. Further re-
search is needed to determine the potential role of nu-
tritional supplements in reducing hospitalization risk.
Since persons with respiratory muscle dysfunction (e.g.

weakness or mechanical disadvantage related to hyperin-
flation) may be at greater risk of ventilatory failure in
the face of COPD exacerbation, and since respiratory
muscle overload at the time of hospital discharge is a
factor associated with risk of readmission, [145] interest
has arisen in whether use of non-invasive positive pres-
sure ventilation (NIV) during or following COPD ex-
acerbation might reduce subsequent hospitalization risk.
Indeed, a retrospective analysis of the outcomes of a
multidimensional respiratory therapist-lead program in-
cluding use of NIV among 397 patients who had been
hospitalized more than twice in the previous year dem-
onstrated that the proportion of patients readmitted two
or more times decreased to 2.2 % in the year following
the intervention (p < 0.0001) [146]. However, another
study failed to demonstrate any difference in 30-day all-
cause or COPD-related readmissions in a retrospective
analysis of outcomes of 25, 628 patients hospitalized in
the US with acute COPD exacerbation who were treated
with NIV for respiratory failure as compared to conven-
tional delivery of mechanical ventilation via endotracheal
tube [147]. There may be a subset of patients for whom
use of NIV during or after exacerbation reduces readmis-
sion risk, but at present the role of NIV in this regard re-
mains uncertain.
Other aspects of post-hospitalization patient manage-

ment are also important. Patient attendance of follow-up
visits with a healthcare professional (primary care provider
or pulmonologist) within 30 days of hospital discharge re-
duces the risk of subsequent emergency department visits
[148, 149] and readmission [150]. Pulmonary rehabilitation
(PR) improves exercise capacity, reduces symptoms en-
hances self-efficacy and quality of life and can improve daily
physical activity levels [151]. A systematic review of super-
vised PR implemented early following exacerbations that
included 9 randomized controlled trials (patient n = 432)
demonstrated a 42 % reduction in the chance of hospital
admission over median 25 weeks’ follow-up [152]. Other
more recent trials have also demonstrated a reduction in
exacerbation frequency and hospitalization following par-
ticipation in PR [153, 154]. One randomized trial involving
a six-week rehabilitation intervention begun during hospital
admission for an exacerbation of chronic respiratory
disease failed to demonstrate reduction in readmission
12 months following the intervention [155]. However,
the post-discharge component of PR in this trial was
unsupervised, and as such the exercise training stimulus
may have been insufficient. Hence, it is not possible to

conclude that PR begun during COPD exacerbation and
continued post-hospital discharge is ineffective based on
this trial. In keeping with the benefits of PR, high physical
activity levels [156, 157] and increases in physical activity
level over time are associated with reduced risk of
hospitalization for patients with COPD.
Self-management programs, which typically include edu-

cation, action plans, as well as strategies for problem solv-
ing, goal setting and resource utilization [158] can help
patients acquire skills needed to manage and cope with
their disease. Several studies suggest that self-management
interventions for patients with COPD can decrease the
probability of respiratory-related hospitalization and
all-cause hospitalization. However, not all studies of
self-management interventions have demonstrated
these benefits. Moreover, the optimal timing for them
is unclear. While acute exacerbations are often consid-
ered an ideal “teachable moment”, a recent systematic
review of self-management interventions initiated during
an exacerbation of COPD demonstrated no difference at
12 months in quality of life, exercise capacity, primary care
use, hospital readmissions or mortality, despite a demon-
strated positive effect on patients’ knowledge and manage-
ment of the exacerbation of COPD [159]. Further work is
needed to determine the optimal timing for provision self-
management programs for patients with COPD. Multifa-
ceted and integrated care disease management programs
that incorporate individually tailored self-management ac-
tion plans and other aspects of patient support (such as
care managers, home visits and call centers) can also re-
duce readmission risk in selected patient populations and
healthcare systems.
The “bad news” is that despite the demonstrated ability

of the numerous interventions discussed above to reduce
exacerbation and/or hospitalization risk, hospital readmis-
sion rates have not decreased substantially in recent years.
No single intervention has consistently reduced 30-day
hospital readmissions for elderly persons with chronic dis-
eases and no solution has yet been found to significantly
reduce the burden of hospital readmission for patients with
COPD. There are several possible reasons for this. First,
COPD is often misdiagnosed, [160] and many individuals
presenting with symptoms suggestive of COPD exacer-
bation prove to have other conditions such as congest-
ive heart failure or upper airway obstruction. This issue
is particularly problematic among underserved patient
populations, and misdiagnosis is often associated with
the presence of obesity and cardiac disease. Accurate diag-
nosis is essential for optimized treatment. Misclassification
of symptoms and hospitalizations as being related to COPD
poses a huge challenge in regard to reducing readmissions
following COPD exacerbations, given that many patients
do not even have the disease. Second and importantly,
COPD is markedly under-diagnosed [161–163], hence
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individuals at risk for exacerbation and hospitalization are
under-recognized and do not have access to risk-reducing
therapies. Moreover, for those who do have an accurate
diagnosis of COPD, recommended treatments are underu-
tilized. Many practitioners do not adhere to evidence-based
treatment guidelines [164, 165], and patient non-adherence
to prescribed medical therapies is a major problem
[166–169]. Pulmonary rehabilitation is also underuti-
lized; rates of provider referral as well as patient up-
take and adherence to PR are low [170–172]. Patients
also report multiple barriers to sustaining high levels
of daily physical activity [173], and the role of disease-
management programs in care of patients with COPD
is controversial, since some studies have shown an in-
crease in mortality signal following the intervention [174].
Third, the factors associated with increased risk of

hospital readmission are complex and multifaceted, and
not all have solutions or are readily amenable to inter-
vention or modification. There likely also are as yet un-
identified factors contributing to the readmission risk.
Finally, hospital readmissions occur for a myriad of
reasons other than COPD exacerbation [175]. As such,
interventions such as pharmacotherapies for COPD,
pulmonary rehabilitation, self-management programs
geared toward reducing COPD exacerbation risk will
be ineffective in decreasing these other episodes lead-
ing to subsequent hospitalization.
Thus, based on all of these issues, it may ultimately be

difficult if not impossible to substantially or consistently re-
duce patients’ readmission rates following hospitalization
for COPD exacerbation. Although the financial penalties
posed by insurance payers for high readmission rates may
be well intentioned in their effort to improve or streamline
care and reduce healthcare costs, payers’ expectations may
unrealistic. Nevertheless, healthcare professionals should be
encouraged to accurately diagnose COPD among at risk pa-
tients, and to utilize evidence-based therapies according
to published guidelines. Patients should be encouraged
to adhere to these beneficial therapies [176]. Healthcare
system inefficiencies must also be addressed. Transi-
tions of care must be improved [177, 178] and provision
of integrated care, e.g. in newer models of care delivery
such as “patient-centered medical homes” (community-
based multidisciplinary care teams and transitional care
programs) [179] should be considered. Ongoing efforts
to identify means of reducing hospital readmissions,
and ongoing dialogue.
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