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Abstract
Antisense oligonucleotides (ASOs) are synthetic, single-strand RNA-DNA hybrids that

induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are

widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse

model systems. To test their effectiveness in zebrafish, we targeted 20 developmental

genes and compared the morphological changes with mutant and morpholino (MO)-

induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-

of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a

dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as

well as the long noncoding RNA (lncRNA)MALAT1. ASOs were only effective within a nar-

row concentration range and were toxic at higher concentrations. Despite this drawback,

quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a use-

ful knockdown reagent in zebrafish.

Introduction
One effective strategy for interrogating gene function is to disrupt the generation of a gene
product by knockdown or knockout. Knockout technologies, such as CRISPR/Cas9 and
homologous recombination, alter the DNA locus of the gene by either introducing a premature
stop codon or removing the entire locus (Fig 1A) [1,2]. Knockdown methods, on the other
hand, such as RNAi, siRNAs and modified antisense oligonucleotides [3,4], target the mRNA
rather than alter the DNA. While it is most reliable to infer gene function by generating a
mutant organism, knockdown reagents can provide a more immediate assessment of gene
function and can be used to target gene products without disrupting regulatory DNA elements.

Because siRNAs have been used with limited success in zebrafish [5], an alternative knock-
down reagent, morpholino oligonucleotides (MOs), has been the preferred zebrafish knock-
down reagent [6] (Fig 1A). MOs are synthetic oligonucleotides composed of around 25
nucleotides that possess a morpholine ring instead of the ribose ring found in DNA and RNA,
with non-ionic phosphorodiamidate linkages instead of a phosphodiester backbone. This
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provides nuclease resistance and allows them to bind RNA molecules through conventional
Watson-Crick base pairing. MOs interfere with gene function by either sterically hindering
translation [7] or splicing [8] or functioning as target protectors [9] (Fig 1A). However, they do
not degrade the target RNA, impeding quantitation of knockdown efficiency. This is particu-
larly an issue for translation-blocking RNAs, which do not create changes to the splicing
pattern of the target RNA. MOs can also cause significant off-target activity, resulting in mis-
leading phenotypic artifacts [10]. An increasing number of mutants that have been generated
subsequent to MO-based studies are either non-phenotypic or produce alternative phenotypes
from the published MO-mediated knockdowns [11–14]. For this reason, the availability of an
alternative knockdown reagent would be of use to complement MO studies.

The present study employs RNA-DNA hybrid ASOs (also known as gapmers), which are
chimeric oligonucleotides containing 10 DNA nucleotides flanked by 5 2’O-Methyl (2’OMe)
RNA residues (5-10-5 arrangement) [15,16]. The phosphate backbone in the DNA and RNA is
replaced with phosphorothioate bonds to increase ASO stability, and addition of 2’OMe RNA
modifications increases nuclease resistance (Fig 1B). The RNA and DNA portions in the hybrid
molecule serve distinct functions: the RNA nucleotides increase affinity to complementary
RNAs, while the central DNA stretch serves as a guide for RNase H-mediated degradation of
the complementary RNA. This strategy has been widely used as a knockdown approach in

Fig 1. Overview of knockdown and loss-of-function technologies in zebrafish. A) Antisense oligos (ASOs, red) degrade target RNA, morpholinos (MOs,
orange) either block splicing or inhibit translation, and Cas9-sgRNA complexes (blue) create double-strand breaks in DNA leading to genomic alterations. B)
ASOs are RNA-DNA hybrid oligonucleotides containing 10 central DNA nucleotides flanked by 5 2’O-Methyl (2’OMe) modified RNA nucleotides on either
side (5-10-5 arrangement). Individual nucleotides in the ASO are linked by phosphorothioate bonds to increase stability.

doi:10.1371/journal.pone.0139504.g001
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Xenopus [17–20], tissue culture [21], mouse models (where gapmer ASOs have reversed disease
phenotypes [22,23]), and it has shown promise in gene therapy [24,25]. RNase H degradation
is catalytic, and the ASO itself is recycled, meaning that a single ASO can direct degradation of
multiple copies of the target RNA. In contrast, a single steric-blocking MO can only bind and
inactivate a single target RNA molecule.

ASOs offer a number of advantages over MOs. First, they cause degradation of the transcript
via RNase H. Thus, the efficiency of the knockdown can be quantified. Second, due to degrada-
tion of the RNA, rather than prevention of splicing or translation, they can be used to eliminate
spliced maternal RNAs. Third, they can target both protein-coding and noncoding RNAs due
to activity in the nucleus: ASOs have been shown to shuttle between the cytoplasm and nucleo-
plasm [26], and can efficiently target nuclear-retained long noncoding RNAs (lncRNAs)
[22,27] and nascent RNAs [16]. Finally, ASOs are significantly cheaper than MOs, with an
average current cost (as of July 2015) of ~$200 (rather than ~$400). Additionally, only 1/10-1/
100 of the MO concentration is required for ASO experiments. Therefore, ASOs combine sev-
eral properties (quantifiable knockdown rates, specificity, efficiency, nuclear activity and per-
sistence in vivo [22]) that highlight their potential as alternatives to MO-mediated knockdown.

To test the feasibility of using ASOs as an alternative knockdown reagent in zebrafish, we
targeted 18 genes with known embryonic loss-of-function phenotypes. ASO-mediated knock-
down reproduced the published phenotypes for 8 developmental protein-coding genes (one-
eyed pinhead (oep), chordin, dead-end (dnd), beta-catenin 2 (ctnnb2), bmp7a, alk8, smad2 and
smad5). In addition, ASOs substantially knocked down a lncRNA,MALAT1. These results
establish ASOs as useful knockdown reagents in zebrafish.

Results
In order to test ASO efficacy in zebrafish we designed ASOs against the Nodal co-receptor oep.
oep was chosen as a test candidate because it is expressed both maternally and zygotically and
has dosage-dependent phenotypes. The complete phenotype only becomes apparent when both
maternal and zygotic oep (MZoep) are inactivated [28]. 5 ASOs were designed against different
regions of the oepmRNA using in silico RNA-folding predictions (see Materials and Methods
and S1 Text) [29]. Each ASO was injected at multiple concentrations (1 to 500 pg/embryo) into
single-cell zygotes. Two ASOs caused oep-specific phenotypes when injected between 30 and
150 pg (Fig 2A, 2D and 2F, S1A and S2A Figs). We found that all ASOs, regardless of their
nucleotide sequence, were toxic to embryos when injected above 200 pg, causing deformation
and death (S1B Fig). This toxicity was not substantially ameliorated by co-injecting a p53 MO
(Fig 2E) [30]. The ASO targeting a 20 nt region close to the 3’end of the oepORF was most effec-
tive: injection of 30–60 pg of this ASO resulted in partial loss-of-function phenotypes, resem-
bling partial oep loss-of-function mutants, and injection of 100–150 pg of the ASO caused
phenotypes indistinguishable from complete loss-of-functionMZoepmutants (Fig 2A and S1A
Fig; quantitation of phenotypes in Fig 2F and S2A Fig (“oepASO 2”)). Quantitative real-time
PCR (qPCR) confirmed the efficient and concentration-dependent knockdown of oepmRNA:
1–3% of oepmRNA remained at 3.5 hours post fertilization (hpf) and shield stage (6 hpf) (Fig
2B). Because a small number of oep ASO-injected embryos did not show a specific phenotype at
24 hpf, we tested knockdown efficiencies in individual embryos to correlate variability in pheno-
type with variability in knockdown levels. We found that the level of oepmRNA knockdown
across individual embryos at shield stage was in line with the variability in phenotypes at 24 hpf
(7/21 strong oep phenotype, 11/21 dead, 2/21 partial oep phenotype, 1/21 deformed, versus
13/15 ASO-injected embryos with a>3-fold reduction in oepmRNA levels) (Fig 2C). The
observed phenotype was specific to the knockdown of oepmRNA as injection of an oepmRNA
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containing 7 nucleotide changes within the ASO recognition site was able to rescue the ASO-
induced phenotype (Fig 2D and 2F). Moreover, quantitation of the levels of oep andMALAT1
RNA in oepASO-injected andMALAT1 ASO-injected embryos (see below) revealed that each
ASO was specifically knocking down the target RNA and not the unrelated RNA (Fig 2B).

Fig 2. Efficiency and specificity of oepASO-induced oep (one-eyed-pinhead) mutant phenotypes. A) Injection of oep ASO induces dosage-
dependent oep phenotypes that resemble zygotic (Zoep) and maternal-zygotic (MZoep) oep genetic mutants. B) oep ASO andMALAT1 ASO knockdowns
are specific. The RNA levels of oep andMALAT1were measured by qPCR in oep ASO (100 pg) andMALAT1 ASO (80 pg)-injected embryos. Shown is the
fold change in RNA level compared to WT (wildtype), normalized to ef1a (error bars: standard deviation of the mean of 3 independent experiments). C)
qPCR-based measurement of oep RNA levels in individual oep ASO (100 pg)-injected (red) or uninjected (black) embryos at shield stage (6 hpf). D) Rescue
of oep ASO-induced oep phenotypes by coinjection of an oep ASO-resistant RFP-oep fusion mRNA. Note that the oep ASO-sensitive RFP-oep fusion
mRNA is efficiently knocked down (no red fluorescence) and does not rescue. E) Quantitation of survival at 24 hpf and F) quantitation of phenotypic strength
in survivors at 24 hpf in the presence versus absence of p53 (p53MO-injected embryos) or RFP-oep fusion mRNA rescue construct. The number of embryos
in each category is indicated.

doi:10.1371/journal.pone.0139504.g002

Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish

PLOS ONE | DOI:10.1371/journal.pone.0139504 October 5, 2015 4 / 14



To assess the perdurance of ASO-mediated transcript knockdown in zebrafish and to test
whether ASOs could be used to knock down non-coding RNAs in zebrafish, we chose to target
MALAT1. This lncRNA is one of the most highly expressed transcripts during development, it
localizes to the nucleus, and has been efficiently targeted with ASOs in mouse models [22].
Notably, 2/3 ASOs againstMALAT1 reducedMALAT1 transcript levels to 1–10% of wild-type
levels (Fig 2B and data not shown), and substantial knockdown persisted for at least 5 days
after injection ofMALAT1 ASO but not after injection of an unrelated ASO (dnd ASO) (Fig 3).
Consistent with the lack of detectable phenotypes inMALAT1 knockout mice [31–33], devel-
opment proceeded normally in zebrafish embryos depleted ofMALAT1 RNA (S2A Fig). Nev-
ertheless, the perdurance ofMALAT1 RNA knockdown shows that ASOs can be useful
reagents to cause sustained knockdown of zebrafish mRNAs and lncRNAs for several days
post injection.

To test whether ASOs could be used as a general knockdown reagent in zebrafish, we
selected an additional 17 embryonically expressed genes with known mutant phenotypes (see
Table 1). For 10 of the targeted genes, we assessed whether ASO injection leads to degradation
of the target RNA by qPCR. Each ASO was injected at 4 concentrations, and samples were col-
lected at the peak times of the corresponding gene’s expression during the first 36 hours of
development to assess target mRNA levels. After monitoring development of the remaining
embryos for 24 hours to determine the highest concentration of ASO injection that produced
minimal embryonic death, we processed the corresponding samples for qPCR to determine if
there was knockdown of the target mRNA. We observed a strong knockdown for alk8, smad5,
smad2, chordin and bmp7a, a partial knockdown for ntla and wnt11 and no knockdown for
nacre, tolloid and wnt5b (Fig 4A). Notably, knockdown efficiency correlated with phenotype.
First, ASOs that caused efficient knockdown of their target mRNAs (e.g. alk8, smad5, smad2,
chordin and bmp7a ASOs) reproduced published mutant and knockdown phenotypes in sur-
viving embryos [34–40] (Fig 4B and S2B Fig; quantitation of phenotypes in S2A Fig). Second, 2

Fig 3. ASO-mediated RNA knockdown persists for several days.MALAT1 and ef1aRNA levels were measured for 5 days post injection by qPCR in
uninjected (= wildtype),MALAT1 ASO (100 pg) and dnd ASO (25 pg)-injected embryos. Shown areMALAT1 RNA levels normalized to ef1a. Error bars show
standard deviation of the mean of 2 independent experiments (10 embryos each).

doi:10.1371/journal.pone.0139504.g003
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of the 3 ASOs that failed to knock down their cognate mRNAs (nacre and tolloid ASOs) did
not produce a specific phenotype: they either caused no phenotype or resulted in embryonic
deformation and death (S1B Fig; for quantitation of survival and phenotypes see S2A Fig).
Results for wnt5b ASO, the third ASO that failed to knock down its target gene based on qPCR,
were inconclusive due to high variability and high toxicity (data not shown). Third, ntla and
wnt11 ASO injection lead to partial knockdown and reproduced the published mutant pheno-
type [41] in a smaller proportion of embryos (S2A and S2B Fig). Although we found that in
most cases a successful knockdown (measured by qPCR) predicted a loss-of-function pheno-
type, there was a single case in which ASO knockdown achieved up to 90% reduction in the tar-
get mRNA, and yet the injected embryos had few gene-specific phenotypes (oep ASO#1, S2A
Fig). To ensure the knockdown was specific to the ASO that was injected, we assessed the level
of smad5, bmp7a and alk8 RNA in uninjected embryos and those injected with either a smad5,
bmp7a or alk8 ASO. Indeed, only the RNA corresponding to the injected ASO was reduced
(Fig 4C). Together, these results suggest that qPCR can be a useful assay to pre-screen ASOs
for their ability to knock down target mRNAs.

Table 1. Overview of ASO experiments.

Gene name (Mutant
name)

Expression pattern No. of effective ASOs/
designed

Assay of ASO knockdown
efficiency

Reference for published
morphology

PROTEIN-CODING

alk8 (lost-a-fin) maternal + zygotic 2/2 morphology; RT-PCR [38,39]

bmp2b (swirl) zygotic 0/2 morphology; RT-PCR [50–53]

bmp7a (snailhouse) zygotic 2/2 morphology; RT-PCR [34,35,53]

chordin (dino) zygotic 2/2 morphology; RT-PCR [6,36,54]

ctnnb2 (ichabod) maternal 1/2 morphology (ventralization) [55]

cx41.8 (leopard) expressed in late larvae
+ adults

0/3 morphology (spotted pigment
pattern)

[56]

dnd/dead-end germ-cell specific 1/4; 1*/4 morphology (ablation of germ cells
at 24 hpf)

[42,43]

hcrt/hypocretin expressed from 1dpf 0/3 in situ (hcrt expressing cells) [57]

mitfa (nacre) expressed from 1dpf 0/2 morphology; RT-PCR [6,58]

oep/one-eyed pinhead maternal + zygotic 2/5 morphology; RT-PCR [28,59,60]

slc24a5 (golden) expressed from 1dpf 0/3 morphology (loss of pigment) [61]

smad2 maternal + zygotic 2/3 morphology; RT-PCR [62]

smad5 (somitabun) maternal + zygotic 2/2 morphology; RT-PCR [40,53]

ta-T/ntla/no-tail a zygotic 2*/2 morphology; RT-PCR [6,41]

toddler/apela/
ELABELA

zygotic 0/2 morphology (gastrulation + heart
defect)

[63,64]

tll1/tolloid/mini fin zygotic 0/2 morphology; RT-PCR [53,65]

wnt11 (silberblick) zygotic 2*/2 morphology; RT-PCR [53,66]

wnt5b (pipetail) zygotic 0/2 morphology; RT-PCR [53,67]

NON-CODING

MALAT1 highly expressed from 1
dpf

2/3 RT-PCR

miR-126 expressed from 1 dpf;
endothelia

0/2 morphology (blood formation) [68,69]

*partial knockdown effect

For list of all ASO sequences, including information regarding effectiveness, see S1 Text.

doi:10.1371/journal.pone.0139504.t001
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To test whether ASOs could be an efficient knockdown reagent for transcripts required in
only a small subset of cells, we chose to target dnd, a germ plasm component required for germ
cell migration and survival [42]. Loss of dnd functionality leads to loss of germ cells—a pheno-
type that can be monitored by labeling germ cells with eGFP [43]. Injection of 25 pg of dnd
ASO resulted in complete germ cell loss at 24 hpf (Fig 4D and S2A Fig), reproducing the phe-
notype seen with MO-mediated translational inhibition [42,43].

In summary, after targeting 20 genes with 50 individual ASOs (see Table 1), our results reveal
that ASOs can be an effective knockdown reagent for protein-coding and noncoding transcripts.

Discussion
This study reveals that ASOs can be an effective RNA knockdown reagent for zebrafish. Three
observations establish the suitability of ASO use in zebrafish. First, ASOs are specific, because

Fig 4. ASO-mediated RNA knockdown correlates with phenotype. A) The RNA level of the gene corresponding to each ASO was measured (compared
to WT, normalized to ef1a) and correlated to the presence of a phenotype: green = reproduced published phenotype (in case ofMALAT1: no mutant
phenotype), orange = reproduced published phenotype in a smaller percentage of embryos, red = did not produce a phenotype. Injected amount of ASO per
embryo: 50 pg smad2 ASO, 50 pg smad5 ASO, 50 pg alk8 ASO, 50 pg bmp7a ASO, 150 pg chordin ASO, 100 pg ntla ASO, 50 pgwnt11 ASO, 150 pg tolloid
ASO, 100 pgwnt5b ASO, 100 pg nacre ASO, 150 pgMALAT1 ASO. Error bars show standard deviation of the mean of 2 independent experiments (10
embryos each). B) ASO-generated phenotypes for alk8, bmp7a, chordin, smad5 and ctnnb2 (shown are 3 embryos representative of the different severities
of ctnnb2 ASO-induced phenotypes). C) ASOs only target the cognate RNA, and not unrelated RNAs. qPCR-based assessment of ASO specificity to their
cognate target genes (10 embryos each). D) dnd ASOs block germ cell formation. Germ cells were labeled by injection of 80 pg eGFP-nanos3’UTRmRNA.
Coinjection of 25 pg dnd ASO caused complete loss of green germ cells (white arrow).

doi:10.1371/journal.pone.0139504.g004
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(i) we can rescue the phenotype caused by ASO-mediated knockdown of oep with an ASO-
resistant oepmRNA, and (ii) ASOs cause substantial reduction of the target mRNA without
corresponding reductions in unrelated mRNAs. Second, ASOs can target maternal, zygotic,
nuclear and cytoplasmic coding and noncoding RNAs, since we were able to target maternal
oep, smad5 and dnd, zygotic oep, chordin, bmp7a and alk8, and the nuclear noncoding RNA
MALAT1 [44]. Third, unlike MOs, ASO-mediated knockdown can be quantified by qPCR,
which generally allows phenotypes to be correlated with a reduction in expression of the target
RNA.

Although our experiments highlight the power of ASOs to efficiently knock down target
RNAs, there are three limitations associated with ASO use. First, ASOs are toxic to the embryo
when injected above 200 pg, irrespective of the nucleotide sequence. The toxicity is usually
manifested as cell death followed by embryonic lethality. Thus, high levels of ASOs should be
used with caution if the resulting phenotype could be linked to general toxicity in the embryo
[45]. Second, ASOs appear to only be effective in a narrow concentration range. We found
that some ASOs produced no knockdown at moderate levels (e.g. 100 pg) but were toxic and
induced lethality at higher levels (200 pg). Therefore, it is important to inject at least 2–3 differ-
ent concentrations to capture the ideal concentration range and produce efficient target knock-
down. Third, not all ASO designs produced knockdown phenotypes. We designed 2–5 ASOs
for each gene but, with a few exceptions such as oep and dnd, we generally found that either all
or no ASOs were effective for a particular gene. Of the 50 ASOs we designed for 20 genes, we
found that 21 (42%) effectively targeted 11 genes, of which 16 (32%) caused loss-of-function-
like phenotypes and 5 (10%) caused partial knockdown phenotypes (see Table 1). Steric-block-
ing MOs are only effective when targeting sequences around the translational start, limiting
design options. By contrast, ASOs designed against any region of the target RNA can lead to
target degradation. One current limitation of ASO design is the lack of an effective target pre-
diction algorithm. Currently, ASOs are designed using antisense reagent target prediction strat-
egies [46] that have limited predictive power (MAB, personal communication), necessitating
the need to empirically test each ASO for knockdown efficiency. However, as ASO use becomes
more widespread, target prediction tools will likely become available. A good example of such
a development comes from the RNAi field, where machine learning algorithms have been
trained to improve siRNA knockdown rates [47].

Due to these limitations, ASOs—like all knockdown reagents—should be used with caution
and with appropriate controls. ASOs allow fast, cost-effective and preliminary assessment of
gene function, but we do not recommend that ASOs be used to firmly establish the function
of previously uncharacterized genes, unless phenotypes are confirmed with genetic mutants
[48,49]. Where mutant phenotypes are known, ASOs and other knockdown reagents that reca-
pitulate the mutant phenotypes can be valuable, for instance to knock down maternal tran-
scripts or non-coding RNAs, or create clutches of embryos that all have the same or similar
phenotypes. Thus, ASOs are a useful addition to the zebrafish knockdown reagent toolkit.

Materials and Methods

Ethics statement
All vertebrate animal work was performed at the facilities of Harvard University, Faculty of
Arts & Sciences (HU/FAS). The HU/FAS animal care and use program maintains full AAA-
LAC accreditation, is assured with OLAW (A3593-01), and is currently registered with the
USDA. This study was approved by the Harvard University/Faculty of Arts & Sciences Stand-
ing Committee on the Use of Animals in Research & Teaching under Protocol No. 25–08.
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ASO design
ASOs were manually designed to target regions of the RNA predicted by in silicomethods [29]
to have no substantial secondary structure. For ASO DNA domains (central 10 bases of an
ASO) with CpG, 5’Me-dC was used instead of standard deoxy-Cytosines (dCs) to protect the
ASO from potential methylation by TLR9. 2–5 ASOs were designed for each target gene. For
genes with published, successful MO-induced phenotypes, one ASO was designed to target a
region overlapping the MO binding site, with the exception of oep,MALAT andmir-126. For
the majority of genes, further target regions were chosen within the 5’UTR or very close to the
ATG translational start codon. A complete list of cDNA sequences of target genes with anno-
tated MO and ASO sites can be found in the Supporting Information (S1 Text).

Microinjection, RNA purification and qPCR
Zebrafish TLAB strain zygotes were collected and injected through the chorion with 25–200 pg
of an ASO. ASO injections above 200 pg resulted in general toxicity. Co-injection experiments
with p53MO included 2.6 ng of tp53MO (5’-GCGCCATTGCTTTGCAAGAATTG-3’) [30].
Each batch of ASO-injected embryos was assessed individually for knockdown/loss-of-func-
tion phenotypes of the cognate gene by scoring embryonic morphology, performing qPCR,
reporter gene expression (GFP-nanos-3’UTR for dnd ASO) or in situ hybridization of marker
genes (for toddler ASO and hypocretin ASO; data not shown). For morphological assessment,
embryos were raised to 24–30 hpf and imaged. For qPCR-based assessment of knockdown effi-
ciencies, total RNA was isolated from 5–10 embryos of the appropriate developmental stage
using the standard TRIzol (Invitrogen) protocol. Genomic DNA was removed by TURBO-D-
Nase treatment. For reverse transcription (iScript, BioRad), equal amounts of total RNA per
sample were used as input (100–500 pg of total RNA, depending on the experiment). 1 μl of a
20 μl cDNA reaction (equivalent to 0.05–0.25 pg of total RNA) was used as template for quan-
titative real-time PCR (qPCR). qPCR reactions were run on a Stratagene MX3000p using
GoTaq (Promega) and 0.25 μM of gene-specific forward and reverse primers (see primer list
below). qPCR cycling conditions: 10 min 95 at degrees Celsius, followed by 45 cycles of 30 sec
at 95 degrees Celsius, 30 sec at 55 degrees Celsius, and 20 sec at 72 degrees Celsius. qPCR reac-
tions were performed in triplicate and averaged. For each gene, gene expression levels were cal-
culated relative to a reference gene, ef1a. Knockdown efficiencies were calculated as the ratio of
normalized gene expression in ASO-injected versus uninjected (or non-cognate ASO-injected)
sample. Each experiment was performed at least in duplicate, using independent biological
samples.

oep ASO rescue
To generate an oep ASO-resistant oepmRNA rescue construct, 7 nucleotides within the target-
ing site of the most efficient oep-targeting ASO (designated ASO#2 in S1 Text; ASO#2 sequence:
mG�mG�mC�mG�mA�A�C�A�T�G�A�C�A�A�T�mU�mG�mU�mA�mG (� denotes phos-
phorothioate bonds; ‘m’ denotes 2’O-Methyl RNA nucleotides)) were mutated by standard
PCR-based site-directed mutagenesis. In brief, overlapping fragments encoding the 5’ portion
(Forward primer: SP6 ATTTAGGTGACACTATAGA; Reverse primer: cACgATgGTgctcga-
cagtgttctgagggagcccgaccgg (capital letters denote nucleotide changes) and the 3’ portion (For-
ward primer: aacactgtcGAGCacCatCgtGatgttcgctgcttttattttacaccg; Reverse primer: T3
AATTAACCCTCACTAAAGG) of a fusion between oep and RFP (oep signal peptide–RFP-
oepORF) were amplified and fused together by PCR, using standard methods. mRNAs of ASO-
sensitive and ASO-resistant oep-RFP fusion constructs were synthesized using SP6 mMessage
Machine (Ambion) and injected either with or without 100 pg of oep ASO#2. Rescue ability was
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assessed by 1) strength of oepmutant phenotype; and 2) persistence of red fluorescence in the
presence of oepASO#2.

Imaging
Fluorescently labeled embryos (mRNA injection of eGFP-nanos3’UTR [43] or RFP-oep (oep
ASO-sensitive or -resistant constructs)) were imaged on the Zeiss Discovery Scope V12, and
brightfield images were captured using the Leica MZ16F.

qPCR primers
ef1a was used as reference gene (ef1a_F agaaggaagccgctgagatgg, ef1a_R tccgttcttggagataccagcc).
The following primers were used to amplify specific target genes: alk8_F cgttatcattagcaatgatgt
gacg, alk8_R tcttcttttcttctggacttgtgag; bmp2b_F agttttcatcacgaagaggctt, bmp2b_R ttaattctgtg
gaagccactcg; bmp7a_F agctttgcgaatacagtggatc, bmp7a_R ctgacatggaaggtctcgttttc; chordin_F
gttcctctggccggtgttctggt, chordin_R ctcctctggggttcatcttggtgct; MALAT-1_F aaggggatctgcactttt
ctctctcttct, MALAT-1_R cacacaaacacttccaccacacacc; nacre_RT_F ctcaactgtgagaaagagatggac,
nacre_RT_R gttactgatggaaactccagctg; ntl_F aatctggatattcacaactcggtg, ntl_R agttgtccatgtagt
tattggtgg; oep_F gaatgacgagtcaactgttcgggttc, oep_R tcttgcagcaggtacggctttgtt; smad2_F Aagcg
gagcaggaggtggtggag, smad2_R gtccccaaatttcagagcaattgctgg; smad5_F gtagggtgagtttggagagatg,
smad5_R gtagggtgagtttggagagatg; tolloid_F aaatggtccccaggcaatatc, tolloid_R agttatactcct
gacctggctg; wnt11_F gacctcaagtctaaatacctgtcg, wnt11_R gtcttgttacactgcctgtctg; wnt5b_F
cgtcatgcatataggcagcc, wnt5b_R cgaagcggtagccatagttg.

Supporting Information
S1 Fig. Specificity and toxicity of ASO-mediated RNA knockdown in zebrafish embryos. A)
oep ASO-mediated oepmRNA knockdown induces oep-specific phenotypes with high effi-
ciency, while MALAT1 ASO-mediatedMALAT1 lncRNA knockdown does not induce any vis-
ible, gene-specific phenotypes (3 dead (= black) embryos). B) ASOs induce toxicity at higher
concentrations. The concentration at which a specific ASO is toxic for an embryo varies and is
ASO sequence-dependent. In general, injection of> 200 pg of an ASO results in general toxic-
ity. Shown are representative images of ASO-injected healthy (= no phenotype), deformed and
dead embryos during mid-gastrulation (70% epiboly) and at 24 hpf.
(TIF)

S2 Fig. ASO-mediated RNA knockdown is applicable to multiple different transcripts. A)
Summary quantitation of survival and phenotypes of ASO-injected embryos at 24 hpf. Percent-
age plots are derived from multiple independent experiments (at least 2 independent experi-
ments per ASO). Compiled numbers of embryos scored for each ASO are indicated. B)
Representative images of smad2 ASO (left) and ntla ASO (right)-injected embryos at 30 hpf.
ntla ASO caused a gene-specific phenotype only in a subset of embryos (left: overview image
with phenotypic and non-phenotypic embryos; right: higher magnification view of phenotypic
embryos).
(TIF)

S1 Text. Annotated target sequences. Shown are the cDNA sequences of target genes (transla-
tional start codon (ATG) in capital letters) and ASO (turquoise and green (most efficient) high-
lights) and MO (blue) targeting sites.
(DOCX)
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