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Abstract

An important barrier to the use of profile-based optimization is the generation of high-quality profile

data. In this paper we describe our experience with a prototype system for continuous and automatic

generation of profile data. Our system collects profile data continuously for all computation on a

system by sampling the program counter once per hardware clock interrupt. We have found that the

overhead of our prototype monitor is negligible, making it practical to collect profile information

continuously for all activity on the system. We used several qualitative and quantitative methods to

explore how the quality of these sampled profiles improves over time, and demonstrate that profiles of

adequate quality for optimization can be obtained after a small number of monitored runs. For a

selection of instruction-cache intensive benchmarks, statistical monitoring provides profiles of a quality

comparable to that of complete profiles obtained with program instrumentation while avoiding the

large run-time overheads of instrumentation-based profile collection. Our monitor is a component of

the Morph System, which will make feedback-based and architecture-specific optimizations automatic

and transparent to the user.

1. Introduction

Although potential performance improvements from profile-based optimizations (PBOs) are well

documented [Chang et al. 1991, Chen et al. 1994, Fisher et al. 1984, McFarling and Hennessy 1986,

McFarling 1989, Pettis and Hansen 1990, Santhanam and Odnert 1990, Wall 1986], the use of these

optimizations has been limited. The key problem with PBOs is the difficulty in obtaining and applying

high-quality profile data. In current systems, the creation of an optimized executable is typically a

multi-step process, requiring a programmer to:

1)  create a representative set of test inputs;
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2)  create an instrumented version of the application executable;

3)  run the instrumented executable on the test inputs to generate profile data;

4)  process the profile data for use by a profile-driven, optimizing compiler;

5)  create a new executable by applying the profile data during (re)compilation;

6)  test/evaluate performance of the new executable.

From these steps, it is clear that the use of PBOs requires knowledge of the intended use of the

application and a substantial background in compilers and performance evaluation. Typically, end-

users of an application do not have the technical sophistication required to perform these tasks (tasks

2, 4, and 5 in particular), and thus end-users often do not apply PBOs. Furthermore, most profile-

driven optimization systems require access to the source code or at least more information than is

found in the stripped executables sold to end-users. Because of the difficulties in applying PBOs, these

techniques are generally available only to sophisticated users, and even among these users, PBOs are

frequently not used due to complex manual process required to apply them. We are developing the

Morph Environment to address all of these problems. In this paper we discuss and evaluate one

component of this larger system, the Morph Continuous Monitoring System (MCMS), that solves the

problems in the first three steps in of PBO.

Continuous profiling of all applications as they are used eliminates the need to generate

representative training input. To make the continuous collection of profile information practical, the

overhead of profile collection in MCMS is kept low, on the order of 0.1% of the application’s

execution time. We achieve this low overhead by periodically collecting profile samples, rather than

instrumenting the executables to collect complete profile information. The overhead of instrumentation

is in the range of 10% to 400% [Ball and Larus 1994], several orders of magnitude greater than the

overhead of the MCMS. Given such low sampling overhead, we can collect profile information

continuously for all computations, rather than requiring special instrumented runs. With sampling

however we do not obtain a complete profile of a program execution as we do with instrumentation.

As our results show, even a single sampled run of an application often provides enough profile

information to apply an optimization. Our results also show that MCMS is able to collect profiles of a

quality comparable to a complete profile over a small number of application runs.

In the next section we discuss several characteristics of statistical profiles and their implications

for MCMS. Section 3 describes the high-level design of MCMS and gives details on our prototype
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implementation. In Section 4, we give experimental results for statistical profiles. We present both

visual and quantitative results to support our claims of low overhead and high quality for statistical

profiles. We discuss related work in Section 5, and Section 6 concludes.

2. Characteristics of Statistical Profiles

In current practice, the profiles used for PBOs are typically generated using an instrumentation system

[Smith 1991, Wall and Powell 1987, Wall 1992, Srivastava and Eustace 1994]. Instrumentation code

is added to the original executable so that it can produce a record of the program activity when the

program is executed. The key property of this type of profile generation is that it can capture a

complete profile including all application activity for a given input data set. A PBO system uses this

complete profile to direct its optimization efforts. The downside of this approach however is the

significant performance penalty experienced during profile collection. In contrast, the MCMS does not

use instrumentation, and thus is able to collect profile information without a noticeable degradation in

application performance.

MCMS produces a statistical rather than a complete profile. During a single program run, the

MCMS samples a small (but hopefully representative) fraction of the activity of an application. In

contrast, a complete profile provides a complete record of all program events. We refer to the profile

information produced by sampling a single program execution as a sample set. A single sample set

may not include enough information to achieve the full potential benefit of a given PBO. This makes it

desirable to collect and combine multiple sample sets into a single profile. The goal of this process is

to create an aggregate statistical profile that is representative of the program behavior described by a

complete profile.

We aggregate sample sets by a simple combining process. The contribution of a sample set to

the overall profile is in proportion to the ratio of program run time for that sample set to total time for

all sample sets. For the code-layout optimization discussed later in the paper, we sum the execution

counts from each program execution for each basic block to create an aggregate basic block execution

profile. Combining sample sets in this way models the actual usage of the application, as each run of

the application is represented in the cumulative profile in proportion to the amount of execution time it

required.



4

The issue of combining profile data is not unique to our periodic sampling methodology. It is

also desirable to combine information from multiple complete profiles in support of a PBO. Complete

profiles are typically collected from a limited number of scripted training inputs sets, in contrast to the

continuous profiling of a user’s day-to-day activity as occurs with MCMS. Several methods have been

proposed and evaluated for aggregating the profile information from the multiple scripted test inputs.

For example, Fisher and Freudenberger [1992] evaluate three techniques for combining multiple

branch profiles: unscaled, scaled, and polling. They found little difference between the scaled and

unscaled results. The MCMS implements unscaled combining for the reasons discussed above. The

continuous nature of MCMS enables us to build a PBO system that tracks changes in application

usage patterns, accommodates idiosyncratic usage, and optimizes for behavior not covered by test

input scripts.

The continuous generation of profiling data also suggests the issue of how to age profile data

as it is collected over an extended period of time. There are a number of simple approaches. We leave

this as an open area for future work.

Our profiles tend to give more weight to basic blocks with higher latency and higher average

CPI, as they have a higher relative probability of being sampled; we call this a time-based profile. In

contrast, profiles generated by instrumented program execution give equal weight to all instructions,

regardless of their relative latency, a frequency-based profile. Because of this difference, time-based

profiles and frequency-based profiles will not have an identical shape. We could attempt to adjust the

time-base in statistical profile collection so that the results would be more similar to that of a complete

profile. However, our experience to date suggests that time-based profiles may be more effective for

profile-based optimizations (see Section 4.3). Readers should also note that several modern processors

(including Digital’s Alpha [Digital 1996] and the Intel Pentium [Intel 1995] and Pentium Pro

processors [Intel 1996]) provide hardware support for collecting statistical frequency-based profiles in

the form of an interrupt driven by a countdown event counter. This could be done by sampling the PC

every period of n instructions, rather than sampling on a time interval as with our current profiler.

3. System Design

For this paper, we implemented a simple prototype monitoring system that samples the program

counter on each clock interrupt. The simplicity of the logging operation and the relatively low
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frequency of clock interrupts provide sampling overhead low enough that profile data can be collected

continuously with no significant performance penalty. For reference, Table 1 lists clock interrupt rates

for several popular systems. For our experiments we used an AlphaStation 400-4/233 from Digital

Equipment Corporation. This system contains a 2MB second level cache and 192 MB of main

memory. Our system ran Digital Unix (version 4.0) and had a clock interrupt rate of 1000Hz.

System clock interrupt rate
Windows 3.11 50 Hz
NetBSD Unix 100 Hz
Windows NT 100 Hz
Digital Unix 1000 Hz

Table 1: Clock interrupt rates for several common systems.

Because we sample the program counter using standard hardware support for interrupt handling, we

can collect profile information while avoiding the overhead of software instrumentation.

3.1. Prototype Implementation

In this section we describe our prototype implementation of MCMS. We have made a number of

simplifications for this first implementation. They are justified in that the focus of this study is on

understanding how to handle the samples after they have been collected, rather than providing a

definitive implementation of the sample collection system. We accompany our description of the

prototype with an analysis of the overhead that could be expected from a production implementation

of the MCMS. For this analysis, we have (somewhat arbitrarily) chosen 0.1% as an upper bound on

acceptable overhead for continuous monitoring. At this level, the overhead of monitoring will be

undetectable for most users, and at least an order of magnitude smaller than the benefit anticipated

from PBOs.

We used the Atom tool-building system [Srivastava and Eustace 1994] to implement our

prototype monitor. Atom provides a convenient way to implement our monitor as a kernel extension

without the need to configure a new kernel or modify the kernel source code. We used Atom to

instrument a single kernel routine, hardclock(). The pseudo-code for our instrumentation routine

is:

 if (the interrupted computation was in user mode)

 if (the interrupted process is the measurement subject)
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save the program counter sample to the log

To keep our prototype kernel implementation simple, we sample PC values from only a single target

application, rather than sampling PC values from the operating system kernel and all active

applications. In our continued work we are developing a monitor which samples all execution

contexts, and maintains information for mapping sampled addresses back to the corresponding

instructions in executable images.

Clock interrupts on our test machine occur at 1000Hz, or 1 millisecond per clock interrupt.

Given an overhead goal of 0.1%, the maximum overhead during the clock interrupt routine for saving

a PC sample is 1 us, which corresponds to 200 machine cycles on our test machine. Achieving this

goal is straightforward with conventional coding techniques. For lower clock interrupt rates, the

logging operation could be slower and the 0.1% overhead performance goal would be easy to achieve.

Another simplification made for this prototype is that our sample buffer is large enough so that

it will not become full during an application run. A more realistic implementation would use a smaller

buffer and empty it periodically. At 1000 Hz and 4 bytes per PC sample1, we generate samples at a

maximum rate of approximately 4K bytes per second. At this rate, a 32K byte buffer would allow

monitoring for 8 seconds of CPU time before the sample buffer became full. The overhead for saving

the sample buffer to stable storage must be under 8 milliseconds in order to meet the 0.1% overhead

goal. This is enough time to perform a synchronous write for a modern hard disk [Seagate 1994]. An

design alternative would be to use an asynchronous write; in this case the overhead for the write

would be substantially less than 8 milliseconds.

Our analysis shows that it would be straightforward to achieve less than 0.1% overhead in a

production version of the MCMS. The feasibility of MCMS does rely on the availability of additional

disk space for storing profiles, memory for buffering the samples, and sufficient machine idle time to

process samples off-line. In our continued work we are evaluating these issues with a complete

MCMS prototype.

                                               
1 A PC value on the Alpha is 64 bits, but the address space is sparse. This should make it possible to uniquely identify a PC value
with a 32 bit trace entry as well as additional context information stored in the trace.
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3.2 Processing Samples

Further sample processing is performed off-line by a low priority process. A number of data

transformations are required to convert sample sets into a code layout. Figure 1 illustrates how the

tools are composed to transform multiple sample sets into an optimized code layout. Table 2 lists the

tools we implemented to process samples, as well as additional tools we used from Digital Unix. Our

tools use the file format defined by the Digital Unix implementations of pixie and cord, enabling us to

use Digital’s implementation of those tools.

procedure layout

__start
main
printf
...

basic block profilemultiple PC samples

MCMS

call graphnew executable

executable

samp2bb

ph_layout

cord

Figure 1: Generate a new executable from profile samples.

Tool  description

samp2bb convert PC sample sets into a basic block profile in pixie format.
ph_layout process a basic block profile in pixie format to generate a

procedure ordering. Uses an algorithm based on the on proposed
by Pettis and Hansen [1990].

cord (from Digital) apply a procedure ordering to an executable to generate an
optimized executable.

Pixie (from Digital) generate a complete basic block profile.
Table 2: Profile generation and code layout tools.

When MCMS has monitored a running program and generated some PC samples, the next step

in Figure 1 requires converting a PC sample set to a basic block profile. This is implemented in the

tool samp2bb using the following simple algorithm:
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for (each pc sample)

identify the basic block containing the sampled PC

increment the profile count for the basic block, scaling by 1/( basic block size)

To understand the need for scaling of PC samples, consider two basic blocks, one containing three

instructions and one containing six instructions, and both of which are executed the same number of

times in a given application run. Figure 2 illustrates this example. As a simplification we assume that

each PC value in the two basic blocks is equally likely be sampled. A single PC sample is a witness for

the entire basic block containing it. However, if we increment the basic block counter by one for each

sample, the resulting profile would incorrectly suggest that block B was executed twice as often as

block A. By scaling the increment of the basic block counter by the inverse of the basic block size in

instructions, we get a better approximation of the complete profile.

Statistical profile
Program code complete

profile
sample

set
without
scaling

with
scaling

Loop:
  . . .
block_A: 3 1
 add a0, r2, r3 1000 0
 ld a1, 8(sp) 1000 2
 blt zero, a0, block_C 1000 1
block_B: 6 1
 sra a0, 0x38, a0 1000 0
 ldq_u zero, 8(sp) 1000 3
 bis a0, a0, v0 1000 0
 subl v0, 0x41, t3 1000 2
 cmpult t3, 0x2b, t4 1000 0
 add t3, t2, t1 1000 1
block_C:
 . . .
 jmp Loop

 Figure 2: Sample scaling for two basic blocks.

After the transformation from PC samples to basic block profile, we combine the individual

profiles from each run to generate a single basic block profile. The following algorithm is used to

convert the basic block profile to a weighted call graph (WCG):

for (each basic block)
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for (each call instruction)

increment the edge <callee, caller> in the WCG

Currently, monitoring system does not maintain edges for call instructions that can have

multiple targets, as can commonly occur when a procedure pointer is used. For our experimental

benchmarks, this limitation excludes from 0.9% to 12% of the call instructions from the profiles used

for optimization. Including all edges would improve the performance of code layout, and we are

currently building a new monitor which will allow us to maintain weights for all call graph edges.

The resulting WCG can be used directly by our code layout tool. We compute an optimized

procedure layout using ph_layout, an implementation of the Pettis and Hansen procedure layout

algorithm [1990]. In this algorithm, code layout is determined by selecting edges from a weighted call

graph (WCG) based on a greedy algorithm. The algorithm starts by selecting the edge with the highest

edge weight and placing the caller and callee procedures adjacent in the resulting layout. The nodes in

the graph corresponding to the two procedures are then merged. The algorithm continues recursively

until all edges have been removed from the graph.

3.3 Workloads

We used a selection of workloads from the Spec95 integer suite to evaluate our profiles. In selecting

these workloads, we avoided workloads (such as ijpeg and compress) that have small instruction-

cache working sets as they do not benefit from code layout optimization. We also included

ghostscript, a popular public-domain PostScript interpreter. Details for these workloads are given in

Table 3.

Benchmark Description Text section
size (KB)

Execution
time (sec)

ghostscript Postscript document viewer  1,898 68
gcc The GNU C compiler 1,414 106
go An oriental board game 326 362
li LISP language interpreter 152 745
m88ksim Simulation of the Motorola 88000 processor 207 814
perl The perl scripting language 446 619

Table 3: Experimental Benchmarks. Execution times are for training inputs.
All benchmarks were statically linked.
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In our experiment we used different inputs for training and testing. For the SPEC95

benchmarks, we used inputs provided with the SPEC95 suite2. For ghostscript we trained using the

Postscript source for a Ph.D. thesis, and tested using documentation from a public-domain compiler

system.

4. Experimental Results

In this section, we will present experimental results to support three conclusions.

• The overhead of MCMS profiling is very low. (Section 4.1)

• Statistical sampling produces high quality profiles. (Section 4.2)

• Statistical profiles are effective for driving a procedure layout optimization. (Section 4.3)

From the above points we will argue that statistical profiles provide a sound foundation for

implementing profile-based optimization.

4.1 Overhead of Profiling

The majority of the runtime overhead from MCMS is due to the PC sampling that occurs with each

clock interrupt. For this operation, our prototype Atom implementation has higher overhead than

would occur with a production implementation, due to the additional operations required to save and

restore processor state before and after the invocation of an Atom instrumentation routine3.

Benchmark Without profiling With profiling Overhead
ghostscript 66.9 67.7 1.2%
gcc 109.5 106.2 -3.0%
go 362.5 362.0 -0.1%
li 743.5 744.6 0.1%
m88ksim 812.7 814.1 0.2%
perl 625.2 619.4 -0.9%

Table 4: Execution times (in seconds) with and without MCMS. All figures are
the average of eight runs in single-user mode with cold cache. Standard
deviation is less than 1% for all measurements.

We evaluated the overhead of sample collection for our prototype monitor by comparing

execution time for our experimental workloads for two versions of the operating system kernel: the

                                               
2 We used the SPEC95 reference inputs for training. We found that the training inputs provided with the SPEC95 suite were too short
for training effectively.
3 In particular, Atom saves and restores the thirty-one Alpha integer registers, a total of 248 bytes.
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standard kernel and our Atom-based MCMS prototype. The results (Table 4) show the variation in

execution time caused by side-effects of updating the kernel4 make it difficult to identify the

performance impact of monitoring. The change in execution time for the monitor kernel varied from

1.2% to -3.0%, with an average of -0.4%. Although this provides substantial evidence that the impact

of monitoring is negligible, it does not provide conclusive evidence. We are preparing a set of

experiments which will allow us to make a more definitive conclusion.

4.2 Statistical Profile Quality

To gain insight into the differences between profiles from different sources and how the quality of

profile data changes as samples accumulate, this section presents three tests to evaluate the quality of

the statistical profiles. In each of these tests, we compare our statistical profiles to a complete profile

obtained by program instrumentation. Overall, we find that there is substantial similarity between the

complete and statistical profiles, with the dissimilarity as would be expected in a comparison of

frequency-based and time-based profiles. We now explore the similarities and differences in greater

detail.

4.2.1 Visual Comparison

Figure 3 provides a visual comparison of three profiles for the go benchmark from the Spec95 suite: a

complete frequency-based profile, a statistical time-based profile based on a single sampled run, and a

statistical time-based profile from 32 sampled runs. Figure 3 demonstrates that even a single sample

set provides a substantial amount of useful profile information, and that there is substantial similarity

between the complete profile and the statistical profiles. However, it is not obvious from this example

that the statistical profile will ever converge to have the same ‘shape’ as the complete profile. Detailed

examination shows that in many cases the visible differences between the profiles can be attributed to

the differences in time-based and frequency-based profiling.

                                               
4 Such side-effects normally occur any time an executable module changes.
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complete profile
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1 sample run
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Figure 3: Complete and statistical profiles for the benchmark go. In each graph,
the x-axis is the basic block index in the text section, and the y-axis is the dynamic
execution count. This graph shows counts for the first 4000 basic blocks.

4.2.2 χ2 Goodness-of-Fit Test

The χ2 goodness-of-fit test is commonly used in statistical analysis to evaluate the similarity of two

probability distributions [Lindgren 1976]. It compares observed occurrences of an event to a

distribution of expected event frequencies. For a perfect match, the χ2 test will give a result of zero.

The larger the test result, the less we believe that the observed experiments follow the expected

distribution. We used the χ2 test to evaluate the similarity of statistical and complete profiles,

computing the expected distribution from the basic block counts for the complete profile. Table 5

shows the results of the tests. Some pre-processing of profiles is required before the χ2 test can be

applied. The data sets are normalized so that they all appear to include the same number of ‘trials’ or

profile samples.

For reference we provide test results from two artificial comparisons, good match and

expected. The good-match is computed by scaling each profile sample in the complete profile by a real

random variable over the interval [1..10), using a uniform distribution. Good match is representative of

the difference that would normally be expected between a frequency-based profile and a time-based

profile, where the probability that a basic block is sampled varies with the CPI for that basic block.
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The “expected” case is computed by doing similar scaling as for good match, and by zeroing basic

block counts that are less than 2% of the greatest count for any basic block. This is meant to represent

a situation where, due to statistical profile collection, some number of basic blocks have not been

sampled.

 ghostscript gcc go li m88ksim perl

1 sample set 171344 140258 209313 352007 1119542 864738

2 sample sets 156339 127628 202976 361188 1122120 880994

4 sample sets 150473 121702 198392 359812 1124894 879797

8 sample sets 146519 118460 195273 357764 1110807 885162

16 sample sets 144895 116652 193291 357891 1111377 888644

32 sample sets 144226 114937 191692 356625 1108415 885387

“expected” 66753 130874 399505 454062 3272443 216883

good match 15802 22563 90597 165830 176846 130612

Table 5: χ2 test for statistical profiles. This table shows results from using the
χ2  goodness-of-fit test to compare complete profiles and various statistical and
reference profiles.

The tests show that the similarity of the statistical profile to the complete profile generally

increases with larger numbers of sample sets. It also shows that the similarity of the sampled profiles

to the complete instruction counts is consistent with our expectations, as indicated by the good-match

and “expected” tests. Four of the benchmarks give test results within the bounds indicated by the

“expected” test. The two exceptions are ghostscript and  perl. In the case of perl, a single 1-

instruction basic block5 is responsible for a large part of the difference between complete and sampled

profiles. This basic block is the target of seven distinct C goto statements and was sampled with a

relative frequency that is 5 times higher than its frequency in the complete profile, possibly the result

of branch prediction or instruction cache penalties. In Section 4.3 we will see that the perl statistical

profile can be used effectively for optimization, despite the differences between the complete and

statistical profiles.

                                               
5 The basic block is in the routine cmd_exec(), at the label tail_recursion_entry .
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4.2.3 Key Matching

In an earlier paper by Wall [1990], key matching was used to compare complete profiles to estimated

profiles from a static program analysis. In key matching, the basic blocks in a program are ordered

according to their counts in the profile. Two orderings are then compared by computing a function

f(n), called the score, which is the number of basic blocks that are in the top n entries in both profiles.

If the basic block orderings are the same for both profiles, then f(n) = n for all values of n. When  f(n)

is less than n, it indicates dissimilarity of the profiles. Figure 4 shows the key matching results for

statistical profiles based on 32 sampled runs of our test workloads. Note that most of the benchmarks

have key-matching results close to f(n) = n. The key matching test suggests that there is substantial

similarity between the complete frequency-based profiles and the statistical time-based profiles.

0

200

400

600

800

1000

0 200 400 600 800 1000
n

f(n)

ghostscript

gcc

f(n)=n

go
m88ksim
li
perl

Figure 4: Key matching results.

4.3 Optimization with Statistical Profiles

As an end-to-end evaluation of the quality of our statistical profiles, we used the profiles to drive a

code-layout optimization. We measured the effectiveness of the optimization by using an instruction-

cache simulation and by measuring the execution time of optimized executables. We compared the

execution time of each workload using four different procedure orderings: the original (default)
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procedure order, an optimized procedure order derived from a complete frequency-based profile, and

optimized orderings from statistical time-based profiles using one and 32 sample sets. For the

optimization using a single sample set, there was significant variation in the effectiveness of

optimization depending on which sample set was chosen. Rather than trying to identify a single

representative run, we generated 32 optimized programs using each of the sample sets and tested each

of them. We report maximum, minimum, and average behavior for these 32 separate experiments. All

experiments used different inputs for training and testing.

Table 6 gives the cache simulation results. The improvement in miss rate achieved with

statistical time-based profiles for 32 sampled runs is comparable to that of the complete profile; this is

evidence of the effectiveness of optimization with statistical profiles. The statistical time-based profiles

give superior performance to complete frequency-based profiles in four of six cases.

no 1 sample set 32 sample complete
Benchmark optimizations maximum average minimum sets profile

ghostscript 1.367% 1.981% 1.277% 0.912% 1.361% 1.081%
gcc 1.907% 2.201% 1.820% 1.557% 1.689% 1.757%
go 1.529% 0.712% 0.649% 0.570% 0.636% 0.702%
li 0.039% 0.100% 0.033% 0.000% 0.013% 0.167%
m88ksim 3.578% 0.055% 0.028% 0.004% 0.013% 0.050%
perl 1.061% 1.224% 0.641% 0.327% 0.680% 0.619%

Table 6: Simulated instruction cache miss rates. These results are for a 32KB
direct-mapped cache with block size of 32 Bytes.

The results for a single sampled run demonstrate two points. First, for six of six benchmarks

the average miss rates for a single sample set6 is lower than the miss rate of the original program. This

suggests that profile information from even a single sampled run is better than no information in the

case of procedure-layout. A more interesting phenomenon is the wide range of miss rates across the

32 sample sets. Although the worst performance for one sampled run is often worse than the original

program, in six of six cases at least one of the procedure layouts derived from a single sampled run

provides the best performance of all measured cases. For three benchmarks the average is lower than

the miss rate based on the complete profile. This suggests that time-based profiles can be more

effective for optimization than complete profiles. Further evidence towards this conclusion is given in

the next section.
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In the case of li, the cache miss rate actually increases for the code layout derived from the

complete profile. Investigation showed that this anomaly is due to situations where one procedure

makes frequent calls to one or a number of other procedures, but the edges are omitted from the call

graph due to a call through a procedure pointer. These missing edges can lead to poor choices for

procedure layout. We are planning modifications to our monitor to address this problem by gathering

information for calls through procedure pointers.

no 1 sample set 32 sample complete
Benchmark optimizations maximum average minimum sets profile

ghostscript 86.2 93.3 81.1 75.0 78.6 77.7
gcc 28.2 31.3 29.2 28.1 29.8 28.9
go 364.4 385.7 361.9 344.9 344.6 358.9
li 65.7 64.1 63.3 62.7 63.2 63.8
m88ksim 338.1 314.4 266.6 241.2 255.4 261.1
perl 77.4 79.2 75.5 71.9 72.6 76.3

Table 7: Optimization results: execution time in seconds. These experiments
were run in single-user mode with cold cache. All results are the average of
five trials. In all cases standard deviation is less than 1%.

Table 7 gives optimization results in terms of execution time. The results for these experiments

are similar to those for the simulation: statistical profiles yield comparable performance improvements

to complete profiles, and in four of six cases the statistical profile using 32 sample sets provides a

bigger performance improvement than the complete profile. For one benchmark, gcc, optimization

with statistical profiles has a small negative impact on performance. Note that for this case,

optimization with the complete profile also failed to give a performance improvement. A possible

explanations to this failure is the heuristic nature of the code layout optimizations.

5. Related Work

Statistical profilers have long been a popular tool for performance tuning.  The BSD UNIX gprof

utility generates statistical execution profiles with the effect of called routines incorporated into the

profile of each caller [Graham et al. 1982, Graham et al. 1983]. It uses compiler support to maintain

call-graph information and statistical PC sampling to derive timing information. GProf uses the profil

system call to collect profile samples. Arguments to profil specify how to divide the text segment of

                                                                                                                                                             
6 Computed by optimizing and running the given benchmark thirty-two times, each with a different sample set from a single sampled
run.
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the program into equal-sized PC ranges, with each entry in the array of shorts representing one PC

range.

There are a number of problems with the profil interface when applied in current systems for

continuous monitoring.  As a single array must represent the entire range of PC values, profil does not

immediately accommodate shared libraries.  Because the profil interface collects information for fixed

size PC ranges, it is less precise than the per-basic-block information that can be derived from our PC

sample log. Use of profil requires that a tradeoff be made between profile resolution and buffer size.

For a fixed resolution, the amount of memory required increases linearly with the text segment size.

This makes it difficult to handle large text segments.  The use of two-byte counters introduces the

potential for overflow.  At a sampling frequency of 1000Hz it takes a little over a minute of iterating

on a single basic block to overflow a two-byte counter.  Lastly, the memory locality of applying

updates to a large array of counters could potentially be worse than recording PC samples to a log.

Wall [1990] explored the use of estimated profiles using static analysis only as an alternative to

run-time profile collection. If the estimated profiles were of sufficient quality, then it might be possible

to use estimated profiles in place of complete profiles to achieve many of the same goals as our low-

overhead profile collection. Wall found that estimated profiles were not of sufficient quality to replace

run-time profile collection.

In a related study, Ball and Larus [1993] examined heuristics branch prediction using static

analysis. They found that it did an adequate job of predicting branch direction for a large and diverse

collection of C and Fortran programs. It is not clear if their techniques could be applied to

optimizations such as procedure layout. We are currently exploring this question.

Many instrumentation tools have been used to generate complete profiles for PBOs [Smith

1991,  Srivastava and Eustace 1994, Wall 1992, Wall and Powell 1987]. Ball and Larus [1994] discuss

efficient techniques for collecting complete profile data. A good review of instrumentation tools is

given by Pierce et al. [1995]. Even with efficient techniques, the overhead of these tools is orders of

magnitude greater than that of  MCMS.

Conte et al. [1996] described an approach in which the operating system periodically samples

the state of branch prediction hardware. They use the resulting profiles to drive a superblock

scheduling optimization. Their work differs from ours in several important ways. It has higher run-time

overhead, from 0.4 to 4.6%. It requires modifications to existing programs to facilitate interpretation
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of the data from branch hardware. Lastly, their approach requires hardware modifications to enable the

system to read branch prediction state.

Aside from performance debugging and PBO, we are aware of several projects where

statistical profiles have been used to run cache simulations and other architectural studies [Menezes

1995].

6. Conclusions

Our experience with statistical profiles demonstrates that it is possible to collect profiles of comparable

quality to complete profiles with negligible runtime overhead. Our profile system requires no

modifications to the executable. Given these two characteristics, it becomes practical to collect

profiles continuously for all activity in a computer system. Continuous monitoring  holds the promise

to significantly improve the quality and availability of training data for PBOs. The Morph Continuous

Monitoring System is a key technology for automating the application of PBOs, which will allow the

co-evolution of software with hardware.
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