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Abstract
Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits

account for a small proportion of the traits' heritability. To date, most association studies

have not considered parent-of-origin effects (POEs). Here we report investigation of POEs

on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up

Study (JPS), comprising 1250 young adults and their mothers was used for discovery.

Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic

traits, we used linear regression to examine the associations of maternally- and paternally-

derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fast-

ing glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of

European ancestry aged�50 belonging to pedigrees from the Framingham Heart Study,

Family Heart Study and Erasmus Rucphen Family study (total Nffi4800). We considered
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p<2.7x10-4 statistically significant to account for multiple testing. We identified a common

coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived

effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p =

2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Sug-

gestive maternally-derived associations of rs1367117 were observed with fasting glucose

(β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1;

p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory func-

tions in this region in liver and adipose tissues and a 50%methylation pattern in liver only,

consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our

findings demonstrate a maternal-specific association between a common APOB variant

and adiposity, an association that was not previously detected in GWAS. These results pro-

vide evidence for the role of regulatory mechanisms, POEs specifically, in adiposity. In addi-

tion this study highlights the benefit of utilizing family studies for deciphering the genetic

architecture of complex traits.

Author Summary

To date, genetic variants identified in large-scale genetic studies using recent technical and
methodological advances explain only a small proportion of the genetic basis of obesity,
diabetes and other cardiovascular risk factors. These studies were typically conducted in
samples of unrelated individuals. Here we utilize a family-based approach to identify
genetic variants associated with obesity-related traits. Specifically, we examined the sepa-
rate contribution of maternally- vs. paternally-inherited common genetic variants to these
traits. By examining 1250 young adults and their mothers from Jerusalem, we show that a
specific genetic variant, rs1367117, located in the APOB gene on chromosome 2 is related
to body mass index and waist circumference when inherited from mother and not from
father. This maternal effect is not restricted to Jerusalemites, but is also seen in a large sam-
ple of individuals of European descent from independent family studies worldwide. Our
findings provide support of the role of complex genetic mechanisms in obesity, and high-
light the benefit of utilizing family studies for uncovering genetic pathways underlying
common risk factors and diseases.

Introduction
Genome-wide association studies (GWAS) have identified multiple loci associated with cardio-
metabolic risk (CMR) phenotypes and traits, such as adiposity and glycemic traits (e.g [1–4]).
GWAS are conducted, very largely, in unrelated individuals. In general, the magnitudes of
these genetic associations are small to modest, and the loci account for only a small proportion
of the heritability of these traits [5–8]. To explain the “missing” heritability, various research
strategies for follow-up studies have been proposed, including focusing on gene-environment
interactions, on rare variants with moderate effects and on parent-of-origin effects (POEs)
[7, 9].

POEs are non-Mendelian transmittable genetic effects on phenotypes, where the phenotype
in offspring depends on whether transmission originated from the mother or father. In mam-
mals, POEs can be caused by genomic imprinting, maternal genetic effects on the intrauterine
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environment, or maternally inherited mitochondrial genes [10]. The most obvious mechanism
underlying POEs is genomic imprinting; imprinted genes show parental-specific monoallelic
or partial expression, dictated by the parental origin of the chromosome [11, 12].

In the past decade, linkage studies have demonstrated POEs on both binary and continuous
CMR outcomes [13–17]. Yet, despite evidence for POEs from linkage studies, most association
studies have overlooked their potential influence on CMR traits, and the extent and magnitude
of POEs on CMR traits remain largely unknown. One important exception, from Iceland, dem-
onstrated that inclusion of the parental source of alleles significantly strengthened previously-
reported associations with type 2 diabetes [18]. Two subsequent studies in Icelanders detected
POEs on age at menarche and thyroid-stimulating hormone levels, traits that are associated
with CMR [19, 20].

To examine POEs on adiposity and glycemic traits in young adults, we leveraged existing
genotype data and CMR trait measurements on mother-offspring pairs from a longitudinal
study nested within a historical birth cohort, together with GWAS and bioinformatics data-
bases. We replicated our findings using extended pedigrees from three family studies. Our
hypothesis was that, in genes where variants are known to be associated with CMR traits,
knowledge of the parental source of genetic variants would reveal POEs on body mass index
(BMI), waist circumference (WC), and fasting glucose and insulin levels.

Results
Distribution of JPS offspring adiposity and glycemic traits at mean age 32 and characteristics of
the 18 genes and 182 tag SNPs selected for this analysis in JPS are presented in the S1–S4
Tables. All SNPs were common (minor allele frequency (MAF)>0.06) and not far from
Hardy–Weinberg equilibrium (p>10−5). Associations between offspring genotypes, with and
without considering parental source of alleles, for the 182 SNPs and the four traits BMI, WC,
fasting glucose and fasting insulin are presented in S5 Table. Nominally significant POEs for
adiposity and glycemic traits were observed in JPS. Consequently, 30 of the 182 SNPs initially
tested for POE in the JPS were moved forward for replication in the 3 other family studies (S6
Table). In the joint analysis of results from JPS, FHS, FamHS and ERF, significant POEs were
observed for a variant in the APOB gene (Table 1).

Adiposity and glycemic traits
In the discovery stage conducted in JPS, SNP rs1367117, a coding SNP located within the
APOB gene, demonstrated significant POEs on adiposity traits (Table 1 and S5 Table).
Specifically, significant associations were demonstrated when the minor allele was inherited
from the mother for offspring BMI (beta = 1.44, p-value = 6.5x10-3) and WC (beta = 3.82, p-
value = 2.7x10-3). The corresponding paternally-derived effects were non-significant (p>0.6).
As expected in the setting of POEs, in JPS associations seen with the maternally-derived minor
allele were approximately twice as strong as those that did not consider the parental source of
the allele (effects sizes were 0.7 (p-value = .03) and 1.5 (p-value = .05) for BMI and WC respec-
tively) (Fig 1 and S5 Table). In fact, the differences in simple heritability estimates in JPS
derived from mother-offspring correlations [21, 22] based on models with either adjustment
for POE or additive genetic effects of the APOB variant suggested that POE of the APOB SNP
explains roughly 0.30% and 0.58% of BMI and WC heritability, respectively. No changes in
heritability estimates for BMI or WC were observed for the additive genetic effect of this
variant.

We also conducted sensitivity analyses in which we excluded heterozygous mother-off-
spring pairs (191 of 1235 pairs) instead of using probability-based estimated dosage in these
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pairs. These analyses resulted in similar or larger estimates for APOB rs1367117 POE on BMI
(maternal beta = 1.46; p = .048), WC (maternal beta = 5.26; p = .003) and fasting insulin
(natural log transformed, maternal beta = .212; p = .004) compared to those using estimated
dosage (Table 1) suggesting that our probability-based estimated dosage approach is likely con-
servative. Additionally, we used simulations to assess the likelihood of false positive findings.
Permutation-based p-values for the maternal effect on BMI (p-value = .0079) and onWC

Table 1. Parent-of-origin effects of APOB SNP rs1367117a on adiposity and glycemic traits.

Maternally-derived
effect

Paternally-derived
effect

Phenotype No. of
probands

Beta SEb p-value Beta SEb p-
value

P-value for maternal vs. paternal
effects

BMI, kg/m2

JPS (discovery) 1235 1.437 0.527 0.0065 0.005 0.511 0.9927 0.0856

FHS 2228 0.791 0.250 0.0015 -0.219 0.242 0.3650 0.0033

FamHS 773 1.319 0.436 0.0025 -0.197 0.428 0.6455 0.0112

ERF 622 -0.288 0.414 0.4863 0.340 0.413 0.4107 0.2791

Combined (Z based) 4858 7.8x10-6 0.6185 0.0005

Combined (inverse variance
based)

4858 0.752 0.180 3.1x10-5 -0.087 0.176 0.6204

Waist circumference, cm

JPS (discovery) 1235 3.822 1.270 0.0027 -0.646 1.249 0.6049 0.0260

FHS 2225 2.231 0.649 0.0006 -0.244 0.632 0.6995 0.0056

FamHS 773 3.911 1.187 0.0010 0.279 1.161 0.8101 0.0254

ERF 631 -3.037 3.110 0.3289 -0.834 3.084 0.7868 0.6111

Combined (Z based) 4864 1.6x10-6 0.6007 0.0010

Combined (inverse variance
based)

4864 2.660 0.512 2.1x10-7 -0.227 0.501 0.6502

Fasting glucose, mg/dL

JPS (discovery) 1068 0.342 1.160 0.7682 -0.757 0.984 0.4417 0.5156

FHS 2153 1.315 0.382 0.0006 -0.523 0.380 0.1694 0.0005

FamHS 761 0.036 0.653 0.9560 -1.070 0.681 0.1163 0.2425

ERF 608 0.128 1.062 0.9041 0.279 1.050 0.7905 0.9208

Combined (Z based) 4590 0.0102 -0.522 0.0636 0.0127

Combined (inverse variance
based)

4590 0.875 0.304 0.0040 -0.586 0.301 0.0520

Fasting insulin, mU/mL (natural log transformed)

JPS (discovery) 1102 0.104 0.059 0.0790 -0.038 0.066 0.5585 0.1640

FHS 1960 0.051 0.024 0.0356 0.004 0.027 0.8823 0.1597

FamHS 761 0.129 0.046 0.0049 -0.006 0.049 0.9016 0.0321

ERF 510 0.012 0.044 0.7856 0.017 0.044 0.6999 0.9376

Combined (Z based) 4333 0.0004 0.004 0.6347 0.0745

Combined (inverse variance
based)

4333 0.062 0.018 0.0007 0.001 0.020 0.9566

JPS, Jerusalem Perinatal Study; FHS, Framingham Heart Study; FamHS, Family Heart Study; ERF, Erasmus Rucphen Family
a Minor allele frequency (MAF) of SNP rs1367117 across studies: JPS 0.2, FHS 0.31, FamHS 0.34 (imputed data, R2 = 0.925), ERF 0.31.
b Standard errors (SEs) were calculated directly in JPS; in the other studies SEs were estimated by converting p-values into a z-statistic and setting:

SE = beta/z.

doi:10.1371/journal.pgen.1005573.t001
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(p-value = .0048) were very close to the observed maternal p-values (p-value = .0065 and .0027
for BMI andWC, respectively). Detailed information on simulations in JPS (and in FHS) can
be found in S1 Text (permutation testing).

Testing for POEs for APOB SNP rs1367117 in the replication and meta-analysis stage, also
showed a significant maternally-derived effect in FHS and FamHS separately, but not in ERF,
and in all four studies combined on both BMI (combined beta = 0.75, p-value = 3.1x10-5) and
WC (combined beta = 2.66, p-value = 2.1x10-7) (Table 1). The effect sizes for the maternal-spe-
cific associations in JPS and FamHS were essentially identical, whereas the corresponding
effects in FHS were somewhat smaller. The associations of the paternally-derived allele with
those traits were not significant (F-test p-values for difference between maternally- and pater-
nally-derived effects were 5.0x10-4 and 1.0x10-3 for BMI and WC respectively).

Maternally-derived associations of this APOB SNP with borderline significance were
also seen with fasting glucose and insulin levels in the combined results (combined p-value =
4.0x10-3 and 7.4x10-4 for glucose and insulin respectively), whereas no associations were
observed with the paternally-derived allele (Table 1).

Fig 1. Parent-of-origin effects of APOB SNP rs1367117 on adiposity traits in JPS. This figure illustrates the associations between APOB SNP
rs1367117 and offspring BMI (top panel) and waist circumference (WC) (bottom panel). Adjusted means and standard errors (represented by error bars) for
BMI andWC by genotype were determined using estimates from linear regression models adjusted for ethnicity and gender. Comparing offspring genotype
effect (left panel), maternally-derived effect (middle panel) and paternally-derived effect (right panel) reveals a strengthened and more significant maternal-
specific association with both traits.

doi:10.1371/journal.pgen.1005573.g001
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Lipids, lipoproteins and blood pressure traits
Because APOB is a major component of lipoprotein particles and an important contributor to
the atherosclerotic process [23, 24], we examined whether there is also evidence for POEs of
APOB rs1367117 on other CMR traits, including LDL-C, HDL-C, total cholesterol (TC), tri-
glycerides (TG) and systolic and diastolic BP (S7 Table). A maternally-derived association, and
not paternally-derived, was observed for SBP in the combined analysis (combined beta = 1.62,
p-value = 1.6x10-4; F-test p-value for difference = 3.1x10-3). Significant maternal and paternal
associations, of similar magnitudes, were shown with both LDL-C (maternal beta = 4.20, p-
value = 2.8x10-6; paternal beta = 3.54, p-value = 5.0x10-5) and TC (maternal beta = 4.67, p-
value = 3.6x10-6; paternal beta = 3.67, p-value = 1.7x10-4) (F-test p-values for difference
between maternal and paternal effects were non-significant), reflecting offspring genotype
effect, irrespective of the parental source (additive genetic effect is discussed below).

Mediating role of BMI
To further explore the observed parental-specific associations of APOB with CMR traits, we
examined the influence of offspring BMI on these associations. Further adjustment for BMI
resulted in attenuation of the observed maternally-derived effects of APOB rs1367117 on waist,
SBP, glucose and insulin to the null (Table 2). In contrast, adjustment for BMI had minimal
effect on the maternal and paternal associations with both LDL-C and TC (S7 Table).

Additive genetic effect on cardio-metabolic traits
We have additionally examined the associations of offspring APOB rs1367117 with cardio-
metabolic traits, overlooking the parental source of the minor allele, in the four studies sepa-
rately and combined (Table 3). The combined data pointed to a substantial additive genotype
effect on lipid traits, mainly on LDL-C and TC, which is in agreement with the aforementioned
POE results showing both maternal and paternal effects on LDL-C and TC (S7 Table). On the
other hand, genotype effects on adiposity traits (BMI andWC) were relatively minor both in
size and significance, emphasizing the maternal-specific nature of the APOB rs1367117-adip-
osity association.

Fine-mapping the APOB parent-of-origin effect on BMI
In an attempt to fine-map the POE observed for APOB rs1367117 on adiposity, we used Hap-
Map tagger [25] and SNAP Proxy Search function [26] to select SNPs that either tag the APOB
gene region (i.e. tag SNPs using r2 thershold�0.8 within the interval spanning the gene itself
and 100kb on each side) or that are in moderate linkage disequilibrium (LD) with the SNP of
interest (i.e. r2 values between 0.4–0.7). Forty two SNPs were identified and we then examined
POEs of these selected SNPs on BMI in the 3 studies where genome-wide data was available
(i.e. FHS, FamHS and ERF) and meta-analyzed the results (S8 and S9 Tables). To illustrate the
results, we used a regional plot developed by Saxena et al. [27] (Fig 2). The plot presents the
combined p-values of the maternally-derived effects on BMI, showing rather higher signifi-
cance for the SNPs that are in higher LD with APOB rs1367117. As expected, the degree of sig-
nificance of the maternal-specific associations dropped with the decrease in LD and increase in
distance from the SNP of interest.

Bioinformatics
Bioinformatic annotation was undertaken for rs1367117, located within the 4th exon of apoB,
using the Epigenome Browser (http://epigenomegateway.wustl.edu/; [28, 29]). The region is
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Table 2. Maternally-derived effects of APOB SNP rs1367117 on cardio-metabolic traits with and without adjustment for BMIa.

Maternally-derived effect

Phenotype No. of
Probands

Beta SEb p-value BMI adj. p-
value

P-value for maternal vs.
paternal effects

BMI adj. p-value for
maternal vs. paternal

effects

Waist circumference, cm

JPS (discovery) 1235 3.822 1.270 0.0027 0.2181 0.0260 0.1523

FHS 2225 2.231 0.649 0.0006 0.1701 0.0056 0.8296

FamHS 773 3.911 1.187 0.0010 0.2082 0.0254 0.8083

ERF 631 -3.037 3.110 0.3289 0.4057 0.6111 0.8153

Combined (Z based) 4864 1.6x10-6 0.0792 0.0010 0.7606

Combined (inverse variance
based)

4864 2.660 0.512 2.1x10-7 0.0413

Fasting glucose, mg/dL

JPS (discovery) 1068 0.342 1.160 0.7682 0.9782 0.5156 0.6741

FHS 2153 1.315 0.382 0.0006 0.0120 0.0005 0.0104

FamHS 761 0.036 0.653 0.9560 0.2988 0.2425 0.8327

ERF 608 0.128 1.062 0.9041 0.8855 0.9208 0.9137

Combined (Z based) 4590 0.0102 0.1813 0.0127 0.2335

Combined (inverse variance
based)

4590 0.875 0.304 0.0040 0.0526

Fasting insulin, mU/mL (natural
log transformed)

JPS (discovery) 1102 0.104 0.059 0.0790 0.9918 0.1640 0.7732

FHS 1960 0.051 0.024 0.0356 0.5942 0.1597 0.9164

FamHS 761 0.129 0.046 0.0049 0.2335 0.0321 0.4763

ERF 510 0.012 0.044 0.7856 0.7337 0.9376 0.7110

Combined (Z based) 4333 0.0004 0.3318 0.0745 0.9432

Combined (inverse variance
based)

4333 0.062 0.018 0.0007 0.3008

Low-density lipoprotein
cholesterol, mmol/L

JPS (discovery) 1107 6.960 3.729 0.0622 0.1982 0.6177 0.9892

FHS 2205 4.703 1.462 0.0013 0.0050 0.1635 0.5073

FamHS 739 4.624 2.671 0.0834 0.2932 0.3363 0.1129

ERF 586 3.333 1.332 0.0123 0.0124 0.8577 0.7409

Combined (Z based) 4637 2.5x10-6 0.0001 0.5290 0.6090

Combined (inverse variance
based)

4637 4.204 0.897 2.8x10-6 4.8x10-5

High-density lipoprotein
cholesterol, mmol/L

JPS (discovery) 1117 -3.016 1.418 0.0337 0.4094 0.0666 0.3049

FHS 2226 -1.048 0.670 0.1179 0.6345 0.0716 0.2717

FamHS 752 -0.073 0.937 0.9379 0.5300 1.0000 0.4899

ERF 589 0.441 0.539 0.4135 0.6493 0.7997 0.8635

Combined (Z based) 4684 0.0634 0.7521 0.1940 0.5691

Combined (inverse variance
based)

4684 -0.329 0.370 0.3746 0.9444

Total cholesterol, mmol/L

JPS (discovery) 1117 6.387 4.178 0.1266 0.2890 0.6563 0.9775

FHS 2230 4.918 1.660 0.0030 0.0112 0.3137 0.8073

(Continued)
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depicted in Fig 3. The gene is expressed most abundantly in liver, and far less in small intestine
and least in adipose. In liver, there is a broad region with regulatory activity beginning
upstream of the promoter and extending past the 4th exon with enhancer activity around exon
4 in both liver and adipose. Therefore, this region displays a variety of regulatory functions.
Notably, the DNA methylation in this region spanning exon 4 shows a 50% methylation

Table 2. (Continued)

Maternally-derived effect

Phenotype No. of
Probands

Beta SEb p-value BMI adj. p-
value

P-value for maternal vs.
paternal effects

BMI adj. p-value for
maternal vs. paternal

effects

FamHS 752 5.873 3.006 0.0507 0.2187 0.8244 0.3870

ERF 589 3.956 1.484 0.0077 0.0108 0.9111 0.8779

Combined (Z based) 4688 6.3x10-6 0.0003 0.8803 0.9552

Combined (inverse variance
based)

4688 4.667 1.008 3.6x10-6 0.0001

Triglycerides, mmol/L (natural
log transformed)

JPS (discovery) 1117 0.097 0.061 0.1143 0.6418 0.0709 0.3342

FHS 2242 0.068 0.026 0.0083 0.2193 0.1099 0.6533

FamHS 752 0.017 0.048 0.7214 0.5222 0.4679 0.9343

ERF 590 0.019 0.041 0.6415 0.5632 0.4400 0.3836

Combined (Z based) 4701 0.0037 0.3085 0.1163 0.7473

Combined (inverse variance
based)

4701 0.052 0.019 0.0055 0.2846

Systolic blood pressure,
mmHg

JPS (discovery) 1220 1.120 1.145 0.3284 0.9856 0.8311 0.4120

FHS 2234 1.927 0.585 0.0010 0.0172 0.0584 0.2941

FamHS 733 1.376 0.905 0.1282 0.6705 0.0017 0.0262

ERF 593 1.194 1.376 0.3856 0.3959 0.1124 0.1960

Combined (Z based) 4780 0.0003 0.0381 0.0031 0.0640

Combined (inverse variance
based)

4780 1.618 0.429 0.0002 0.0276

Diastolic blood pressure,
mmHg

JPS (discovery) 1220 1.236 0.910 0.1743 0.6806 0.8455 0.4691

FHS 2232 0.370 0.439 0.3990 0.8759 0.3699 0.9585

FamHS 733 1.089 0.792 0.1692 0.5975 0.0319 0.1663

ERF 593 1.495 0.908 0.0997 0.1263 0.0830 0.1943

Combined (Z based) 4778 0.0173 0.3932 0.0768 0.3896

Combined (inverse variance
based)

4778 0.756 0.330 0.0217 0.4082

JPS, Jerusalem Perinatal Study; FHS, Framingham Heart Study; FamHS, Family Heart Study; ERF, Erasmus Rucphen Family
a Presented betas and standard errors (SEs) are based on models without adjustment for BMI. P-values are presented for models with and without further

adjustment for BMI. Beta and standard errors for BMI-adjusted models as well as for paternally-derived effects are provided in S7 Table.
b Standard errors (SEs) were calculated directly in JPS; in the other studies SEs were estimated by converting p-values into a z-statistic and setting:

SE = beta/z.

doi:10.1371/journal.pgen.1005573.t002
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Table 3. Genotype effect of APOB SNP rs1367117 on cardio-metabolic traits.

Genotype effecta

Phenotype No. of Probandsb Beta SE p-value

BMI, kg/m2

JPS (discovery) 1246 0.689 0.310 0.0263

FHS 3666 -0.029 0.138 0.8329

FamHS 2228 0.329 0.173 0.0573

ERF 1968 0.306 0.168 0.0682

Combined (inverse variance based) 9108 0.209 0.087 0.0166

Waist circumference, cm

JPS (discovery) 1246 1.481 0.766 0.0534

FHS 3659 -0.003 0.361 0.9925

FamHS 2227 0.837 0.470 0.0748

ERF 1965 0.670 0.488 0.1702

Combined (inverse variance based) 9097 0.503 0.235 0.0324

Fasting glucose, mg/dL

JPS (discovery) 1077 -0.279 0.657 0.6715

FHS 3542 -0.127 0.205 0.5363

FamHS 2047 0.547 0.286 0.0560

ERF 1830 -0.131 0.428 0.7588

Combined (inverse variance based) 8496 0.053 0.151 0.7280

Fasting insulin, mU/mL (natural log transformed)

JPS (discovery) 1112 0.030 0.036 0.4016

FHS 3229 0.008 0.013 0.5504

FamHS 2045 0.050 0.019 0.0076

ERF 1486 0.009 0.019 0.6154

Combined (inverse variance based) 7872 0.019 0.009 0.0341

Low-density lipoprotein cholesterol, mmol/L

JPS (discovery) 1117 5.771 2.315 0.0128

FHS 3734 2.997 0.770 0.0001

FamHS 1925 0.696 1.079 0.5192

ERF 1802 6.501 1.401 3.50x10-6

Combined (inverse variance based) 8578 3.098 0.556 2.45x10-8

High-density lipoprotein cholesterol, mmol/L

JPS (discovery) 1127 -0.671 0.946 0.4785

FHS 3771 -0.516 0.358 0.1501

FamHS 1967 -0.482 0.433 0.2660

ERF 1810 -0.963 0.545 0.0774

Combined (inverse variance based) 8675 -0.601 0.238 0.0117

Total cholesterol, mmol/L

JPS (discovery) 1127 5.258 2.609 0.0441

FHS 3778 2.632 0.867 0.0024

FamHS 1967 0.664 1.197 0.5791

ERF 1810 5.855 1.551 1.61x10-4

Combined (inverse variance based) 8682 2.768 0.621 8.43x10-6

Triglycerides, mmol/L (natural log transformed)

JPS (discovery) 1127 0.013 0.036 0.7119

FHS 3800 0.012 0.014 0.3829

(Continued)
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pattern in liver, consistent with a parent-of-origin effect or allelic-specific methylation; how-
ever, the same is not true in adipose and small intestine which show nearly 100% methylation,
which might indicate tissue-specific imprinting [30].

Discussion
This study tested the hypothesis that including the parental origin of the allele will reveal par-
ent-of-origin genetic effects on adiposity and glycemic traits among young adults. We have
shown that a common coding variant in APOB gene has a significant maternally-derived POE
on CMR traits, and adiposity in particular. Our findings for APOB gene provide support for
the potential importance of POEs on CMR traits.

Several findings from linkage studies provide evidence for loci demonstrating POEs on
CMR traits and phenotypes [13–17]. Yet despite this evidence, few genetic association studies
to date have examined POEs on CMR outcomes. In a study conducted in Iceland, GWAS data
were used together with genealogy and long-range phasing to examine POEs on incident Type
2 Diabetes (T2D) [18]. Importantly, the Icelandic study demonstrated that the inclusion of the
parental source of offspring alleles strengthened the evidence for previously reported associa-
tions of T2D with SNPs within imprinted intervals and genes, such as KCNQ1, and revealed
novel associations with T2D. Subsequently, POEs were also detected in this population of Ice-
landers on age at menarche and thyroid-stimulating hormone levels [19, 20], which are related
to CMR traits. Other studies have shown that genetic variations in several known imprinted
genes, such as IGF2, INS and GNAS, have been associated with CMR traits, including adult
obesity (BMI) and T2D [31–36]. GWAS also have identified POEs on body composition in

Table 3. (Continued)

Genotype effecta

Phenotype No. of Probandsb Beta SE p-value

BMI, kg/m2

FamHS 2183 0.035 0.018 0.0537

ERF 1810 0.024 0.020 0.2175

Combined (inverse variance based) 8920 0.021 0.009 0.0249

Systolic blood pressure, mmHg

JPS (discovery) 1231 1.253 0.759 0.0990

FHS 3793 0.251 0.314 0.4241

FamHS 1812 -0.055 0.445 0.9019

ERF 1751 0.022 0.653 0.9734

Combined (inverse variance based) 8587 0.233 0.228 0.3060

Diastolic blood pressure, mmHg

JPS (discovery) 1231 1.428 0.580 0.0139

FHS 3791 -0.048 0.232 0.8347

FamHS 1812 -0.178 0.335 0.5954

ERF 1751 0.561 0.372 0.1314

Combined (inverse variance based) 8585 0.154 0.163 0.3436

JPS, Jerusalem Perinatal Study; FHS, Framingham Heart Study; FamHS, Family Heart Study; ERF, Erasmus Rucphen Family
a Based on an additive genetic model.
b Numbers of probands included in the genotype effect analysis are larger compared to the POE analysis due to exclusion of individuals who were non-

informative for parental transmission.

doi:10.1371/journal.pgen.1005573.t003
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animal models [37, 38] and on high blood pressure [39] in humans. A novel approach for
detecting POEs using genome-wide genotype data of unrelated individuals was recently intro-
duced [40]. Using this method 6 SNPs were identified as having POE on BMI, 2 of which, near

Fig 2. Combined*maternally-derived effects of SNPs spanning the APOB locus on BMI. Forty two SNPs spanning the APOB genomic locus with their
corresponding meta-analysis (z-based) p-values for the maternally-derived associations (as -log10 values) are plotted as a function of chromosomal position.
Estimated recombination rates are plotted to reflect the local LD structure around the associated SNP (blue) and its correlated proxies (red:R2�0.8;
orange:0.5�R2>0.8; yellow:0.2�R2>0.5; white:R2<0.2). Combined (Z-based) p-value for APOB SNP rs1367117 excluding JPS is 7.4x10-5 (presented in
figure). Corresponding p-value including JPS is 7.8x10-6 (presented in Table 1). *Results used to generate the plot are based on genome-wide data available
in FHS, FamHS and ERF (and not including JPS where data are not available).

doi:10.1371/journal.pgen.1005573.g002

Fig 3. Bioinformatic annotation for the APOB locus. Bioinformatic annotation was undertaken for rs1367117, located within the 4th exon of the APOB
gene, using the Epigenome Browser (http://epigenomegateway.wustl.edu/). APOB gene is shown in the blue track and the focal SNP with a vertical bar.
Level of DNAmethylation (whole genome bisulfite sequencing, or WGBS), histone marks indicative of promoters (H3K4me3) and enhancers (H3K4me1),
and expression levels (RNA-seq) were plotted in three relevant tissues: liver, adipose, and small intestine.

doi:10.1371/journal.pgen.1005573.g003
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genes SLC2A10 and KCNK9, were replicated in five family studies. POE was not identified for
APOB by that study and we were not able to examine SLC2A10 and KCNK9 in our study as
genetic data for these genes were not available in JPS.

Multiple candidate gene studies (e.g. reviewed in [41–45]) and more recently GWAS [8, 27,
46–59] identified genetic variants in APOB gene related to lipid and lipoprotein levels, and to
coronary artery disease and myocardial infarction. Specifically, APOB rs1367117, identified
here, was shown to be associated with levels of LDL-C, TC, APOB and non-HDL in GWAS
[52, 54] and candidate gene studies [60–62] and recently, an epistatic interaction on BP levels
was observed between APOB rs1367117 and VCAM1 rs1041163 [63].

SNP rs1367117 is a nonsynonymous missense variant, located in exon 4 of APOB gene,
causing a Thr!Ile amino acid change. A study using samples from both Finnish and Mexican
subjects has shown that rs1367117 is associated with serum apoB levels, and that another vari-
ant identified in GWAS (rs7575840), which is in high LD with rs1367117 (r2 = 0.93 in CEU
HapMap sample), is associated with expression levels of APOB gene in adipose tissue [61].
Obesity is strongly associated with dyslipidemia, which may account for the associated
increased risk of atherosclerosis and coronary disease. Although the precise mechanism
whereby obesity results in dyslipidemia has not been established, there is some evidence to sup-
port that visceral obesity is related to dysregulation of both apoB isoforms [64, 65].

Only several studies have shown that genetic variants in APOB gene are associated with
body size and obesity in children [66] and adults [67–70] and with body growth and obesity in
chicken [71]. Our results showing a highly significant additive genetic effect of APOB
rs1367117 on lipid traits and a highly significant maternal-specific effect on adiposity traits, in
fact demonstrate why genetic associations studies overlooking POE conducted to date have
typically identified associations of APOB gene variants with lipid traits but not with adiposity.

To our knowledge, APOB gene has not been previously reported as demonstrating POEs on
CMR or on other traits nor has it been identified as imprinted (and neither has its neighboring
genes located within 500kb upstream and downstream of APOB, e.g. C2orf43, GDF7,HS1BP3,
HS1BP3-IT1, RHOB, LOC645949). Several explanations may account for the lack of previous
support for POEs related to APOB. First, both imprinting and maternal genotype effects on the
intrauterine environment are recognized as parent-of-origin mechanisms [10, 72], thus further
work is needed to determine which of the mechanisms may explain the parent-of-origin associ-
ations identified in this work. Specifically, human placenta produces and secretes apoB-con-
taining lipoproteins, and placental lipoprotein formation constitutes a pathway of lipid transfer
from the mother to the developing fetus [73]. Whether this pathway may affect adiposity and
cardio-metabolic health of adult offspring remains to be explored. Second, it is assumed that
not all human imprinted genes have been identified [74–76] and gradually more genes are rec-
ognized as being imprinted [77]. Lastly, and perhaps more likely, parent-of-origin associations
may be apparent in specific tissues, specific stages of development or in specific genes which
are not themselves imprinted but rather regulated by imprinted genes. A recent work by Mott
et al. supports the latter by showing that non-imprinted genes can generate parent-of-origin
effects by interaction with imprinted loci and that the importance of the number of imprinted
genes is likely secondary to their interactions [78]. It has also been suggested that imprinted
genetic effects on complex traits are context dependent, and that imprinting patterns may not
be consistent among traits and environments or between sexes [79]. For example, a highly sig-
nificant QTL on chromosome 1, DMetS1b, was shown to be associated with variation in both
serum lipid levels and obesity in mice. Interestingly, for cholesterol there was an additive effect
in the full population, whereas for free-fatty acid levels high-fat fed females showed maternal
expression imprinting and low-fat fed females showed paternal expression imprinting [80]. Of
note, tissue and gender specificity of imprinting has been demonstrated very recently in a
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study in humans using allele-specific expression data [77]. Similarly, our findings in humans
have demonstrated that the same APOB variant has an additive genotype effect on lipids, and
yet a maternal POE on adiposity. In addition, context-specificity may underlie the lack of
POEs of APOB in the ERF study, possibly due to a specific environmental factor in the Dutch
population that could not be accounted for in the models. These hypotheses need to be further
explored.

The major strengths of this study are the use of common genetic variation in mother-off-
spring pairs from a population-based cohort with quantitative CMR traits measured at age 32
and the opportunity to replicate our findings in extended pedigrees from three large family
studies. Notably, the family design also minimizes confounding due to population stratification
[81, 82]. Additionally, the use of candidate genes identified in GWAS takes advantage of avail-
able scientific knowledge as well as reduces the problem of multiple comparisons.

There are also several limitations to our study. First, genetic data on fathers were unavailable
in JPS resulting in the use of probability-based imputation of the parental source of minor
alleles in heterozygous mother-offspring pairs. However, as we have shown in sensitivity analy-
ses, this approach is likely conservative and therefore preferable compared to excluding hetero-
zygous mother-offspring pairs. Furthermore, replication in other studies where genetic data in
extended families were used minimizes this source of bias. Second, the APOB variant indenti-
fied here has not been previously reported in large GWAS consortia as related with adiposity.
Although this is likely the result of GWAS typically ignoring the parental source of alleles due
to lack of family data, there is a possibility that our POE results reflect false-positive findings.
To address this, we have conducted simulations applying two different approaches, one for a
mother-offspring design (using JPS) and the other for an extended pedigrees design (using
FHS). Based on these simulations, maternal permutation p-values were similar to our observed
p-values providing further support for the significance of the reported maternal APOB effect.
Lastly, environmental exposures around the time of birth may contribute to the context-speci-
ficity of POEs. These data were unavailable for most of the participating studies and therefore
their effects could not be assessed in this work.

In summary, we have demonstrated that taking into account the parental origin of offspring
alleles compared to examining the offspring genotype as a whole may enhance our understand-
ing of genetic associations with CMR traits. Our results highlight the potential contribution of
POEs to uncovering complex relations between genetic variants and common traits, and moti-
vate further research in this area, including assessment of the impact of POEs on common
traits and investigation of the mechanisms underlying these associations.

Methods
The Jerusalem Perinatal Study (JPS) population-based cohort includes a sub-cohort of all
17,003 births to residents of Jerusalem, between years 1974 and 1976 [83–85]. Data consist of
demographic and socioeconomic information, medical conditions of the mother during cur-
rent and previous pregnancies, and offspring birth weight, abstracted either from birth certifi-
cates or maternity ward logbooks. Additional information on lifestyle and maternal medical
conditions, including gestational age, mother's smoking status, height and pre-pregnancy
weight, end of pregnancy weight and gynecological history, was collected by interviews of
mothers on the first or second day postpartum. Data collection methods have been described
in detail previously [83–85].

The Jerusalem Perinatal Family Follow-Up Study includes a sample of 1,250 mother-off-
spring pairs (average offspring age 32, range: 30–35) from the original 1974–1976 birth cohort,
who were interviewed and examined between 2007 and 2009. Information on sampling and
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data collection in the JPS Family Follow-Up study was previously described [86]. Briefly, the
sampling frame included singleton term births without congenital malformations, and a strati-
fied sample defined by maternal pre-pregnancy body mass index (BMI) and birth weight was
obtained, where both low and high birth weight as well as over-weight and obese mothers were
over-sampled. Standard procedures and training protocols were used to measure standing
height, body weight, waist circumference and blood pressure. Blood specimens collected after
fasting for at least 8 hours were taken using standard procedures, and biochemical measure-
ments of insulin, glucose, cholesterol, HDL-C and triglycerides were assayed in plasma. Inter
assay coefficients of variation (CV%) were less than 2% for glucose and less than 2.5% for cho-
lesterol, HDL-C and triglycerides.

Individuals who reported taking medication to treat diabetes (n = 13), lipid-lowering medi-
cation (n = 13) or BP-lowering medication (n = 11), were excluded from the corresponding
analyses.

DNA extraction and genotyping
Blood was collected in tubes containing EDTA. DNA was extracted from white blood cells
using standard salting-out extraction procedures. Common tag SNPs from candidate genes in
molecular pathways potentially related to both birth weight and CMR phenotypes were previ-
ously genotyped in mother-offspring pairs using Illumina 1536 SNPs panel (BeadArray tech-
nology with a GoldenGate custom panel, Illumina, San Diego, CA, USA [87, 88]). Of the 1536
SNPs genotyped, 1384 (90.1%) provided genotype clusters with call rates>95%. Additional
quality control measures for genotypic data included: 1) testing Hardy-Weinberg Equilibrium;
SNPs with chi-square p-value< 0.05/1384 were excluded; and 2) observing Mendelian inheri-
tance inconsistency between mother’s and offspring genotypes; SNPs with more than 0.5%
inconsistency were excluded. As a result, an additional 10 SNPs were removed and a total of
1374 SNPs, representing 180 genes, were available.

SNP selection
To identify POEs on adiposity and glycemic traits we selected SNPs within genes where previ-
ous GWAS in Caucasian populations had revealed variants associated with BMI, glucose and
insulin levels, lipids and lipoproteins levels, obesity and type 2 diabetes. This is similar to the
approach applied in the Icelandic study in the sense that published GWAS findings were used
for targeting variants of interest for POE analysis [18]. Specifically, using the US National Insti-
tutes of Health Office of Population Studies catalogue of published genome-wide association
studies (www.genome.gov/gwastudies—accessed July 1, 2012) [89], out of the 180 genes geno-
typed previously using the Illumina custom panel in JPS mother-offspring pairs, we identified
18 genes for which significant associations (p-value<5X10-8) with CMR traits were reported in
GWAS (Table 4 and S1 and S2 Tables). In these 18 genes 182 tag SNPs were available in JPS
(Table 4 and S3 Table).

Cardio-metabolic outcomes
The following adiposity and glycemic traits were measured in offspring at age 32: body mass
index (BMI, calculated by dividing weight (kg) by squared height (m2)); waist circumference
(WC, mean of two consecutive measurements at the midpoint between the lower ribs and iliac
crest in the midaxillary line (cm)); fasting glucose (mg/dL) and fasting insulin (mean of two
repeated measures (mU/mL), natural log-transformed).

In a follow-up analysis limited to replicated findings, we additionally examined lipid and
blood pressure traits: low-density lipoprotein cholesterol (LDL-C (mmol/L)); high-density
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lipoprotein cholesterol (HDL-C (mmol/L)), triglycerides (TG (mmol/L), natural log-trans-
formed), systolic and diastolic blood pressure (SBP and DBP, mean of three consecutive mea-
sures (mmHg)).

All cardio-metabolic outcomes were treated as continuous variables (distributions presented
in S4 Table).

Statistical analyses
Analyses of JPS data were carried out using Stata 12.0 (StataCorp, College Station TX).

To assess the separate contribution of the maternally- and paternally-inherited variants to
offspring CMR phenotypes, we first determined the parental origin of minor alleles, based on
mother-offspring pairs, since genetic data on fathers were not available in JPS. For every given
SNP we constructed two variables; maternally-derived minor allele (M-D) and paternally-
derived minor allele (P-D) indicators. These indicators count the number of minor alleles
inherited from mother and/or father; each count is a zero or one (Table 4). When offspring
and mother were both heterozygous at a given SNP, the source of the minor allele was ambigu-
ous. But under random mating and transmission equilibrium, the probability that the minor
allele was derived from the mother is 1-MAF and from the father is MAF, where MAF = minor
allele frequency. Therefore, similarly to use of estimated dosage for uncertain genotypes, for
heterozygous mothers-offspring pairs, we used the estimated dosage of M-D and P-D indica-
tors, i.e. 1-MAF and MAF, respectively (Table 5 and Fig 4). The percentage of heterozygous
mother-offspring for each of the 182 selected SNPs ranged between 5% and 27% (S3 Table).

When offspring and mother are both heterozygous at a given SNP, the source of the minor
allele is ambiguous. For any given SNP with allele frequencies of p and q for the common (A)
and minor (a) alleles respectively, the expected paternal genotype frequencies assuming Hardy-
Weinberg Equilibrium are f(AA) = p2, f(Aa) = 2pq and f(aa) = q2. Under random mating and

Table 4. Genes selected for examination of parent-of-origin effects in JPS.

# Gene Gene ID chr Location (build GRCh37/hg19) # genotyped SNPs

1 APOB 338 2 chr2:21224301–21266945 10

2 CDKN2A 1029 9 chr9:21967751–21994490 5

3 CDKN2B 1030 9 chr9:22,008,716–22,008,952 4

4 FTO 79068 16 chr16:53737875–54148379 2

5 GCK 2645 7 chr7:44183870–44229022 5

6 HNF4A 3172 20 chr20:42,984,441–43,061,485 9

7 IGF1 3479 12 chr12:102,789,645–
102,874,378

10

8 IRS1 3667 2 chr2:227596033–227663506 1

9 LPL 4023 8 chr8:19796582–19824770 11

10 MC4R 4160 18 chr18:58038564–58040001 1

11 MTHFR 4524 1 chr1:11,845,787–11,866,160 9

12 POMC 5443 2 chr2:25383722–25391559 4

13 PPARG 5468 3 chr3:12,328,984–12,475,855 13

14 PSRC1 84722 1 chr1:109,822,176–109,825,808 3

15 TCF1 (HNF1A) 6927 12 chr12:121,416,549–121,440,314 8

16 TCF2 6928 17 chr17:36,046,434–36,105,096 22

17 TCF7L2 6934 10 chr10:114,710,009–
114,927,436

42

18 TUB 7275 11 chr11:8,040,791–8,127,654 23

doi:10.1371/journal.pgen.1005573.t004
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transmission equilibrium, the probability that the minor allele was derived from the mother is
1-MAF and from the father is MAF, where MAF = minor allele frequency. Therefore, for het-
erozygous mothers-offspring pairs, we used the estimated dosage of M-D and P-D indicators,
i.e. 1-MAF and MAF.

We used linear regression to examine each SNP-trait association. We first assessed the asso-
ciations of offspring genotype with trait, using an additive genetic model. Then the association
of the parental origin of the minor allele on the trait was assessed by including the M-D and
P-D indicators together in a single model.

Table 5. Indicators of parental origin of the minor allele in JPS.

mother genotype offspring genotype M-D indicator P-D indicator

AA AA 0 0

Aa 0 1

Aa AA 0 0

Aa 1-MAF MAF

aa 1 1

aa Aa 1 0

aa 1 1

doi:10.1371/journal.pgen.1005573.t005

Fig 4. Estimated dosage of maternally- and paternally-derivedminor allele indicators for heterozygous (Aa) mothers-offspring pairs.

doi:10.1371/journal.pgen.1005573.g004
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The following mean models were used:

E½Y � ¼ b0 þ bGGO þ gTZ ð1Þ

E½Y � ¼ b0 þ bMDGMD þ bPDGPD þ gTZ ð2Þ

Where Y denotes trait, GO = offspring genotype, GMD = indicator of maternally-derived
minor allele, GPD = indicator of paternally-derived allele, and Z = other covariates.

Existence of POE in model 2 was assessed via a test of the following null hypotheses:
(1) βMD = 0; (2) βPD = 0; (3) βMD = βPD. The significance threshold for rejection of the null

hypotheses was set at a within-gene corrected Bonferroni p-value<0.05 for the separate effects
of the maternally- or paternally derived indicators (i.e. hypotheses 1 or 2) and nominal p-val-
ues (i.e. p-values<0.05) for the F-test examining the differences between these effects (i.e.
hypothesis 3). Findings that met these criteria for any one of the examined outcomes were
moved forward for replication and meta-analysis.

All models were adjusted for offspring sex and ethnicity. Following an approach suggested
by Thomas and Witte to correct for population stratification in mixed-ethnicity families [90],
ethnicity of offspring was classified based on country of origin of all four grandparents, using
nine major ethnicity strata (Israel, Morocco, Other North Africa, Iran, Iraq, Kurdistan, Yemen,
Other Asia and the Balkans and Ashkenazi). Rather than allocating offspring to a single ethnic-
ity, we constructed a covariate for each stratum giving the proportion of grandparents derived
from each of the nine ethnic groups (ranging from 0 to 1, reflecting none or all four grandpar-
ents originating from the specific ethnic group, respectively) and then included these covariates
as adjustment variables in a multiple regression, excluding one stratum (Ashkenazi) to elimi-
nate complete multicollinearity.

To account for the stratified sampling, we used Stata’s ‘pweight’ option to weight estimates
by individuals’ inverse probability of being sampled [91].

Replication and meta-analysis
Findings exceeding the aforementioned threshold of significance in JPS were followed up in
three additional family studies with extended pedigrees: 1) Framingham Heart Study (FHS)
(max N = 2225 probands); 2) Family Heart Study (FamHS) (max N = 773 probands); and 3)
Erasmus Rucphen Family (ERF) study (max N = 631 probands). Probands were restricted to
individuals of European decent, aged�50, with available genetic and CMR data and genetic
data in at least one parent. Probands on medication to treat diabetes, lipid-lowering medication
or BP-lowering medication were excluded from the corresponding analyses. Detailed descrip-
tion of each of the studies, including study sample, genotyping techniques and CMR trait mea-
surements and distributions, is provided in S1 Text and S4 Table. Distributions of CMR traits
were comparable between the studies, with the exception of fasting insulin in FHS. Yet substan-
tial differences in fasting insulin distributions across studies are commonly observed [92, 93].
We used the quantitative transmission disequilibrium test (QTDT) software [94] to test for the
association of maternally and paternally inherited minor alleles using information from the
extended families within each study, adjusting for sex and age, using a model similar to the one
used in JPS. Specifically, qtdt -at -ot was used to test for POE (maternal effect = paternal effect),
and qtdt -at -om and qtdt -at -op were used to test maternal and paternal effects, respectively
(modified to adjust for other parent contribution). QTDT software uses a linear mixed effect
model to account for familial correlations. We did not use the QTDT statistic that is robust to
population stratification because, based on available genome-wide data, population stratifica-
tion did not affect the traits evaluated in most studies. In limited instances where there was
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some suggestive evidence for the presence of population stratification, we corrected for it using
principal components analysis within the relevant study [95].

Additionally, z-based meta-analysis combining results from all 4 studies (i.e. JPS, FHS,
FamHS and ERF) was conducted, as a joint analysis approach was shown to be more efficient
than a two-stage approach for genetic association studies [96]. A Bonferroni correction was
applied and SNPs were declared statistically significant if their p-values were below 0.05
divided by the total number of SNPs initially tested (N = 182), i.e. p-value<2.75x10-4. We also
applied an inverse variance weighted meta-analysis approach to obtain a pooled estimate of
effect sizes (betas) across studies. Since the QTDT approach does not provide estimates of stan-
dard errors (SEs), SEs were estimated by converting p-values into a z-statistic and setting:
SE = beta/z.
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