
Feedback-Directed Query Optimization

Citation
Hazelwood, Kim. 2003. Feedback-Directed Query Optimization. Harvard Computer Science Group
Technical Report TR-03-03.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23526055

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23526055
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Feedback-Directed%20Query%20Optimization&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Feedback-Directed Query Optimization

Kim Hazelwood

TR-03-03

2003

Computer Science Group
Harvard University

Cambridge, Massachusetts

Feedback-Directed Query Optimization

Kim Hazelwood
Division of Engineering and Applied Sciences

Harvard University
hazelwood@eecs.harvard.edu

Abstract

Current database systems employ static heuristics
for estimating the access time of a particular query.
These heuristics are based on several parameters,
such as relation size and number of tuples. Yet these
parameters are only updated intermittently, and the
heuristics themselves are hand-tuned. As trends in
database systems aim toward self-tuning systems,
we can apply the experience of the feedback-directed
compiler world to provide robust, self-tuning query
optimizers. This paper presents the design and eval-
uation of a feedback-directed query optimization in-
frastructure. Using trace-driven simulation, we con-
clude that dynamic feedback can be quite effective
at improving the accuracy of a query optimizer, and
adapting to predictable query overhead.

1 Introduction

The basic functionality of a database system in-
cludes support for data storage and retrieval. While
a user is unambiguous about the data requested
from the database, there are several alternatives
available when it comes to retrieving the data in-
ternally. For instance, in complex queries, there is
a certain amount of latitude when deciding the ex-
ecution order of each of the sub-queries. In modern
database systems, it is the role of the query opti-
mizer to determine the best strategy for carrying
out a query. Alternative strategies are evaluated
and compared based on their expected cost [6], and
the query plan with the lowest cost is executed.

Current query optimization systems use static
heuristics for estimating the cost of various equiv-
alent plans for evaluating queries. These heuristics
calculate the average-case overhead of query evalua-
tion. The expected cost is calculated using statistics
about the database and the query being performed,
to the extent that the statistics are known. Yet, in
many cases, these average-case estimations may not

be representative of the actual cost of performing
the query. There are several reasons for this.

First, average cost may not be indicative of the
cost of a particular query instance. For example, a
binary search is expected to find a particular value
in log n time, however a particular value may be
found in as little as time=1. And while on average,
a binary search will find a value faster than a linear
scan, we can certainly envision the case where the
value is located in the first slot of an array, thus it is
better to use a linear scan. In fact, only rarely is an
average case estimate equal the the actual result.

Second, query cost heuristics may miss a key bot-
tleneck in the system, such as network and processor
contention, or a system administrator may underes-
timate the cost of one or more bottleneck.

Third, many of the heuristics are based on dy-
namic database attributes, such as size and fanout,
and although these values may change frequently,
the values used in the heuristics are only updated
during query downtime, if at all.

Finally, there are no sanity checks incorporated
into the query estimation system to detect bad esti-
mations. A feedback-directed system can not only
recognize bad query cost estimates, but it can pro-
vide compensation factors to correct the estimates.

Dynamic feedback-directed query optimization
attempts to bridge the gap between estimated and
actual query times. By maintaining a list of actual
query times acquired during execution, we can make
more informed decisions on which query optimiza-
tion to choose at a particular instance in time. Ac-
tual query times may be incorporated into a query
optimizer in several ways. First, we can use the
information as a tie-breaker for multiple query op-
timizations that appear to achieve similar benefits.
Second, we can use actual times to invalidate query
estimations that appear to be non-representative for
a given execution. Third, we can even envision a
system that always chooses past query performance
as the estimator of future query performance, and

1

only resorts to the former method of estimation
when there is no dynamic information available for
a query.

In this paper, we explore a system that uti-
lizes feedback from previous queries to guide future
query optimization decisions. The internal design is
based on similar research performed in the feedback-
directed compilation world. The contributions of
this paper are as follows:

• We present the design architecture of a
feedback-directed query processing system.

• We describe some of the design choices of build-
ing a feedback-directed query processor.

• We present a query execution simulator for ex-
ploring the problem domain.

• We discuss the results achieved by simulation.

The remainder of the paper is organized as fol-
lows. Section 2 introduces query optimization, de-
scribes the existing query processor architecture,
and provides the motivation for our work. Section 3
then describes the system extensions required for
introducing feedback-directed cost profiling into a
query processor, and the issues and design consid-
erations we encountered. Section 4 introduces our
query engine simulator and trace generator. Sec-
tion 5 presents and discusses our results. Section 6
discusses related research, Section 7 concludes, and
finally Section 8 discusses areas of future work.

2 Query Processing

A query processor has the responsibility of per-
forming two main tasks–query optimization and
query execution. Often, there are several alternative
strategies for query execution, all of which produce
the same result. Query optimization is the process
of choosing the best strategy from the available op-
tions. Figure 1 shows a sample input query. As
we can see, there are two alternative methods for
performing the query, option A and option B. By
estimating the cost of each of the two options, the
query optimizer will decide which strategy should
be performed.

Figure 2 shows a typical query processing engine.
After a query has been submitted, parsing and anal-
ysis is performed in order to generate a set of equiv-
alent plans for performing the data access. Each
plan is sent through a cost estimator, where cost
calculations are performed using knowledge about

select balance
from account

where balance < 2500

option A: σbalance<2500(Πbalance(account))
option B: Πbalance(σbalance<2500(account))

Figure 1: Sample Query

the database and the query being performed. Fi-
nally, the plan with the minimum cost is executed.

Currently, the state-of-the-art in database query
optimization involves the use of static heuristics for
estimating query cost. These costs are used to guide
decisions between equivalent options for performing
a query. Query cost can be defined to describe sev-
eral attributes of query overhead. Typically, cost is
defined as one of the following:

• disk accesses

• cpu cycles

• network communication

• wall-clock response time

The costs are estimated using both a catalog of pro-
file information about the database, and a set of
weights for each profiled parameter [6]. In some
systems, the database profile information is auto-
matically gathered during query execution, and the
catalog is updated periodically during query down-
time. In other systems, it is the responsibility of
the database administrator to update the catalog.
For all systems, the set of weights for each profiled
parameter is manually defined and tuned by a local
database administrator.

The current procedure of manual parameter def-
inition by a local administrator is problematic be-
cause (a) no sanity checks are currently in place to
recognize or correct for bad decisions, and (b) in
the case of a distributed database, a local admin-
istrator knows little about the attributes and costs
associated with a remote database.

Trends in database systems are moving away from
static heuristics, and toward adaptive, self-tuning
systems. In Section 3, we describe simple extensions
to the static query processor that will open the doors
for automated query optimization.

3 Dynamic Feedback

In Figure 2, we depicted the static query process-
ing engine that has been extensively described in

2

Query
Equivalent

Query
Generator

Cost
Estimator

Execution
Plan

MIN

Figure 2: Static Query Processing Engine

Query
Equivalent

Query
Generator

Cost
Estimator

Execution
Plan

Profile
Data

DB Result

Figure 3: Query Optimization with Dynamic Feedback

literature. Over the years, a great deal of research
has focused on the cost estimation portion of the
query processor. Yet, however fine tuned the cost
estimates may become, they are still just estimates.
In fact, they are estimates of the average case, and
their accuracy is highly dependent on the accuracy
of the profile data and the heuristics in place. On
the other hand, it is entirely possible to collect ac-
tual cost statistics from queries during execution,
particularly if the cost is measured in response time.
And in many cases, performing a lookup on the pro-
file information is much more lightweight than re-
calculating the cost for each query.

In a query optimizer, dynamic feedback of the
actual time it took to perform a query can be used
in several ways, including:

• Providing assistance in future cost estimations
for identical or similar queries.

• Signaling a problem with the current static
heuristics. This signal may either notify a data-
base administrator of a flaw in the current sta-
tic cost heuristics, or trigger an automatic up-
date of the cost heuristics.

Figure 3 depicts the design of a query processing en-
gine that has been modified to incorporate dynamic
feedback. In this system, the resulting cost of each
query is stored into a profile database. This data-
base is then queried during cost estimation. Finally,

abnormalities in the cost estimations, and large di-
vergences between estimated and actual query costs
are reported back to the cost estimator. The fol-
lowing subsections describe each of the three major
extensions in greater detail.

3.1 Profiling Cost Data

Several interesting design challenges arise as we ex-
tend the query processing engine to collect cost pro-
files. First, we must consider the problem of query
matching. This concerns the statistical profile data
stored in the profile database. For a given query, we
must search the profile database, and decide what
profile information can be considered applicable to
the given query. Will we only allow exact query
matches, or would it be possible to leverage the in-
formation from partial query matches?

Our solution to partial query matches is a hybrid
approach. Complex queries are broken down into
their respective atomic sub-queries. A query atom
is a single database operation, such as a selection,
projection, or join operation. Each query atom is
stored separately in the profile database. During
future cost estimations, only the profile information
from exact atom matches will apply. Similarly, the
profile information stored in the profile database will
only be updated upon exact execution matches to
each of the sub-query atoms. The notion of similar
and close-enough matches are beyond the scope of

3

this paper. Yet it is important to point out that
each of the query atoms can be combined to form a
complex query. Therefore, while we may not have
an exact match of a complex query in the database,
we may combine several atomic sub-queries for a
final cost estimation.

The next major challenge in extending the sys-
tem to collect cost profiles is that the overhead of
accessing the profile database must be considered.
Therefore, it was necessary to design an efficient in-
dexing scheme for storing and retrieving data from
the profile database. Our current implementation is
a multi-level hashing mechanism. We first index by
the type of query (selection, projection, etc), then
by attribute (account, balance, etc.)

A final note concerning the profile database is
that there are no restrictions on the granularity of
the collected data. Cost can be measured at the
level of any or all of the standard cost measures
listed in Section 2, i.e. disk accesses, cpu cycles, re-
sponse time, etc.

3.2 Query Plan Selection

Another notable extension of the standard query
processing engine shown in Figure 3 is the use of the
profile data in the selection of an execution plan.
While the previous system exclusively used static
cost estimations, we now allow hybrid functionality
in the query selection process by incorporating the
profile data from previous query executions to guide
our decisions.

The profiled cost statistics are used in the follow-
ing manner:

• To break ties between queries with equivalent
estimated costs

• To override the estimated cost of a query with
the actual cost

• To recognize trends in cost estimation error

Each of these schemes for using the feedback from
earlier runs to guide future cost estimations is in-
vestigated in Section 5.

3.3 Cost-Estimation Feedback

The final extension shown in Figure 3 is the
feedback-loop into the Cost Estimator. Here, in-
formation from the profile database is compared to
the static query cost estimations. Habitual errors
in the cost estimation model trigger feedback to the
cost estimator along the path shown in the figure.

An automated system uses the error feedback in or-
der to create an additional parameter to the cost
estimation equation.

cost = cost + ∆error (1)

We can view the ∆error value as an auto-tune pa-
rameter that will compensate for an overlooked cost
factor, or an out-of-date set of cost heuristics. Along
with constant ∆error offsets, we may also experience
multiplicative offsets, where the entire cost equation
must be increased. This may occur do to a slow mi-
croprocessor, or for memory-intensive queries, slow
memory access time.

cost = cost ∗ ∆error (2)

A final case occurs when one cost factor isn’t fac-
tored as heavily as it should, perhaps because of
out-of-date profile information about the database
itself. In this case, a more complex compensation
factor is required. This compensation factor is ap-
plied to the offending input to the cost equation.

cost = costCalc(cf1, cf2, . . . cfn ∗ ∆error) (3)

In this section, we have described the feedback-
directed query optimization architecture at a high
level. Next, we will present the details of the simu-
lator we used to evaluate our design.

4 Research Testbed

Building a complete system as described in Section 3
is beyond the scope of this paper. Instead, we eval-
uate our ideas using a query engine simulator. The
simulator is a means for gathering initial data and
determining whether it is worthwhile to build such
functionality into a real system. Results from the
simulator will provide insight into the conditions un-
der which the system performs well, and often more
importantly, the conditions under which it performs
poorly. Both sets of information may serve as a
guide when making design decisions for a final prod-
uct.

4.1 Trace-Driven Simulation

The simulator we developed for investigating the re-
sponsiveness and adaptiveness of our system is de-
picted in Figure 4. The simulator models the behav-
ior of two query cost estimators: our FDQO model
and the standard non-FDQO model, then compares

4

given
inputs

given
inputsrand

profile
data

without
FDQO

with
FDQO

compare

Figure 4: Feedback-Directed Query Optimization
Simulator

these cost estimations with the actual cost of per-
forming the query. (The actual cost is then fed back
into the FDQO system to update its internal cost-
estimation algorithms.) Several data points are col-
lected during the cost estimation comparison pro-
cess, such as the cost-estimation error and variance
of each system.

In the top-left portion of Figure 4, we show the
standard query processor without feedback-directed
query optimization. This query processor takes sev-
eral known parameters as inputs, and calculates the
expected cost based on those parameters. To simu-
late reality, we add an additional randomized pa-
rameter that the query processor knows nothing
about. The combination of all of the parameters
results in the actual cost.

On the top-right, we show our feedback-directed
query processor. Our query processor also isn’t
aware of the current value of the randomized pa-
rameter. However it is able to access the cost pro-
file information that has been collected thus far to
tune its cost calculations. We compare the cost es-
timates produced by both of the query processors
to determine if feedback-directed optimization aids
our query cost calculation accuracy.

The simulator is trace driven and is written in
C. As it is a functional simulator, we do not model
the overhead introduced by feedback-directed query
optimization. While this can be considered a weak-
ness in our model, we can argue that overhead val-
ues collected via simulation are not at all indicative
of actual system overhead. In fact, even on a real

system, the overhead can be altered via clever tun-
ing. Therefore, we have not incorporated overhead
calculations into our simulator as we view such cal-
culations as dubious results.

4.2 Query Traces

As mentioned in Section 4.1, our simulator is trace
driven. The query traces and input parameters that
drive the simulator are generated by a query gener-
ation program. The query generator is responsible
for creating the individual query details, along with
the access patterns of the entire trace.

Each query in a query trace consists of numerous
generated parameters. The first value represents the
type of query. Our trace generator currently gener-
ates eight query types - linear search, binary search,
selection, select+compare, sort, hash-join, projec-
tion, and aggregation. The query type is used by
the cost estimator to determine the equation for the
expected cost of the operation.

The second value generated for each query is a
unique identifier that distinguishes similar and dis-
similar queries. The remaining values are the re-
quired input parameters for the particular query
cost estimation. The number and type of these cost
parameters varies by query type, and can be inferred
from Table 1 which lists the query cost calculations
for each query type.

Finally, the trace generator creates the random-
ized cost parameter (described in Section 4.1) that
is used to simulate cost parameters that are missing
or under-weighted in the static cost equations. Each
of the cost input parameters produced by the trace
generator is used to estimate the cost of each query,
while the final randomized parameter is reserved for
use in calculating the actual cost of the query.

A typical generated query appears below. Each of
the cost input parameters is defined in the caption
of Table 1.

lsearch id=1 br=50000 lambda=10

hashJoin id=2 br=4800 bs=235 p=402 lambda=8

selection id=3 hti=260 sc=631 fr=4 lambda=3
...

The trace generator is written in C and communi-
cates with the simulator via operating system pipes.
It is designed to be parameterizable. For example,
we can vary the number of distinct queries in a query
sequence, the number of total queries, and even the
odds of generating a particular query type. This
allows us to study the amount of repetition neces-
sary for our techniques to be most effective, the re-
quired warm-up period, and the individual impact

5

of feedback-directed query optimization on each in-
dividual query type.

The trace generator is pseudo-random and deter-
ministic. The features of the drand() random num-
ber generating system call, which is used to generate
the query input values, are such that the random-
number sequence is always repeated during subse-
quent executions. This allows us to make apples-to-
apples comparisons of different policies, and draw
concrete conclusions about the effectiveness of one
policy over another.

4.3 Query Cost Calculation

As discussed in Section 4.2, the query trace genera-
tor produces various queries for use by the simula-
tor. The simulator then calculates the cost of each
query. In this section, we discuss the cost equations
used to estimate the expected and actual query cost.

Each of the generated query types and their re-
spective static cost estimations are listed in Table 1.
These cost estimations are widely accepted and de-
scribed in further detail in [6]. In our simulations,
the existing Non-FDQO model will estimate the
query cost using the exact equations listed in Ta-
ble 1. Our FDQO model, on the other hand, will
use feedback from earlier query executions (if avail-
able) to adjust the query cost equations listed in the
table.

Calculating the actual cost of a query (in order to
compare the accuracy of the two competing models)
forms the backbone of our results. As mentioned
earlier, each query generated by the trace generator
includes a randomized input parameter for simulat-
ing real-life contention in the database, which will
result in inaccurate cost estimations. We shall refer
to the randomized input parameter as the lambda
value. An interesting research question is how to
factor this lambda value into the cost equations to
produce an actual cost equation. For this paper, we
chose six distinct policies for factoring the lambda
value into the actual cost equations. The six policies
are listed in Table 2. Each policy is named to reflect
the trace pattern it is attempting to simulate.

The first two policies, additive and
multiplicative attempt to represent a stable
overlooked cost factor. In this case, the actual cost
equations become [estimatedcost + lambda] and
[estimatedcost ∗ lambda], respectively, where the
lambda value does not change during subsequent
executions of the same query. This policy is
designed to test how well FDQO and Non-FDQO
adapt to an overlooked cost factor in their cost

Query Type Cost Calculation
linear search br

2

binary search log(br)
selection HTi + SC(A,r)

fr

select+compare HTi + br

2

sort br ∗ logM−1 (br

M) + 1
hash+join 3(br + bs) + 4pi

projection V (A, r)
aggregation br

Table 1: Static cost calculations for each of our quer-
ies. br: blocks containing tuples of relation r. fr:
blocking factor of relation r. V (A, r): distinct values
in r for attribute A. SC(A, r): selection cardinality
of attribute A. HTi: height of index i. M : page
frames in memory buffer. pi: partitions.

Lambda Policy Description
additive Constant overlooked factor
multiplicative Constant overlooked multiplier
randomized add Varying overlooked factor
randomized mult Varying overlooked multiplier
increasing Overlooked increasing trend
value change Underestimated input factor

Table 2: This table describes the lambda policies
simulated. Each item describes how the lambda cost
factor is incorporated to calculate the actual query
cost.

equations.
The third and fourth policies, randomized add

and randomized mult, attempt to simulate over-
looked cost factors that do not remain stable. More
succinctly, these policies represent noise in the cost
of a query. These policies are designed to test how
FDQO and Non-FDQO respond to cost overhead
noise. An ideal situation would be that neither pol-
icy is affected by noise, as it is not predictable and
should not be incorporated into the cost equations.

The fifth policy, increasing, represents an over-
looked cost factor which is not stable across queries,
but it does follow a predictable pattern. The actual
cost calculation is determined as [estimatedcost +
(previouslambda + 1)]. An ideal system will rec-
ognize that there is an overlooked cost factor that
is not noise, and should be incorporated into cost
calculations.

The final policy, value change, represents the
case where one of the input parameters to the sta-

6

tic cost equation was underestimated (perhaps due
to out-of-date tuning by the database administra-
tor.) In the case where there are three inputs to
the static cost equation, the actual cost is calculated
as [staticcostcalc(input1, input2+lambda, input3)].
For each query, we choose to adjust a non-trivial in-
put to the cost equation, if available. For example,
we would adjust the br value in the sort query, as it
appears inside a logarithm function in the calcula-
tion. The purpose of this policy is to determine how
well the two systems adapt to non-trivial changes in
the factors that contribute to query cost.

In summary, our six lambda policies represent re-
alistic overhead that may be encountered during a
database query. They also serve as the backbone for
drawing conclusions on the effectiveness of the ex-
isting and proposed query optimization engines at
adapting to a changing environment.

5 Experimental Results

Using the simulator1 described in Section 4, we col-
lected results on a dual-Pentium4 2.5-GHz machine
with 2GB RAM running Red Hat Linux 7.2. During
our simulations, we focused on query cost as mea-
sured by wall-clock response time, and this choice is
reflected in our cost equations listed in Table 1. We
felt that response time is the most important cost
measure, as it encompasses all of the overheads of
disk access and network communication.

Results were collected by executing the simula-
tor once for each of the six lambda policies, while
varying the length of the query trace from 100,
1000, 10000, to 100000. Each of these tests was
repeated, this time varying the make-up of each
of the queries in the query trace. We first exper-
imented with a query trace where each of the eight
query types (linear search, binary search, selection,
select+compare, sort, hash+join, projection, aggre-
gation) had an equal chance of being produced in
the trace. Next we instructed the trace generator
to generate traces that contained only one type of
query. This would allow us to observe the particular
query types that FDQO predicts particularly well.

5.1 Query Estimate Improvements

As described in Section 4.1, our simulator com-
pares the cost estimate error of the existing and
proposed architecture. Figures 5-8 show the result-
ing cost error reduction achieved by the proposed

1Source code for our simulator is contained in the ap-
pendix and available for download at our project web site.

-20%

0%

20%

40%

60%

80%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

Figure 5: Cost estimate improvement of the FDQO
query processor over the existing Non-FDQO query
processor for various overhead trends. These results
represent traces with all eight query types included.

FDQO query optimization system for each of the
six lambda overhead policies.

Figure 5 depicts the mean reduction in cost er-
ror for a random query trace, where each of our
eight query types has an equal probability of being
generated. These results attempt to indicate the
average query accuracy increase we can expect dur-
ing a typical sequence of queries. There are several
key observations to note from Figure 5. First of
all, our system does well across the board for the
predictable overhead patterns, such as additive,
multiplicative, and increasing. This is to be
expected, as each of these patterns require trivial
changes to the cost equation to improve accuracy.
For the traces that simulate noise, randomized add
and randomized mult, we see that our system had
very little improvement over the existing model, and
in one case, cost accuracy was even degraded. This
is not surprising because one of the major drawbacks
of an adaptive system is that it may be overaggres-
sive when adjusting its cost equations, due to the
difficulty of recognizing the difference between over-
head trends and noise.

Next, Figure 6, takes a closer look at our sixth
lambda policy, value change. We chose to present
this policy in terms of its performance for each in-
dividual query type, in order to portray our effec-
tiveness as it becomes more difficult to estimate the
lambda value encountered during actual execution.
We were surprised find that the accuracy of the cost
equations produced by the FDQO system was fairly
consistent across all query types, regardless of the
complexity of the lambda value. (For example, we
would expect a parameter adjustment to a complex

7

0%

5%

10%

15%

20%

25%

30%

35%

aggregation bsearch hashJoin lsearch projection selComp select sort avg

C
o

st
 E

rr
o

r
R

ed
u

ct
io

n

100000

10000

1000

100

Figure 6: Cost estimate improvement of FDQO over
Non-FDQO as we apply the value change policy
(lambda costs are added to random inputs to the
cost equations.) Results are separated by query
type.

query cost equation to be much more difficult for our
system to predict than a simple cost equation.) Nev-
ertheless, our system consistently performed 20%
better than the existing system. Upon closer in-
spection, we can see that for one of the outliers,
selection, performance degrades as the trace size
is increased. As selection is one of our more com-
plex cost equations, we can probably attribute this
degradation to our inability to accurately predict
complex cost factors catching up with us. It may
have been the case that for shorter query traces, we
may have been lucky and achieved improvements.

Finally, Figures 7 and 8 break down the results
from Figure 5 into the effects for each type of query.
The main observation from these graphs is that we
are consistently effective on predictable cost trends
across all queries. Furthermore, we are consistently
marginal in our improvement of queries containing
overhead noise for the same reasons we described
earlier for Figure 5.

5.2 System Adaptability

As described earlier, some of our experiments were
specifically designed to test how our system re-
sponds to overhead noise. A system that overag-
gressively adjusts its cost equations will not only
produce inaccurate cost estimates, but it will also
incur unnecessary overhead. Based on the results
in Figures 7 and 8, we can conclude that with the
exception of Hash-Join, Linear Search, and Projec-
tion, our design is marginally effective at improving
the query estimation performance in light of over-

head noise. Our problems with the three query ex-
ceptions we mentioned were based on the fact that
the cost estimations for these queries have relatively
simple algorithms, therefore overhead noise becomes
a dominating factor in the cost equation.

5.3 System Responsiveness

A notable observation from all of our resulting
graphs (Figures 5-8) is that all policies perform
much better after a significant warm-up period is
achieved. This is because the cost history structures
have learned the overhead patterns of the queries.
Yet, even in the case of a query trace of length=100,
when most of the query history structures are still
empty, up to 40% improvement is possible. In gen-
eral, we can conclude that our system is quickly re-
sponsive to cost changes, but is much more effective
on long query traces.

6 Related Work

While much database research has focused on im-
proving static query cost heuristics [4, 8], only the
most recent work has attempted to tackle the prob-
lem of adaptive heuristics and self-tuning systems.

A great deal of recent query optimization research
has focused on the concept known as piggyback-
ing [2, 9]. Piggybacking refers to the technique
where profile collectors are piggybacked onto queries
as they are being performed. The profile collectors
gather updates to the static parameters describing
the database. These updates are eventually incor-
porated into the query estimators. It is important to
note that even with the use of piggybacking, query
estimation is not a self-tuning system. System ad-
ministrators are still required to tune the weight of
each database parameter. Therefore, we consider
our research complementary to the work on piggy-
backing.

Other related work has been done in the area of
Eddies [1], which is the idea of changing the order
of sub-query execution on-the-fly, depending on the
current delays experienced during query execution.
Our work differs from the work on eddies because we
do not change our optimization decisions mid-flight,
but are instead optimizing our means for estimating
costs and deciding between competing query execu-
tion options. Several other groups have researched
the area of adaptive and mid-execution optimization
of queries [3, 5, 7], and we believe that feedback-
directed query optimization is complementary and
non-overlapping with their research.

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(a) Aggregation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(b) Binary Search

-40%

-20%

0%

20%

40%

60%

80%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(c) Hash-Join

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(d) Linear Search

-20%

0%

20%

40%

60%

80%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(e) Projection

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(f) Select and Compare

Figure 7: Cost estimate improvement of FDQO over Non-FDQO for various overhead trends. Results are
separated by query type.

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(a) Selection

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

additive multiplicative randAdd randMult increasing

Lambda Policy

C
o

st
 Im

p
ro

ve
m

en
t

100000

10000

1000

100

(b) Sort

Figure 8: Cost estimate improvement for selection and sort. (Continuation of Figure 7.)

Much of our work was motivated by recent ad-
vances in programming language compilation. In
the compiler world, feedback-directed code opti-
mization has enabled significant performance im-
provements over statically optimized code. By
recording concrete performance achievements of
code optimizations during previous program execu-
tions, the compiler can make more informed deci-
sions on the optimizations that should be applied
during new compilations. More recent advances in
dynamic code optimization have shown that compi-
lation can occur in parallel with program execution,
while still achieving performance improvements if
the compiler focuses on frequently executed portions
of code. This focus on hot execution streams moti-
vates us to focus on hot queries in future work.

7 Conclusions

The push toward self-tuning autonomous database
management systems has compelled a great deal of
database research in recent years. While the bene-
fits of autonomy are obvious, path leading to such a
DBMS is a challenging one, and there is a great deal
of work left to be done. In this paper, we present a
query processing system that has the potential for
automatic tuning using cost profile feedback. Our
design was evaluated using a trace-driven simula-
tor. Our results indicate that the use of dynamic
feedback during cost estimation can improve the ac-
curacy of the cost estimation significantly, even for
short sequences of queries. However, a real imple-
mentation that includes the overhead of maintaining
profiled cost data for previous queries should be the
final test.

8 Future Work

This research opens the doors for a vast amount of
follow-up work in this area. Using the myriad of
research spawning from feedback-directed compiler
optimizations as a guide, we can envision dozens of
publications and PhD theses that could stem from
this work. Future work on optimal storage and re-
trieval techniques for our profile data could be ex-
plored. Smart techniques for deciding whether to
use profile data or estimation for query decisions
could be expanded. We could also research the exis-
tence of phase changes in the database that should
trigger a flush of our profile cache. Now that we
have produced an analytical evaluation, the simu-
lation framework could be extended to provide for
execution-driven simulation. This would provide a
means for collecting overhead information. The re-
search possibilities and implications are endless.

Acknowledgments

We wish to acknowledge the assistance of Mark Day
for his invaluable input and advice during the en-
tirety of this project. Professor Day suggested the
use of the simulation model for testing the ideas pre-
sented within our work. We also wish to acknowl-
edge the input of David Hoa, who focuses on data-
base query optimization at IBM. David was very
helpful in providing pointers to current research on
the area. Finally, we wish to thank Glenn Holloway
for his undying assistance as we fought with LATEX.

10

References

[1] R. Avnur and J. M. Hellerstein. Eddies: continu-
ously adaptive query processing. In Proceedings
of the 2000 ACM SIGMOD international con-
ference on Management of data, pages 261–272,
2000.

[2] B. Dunkel, Q. Zhu, W. Lau, and S. Chen.
Multiple-granularity interleaving for piggyback
query processing. In Proceedings of the 1999
CASCON, 1999.

[3] Z. G. Ives, D. Florescu, M. Friedman, A. Levy,
and D. S. Weld. An adaptive query execution
system for data integration. In Proceedings of
the 1999 ACM SIGMOD international confer-
ence on Management of data, pages 299–310,
1999.

[4] M. Jarke and J. Koch. Query optimization in
database systems. ACM Computing Surveys
(CSUR), 16(2):111–152, 1984.

[5] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution
plans. In Proceedings of the 1998 ACM SIG-
MOD international conference on Management
of data, pages 106–117, 1998.

[6] A. Silberschatz, H. Korth, and S. Sudarshan.
Database System Concepts. The McGraw-Hill
Companies, Boston, Massachusetts, USA, 1999.

[7] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-
based query scrambling for initial delays. In
Proceedings of the 1998 ACM SIGMOD interna-
tional conference on Management of data, pages
130–141, 1998.

[8] C. T. Yu and C. C. Chang. Distributed query
processing. ACM Computing Surveys (CSUR),
16(4):399–433, 1984.

[9] Q. Zhu, B. Dunkel, N. Soparkar, S. Chen,
B. Schiefer, and T. Lai. A piggyback method to
collect statistics for query optimization in data-
base management systems. In Proceedings of the
1998 CASCON, pages 67–82, 1998.

A Source Code Availability

The simulator and trace generator used for our
experiments is available open source at our
project website: http://www.eecs.harvard.edu/
~cettei/cs265/

11

B Simulator Source Code

/∗∗∗
∗
∗ Feedback−Directed Query Optimization
∗ Ana ly t i ca l Simulator
∗
∗ CS 265 Fina l Pro j e c t
∗ Written by : Kim Hazelwood Cet te i
∗ Last Update : Fr i Dec 1 3 2 2 : 3 0 : 4 2 EST 2002
∗
∗∗∗/

#include ”query . h”
#include ” ana lyt i cS im . h”
#include ” sharedSim . h”
#include ”math . h”

int main (int argc , char ∗ argv [])
{

int l inesRead ;

i f (argc != 2) {
p r i n t f (”Usage: % s [po l i c y]\n” , argv [0]) ;
p r i n t f (”0=NONE 1=ADD 2=MULT 3=RAND ADD 4=RANDMULT 5=INCR\n”) ;
e x i t (1) ;

}
s imPol i cy = a to i (argv [1]) ;

/∗ open t ra ce pipe ∗/
openPipe () ;

/∗ i n i t i a l i z e both systems ∗/
in i tSys t ems () ;

/∗ read query t r a ce ∗/
l inesRead = proce s sTraceF i l e () ;

/∗ ana lyze r e s u l t s ∗/
ana lyzeResu l t s (l inesRead) ;

p c l o s e (t r a c eP ipe) ;
return 0 ;

}

int proce s sTraceF i l e ()
{

char queryStr ing [2 0] ;
QueryType queryType ;
int costFDQO , costNonFDQO, costActua l ;
int l i n e s = 0 ;
Query ∗ thisQuery = (Query ∗) mal loc (s izeof (Query)) ;

while (f s c a n f (t r a c eP ipe , ”%s” , queryStr ing) != EOF) {

12

queryType = trans lateQueryType(queryStr ing) ;
a s s e r t (queryType != INV) ;

readQuery (queryType , thisQuery) ;
i f (DEBUG PRINT) pr intQuery (thisQuery) ;

/∗ s imulate the non feedback−d i r e c t ed query opt imiz e r ∗/
costNonFDQO = simulateNonFDQO(thisQuery) ;

/∗ s imulate the non feedback−d i r e c t ed query opt imiz e r ∗/
costFDQO = simulateFDQO(thisQuery) ;

/∗ s imulate the ac tua l co s t ∗/
cos tActua l = s imulateActua l (thisQuery) ;

/∗ compare the two systems ∗/
compareCosts (l i n e s , costNonFDQO , costFDQO , costActua l) ;

/∗ update FDQO database with ac tua l query co s t ∗/
updateHistory (thisQuery , cos tActua l) ;

l i n e s ++;
}
return l i n e s ;

}

void readQuery (QueryType queryType , Query ∗ thisQuery)
{

int valuesRead ;
int id , lambda ;

/∗ read r e s t o f query ∗/
valuesRead = f s c a n f (t r a c eP ipe , ”%d %d\n” , & id , & lambda) ;
a s s e r t (valuesRead==2);

/∗ a s s i g n va lue s to query s t r u c t ∗/
thisQuery−>queryType = queryType ;
thisQuery−>id = id ;
thisQuery−>lambda = lambda ;

switch (queryType) {
case LSEARCH: {

LsearchQuery ∗ thisQ = (LsearchQuery ∗)&(thisQuery−>params . l s e a r ch) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocks)) ;
break ;

}
case BSEARCH: {

BsearchQuery ∗ thisQ = (BsearchQuery∗)&(thisQuery−>params . bsearch) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocks)) ;
break ;

}
case SELECTION: {

13

Se lect ionQuery ∗ thisQ = (Se lect ionQuery ∗)&(thisQuery−>params . s e l e c t i o n) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>indexHeight)) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>s e l e c tCard)) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>f i t I nB l o ck)) ;
break ;

}
case SELECTCOMP: {

SelectCompQuery ∗ thisQ = (SelectCompQuery∗)&(thisQuery−>params . selectComp) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>s e l e c tCard)) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocks)) ;
break ;

}
case SORT: {

SortQuery ∗ thisQ = (SortQuery ∗)&(thisQuery−>params . s o r t) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocks)) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>pageFrames)) ;
break ;

}
case HASHJOIN : {

HashJoinQuery ∗ thisQ = (HashJoinQuery ∗)&(thisQuery−>params . hashJoin) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocksR)) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocksS)) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>pa r t i t i o n s)) ;
break ;

}
case PROJECTION: {

Project ionQuery ∗ thisQ=(Project ionQuery ∗)&(thisQuery−>params . p r o j e c t i o n) ;
f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numDistinct)) ;
break ;

}
case AGGREGATION: {

AggregationQuery ∗ thisQ =
(AggregationQuery∗)&(thisQuery−>params . agg r ega t i on) ;

f s c a n f (t r a c eP ipe , ”%d” , &(thisQ−>numBlocks)) ;
break ;

}
default :

a s s e r t (f a l s e) ;
}
return ;

}

void i n i tSys t ems ()
{

int i , j ;
t r ende r = 1 ;
costArray = (QueryCost∗) mal loc (s izeof (QueryCost)∗TRACELENGTH) ;
for (i =0; i<MAXTYPES; i ++) {

for (j =0; j<NUMROWS; j ++) {
h i s to ryTab l e [i] [j] . id = −1;
h i s to ryTab l e [i] [j] . c o s t = −1;

}
}

14

return ;
}

void openPipe ()
{

t r a c eP ipe = popen (” tgen knobs . txt ” , ” r ”) ;
i f (t r a c eP ipe == NULL) {

per r o r (” ana lyt i cS im : popen : ”) ;
e x i t (−1);

}
f s c a n f (t r a c eP ipe , ”%d\n” , &TRACELENGTH) ;

}

QueryType trans lateQueryType (char ∗ queryStr ing)
{

i f (strcmp (queryStr ing , ” l s e a r ch ”) == 0) return LSEARCH;
i f (strcmp (queryStr ing , ” bsearch ”) == 0) return BSEARCH;
i f (strcmp (queryStr ing , ” s e l e c t i o n ”) == 0) return SELECTION;
i f (strcmp (queryStr ing , ” se l ectcomp”) == 0) return SELECTCOMP;
i f (strcmp (queryStr ing , ” s o r t ”) == 0) return SORT;
i f (strcmp (queryStr ing , ” ha sh jo in”) == 0) return HASHJOIN;
i f (strcmp (queryStr ing , ” p r o j e c t i o n ”) == 0) return PROJECTION;
i f (strcmp (queryStr ing , ” agg r ega t i on”) == 0) return AGGREGATION;
return INV ;

}

void compareCosts (int index , int costNonFDQO, int costFDQO , int costActua l)
{

a s s e r t (index < TRACELENGTH) ;
costArray [index] . costFDQO = costFDQO ;
costArray [index] . costNonFDQO = costNonFDQO;
costArray [index] . cos tActua l = costActua l ;
i f (DEBUG PRINT)

p r i n t f (”\ t \tCostNon: %d CostAct : %d CostFD: %d\n” ,
costNonFDQO, costActua l , costFDQO) ;

return ;
}

void ana lyzeResu l t s (int l inesRead)
{

int i ;
int aCost , nCost , fCost ;
long t o t a lD i f fO ld =0, to ta lDi f fNew =0;
long nDi f f , f D i f f ;
double aveNDiff , aveFDif f ;
double nMeanSq=0, fMeanSq=0;
double nVariance , fVar iance ;
double nStaDev , fStaDev ;
double improvement1 ;

p r i n t f (”\nRESULTS (based on %d que r i e s)\n” , l inesRead) ;
p r i n tPo l i c y () ;

15

p r i n t f (”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n”) ;

/∗ F i r s t c a l c u l a t e a r i thmet i c mean ∗/
for (i =0; i<l inesRead ; i ++) {

aCost = costArray [i] . co s tActua l ;
nCost = costArray [i] . costNonFDQO;
fCost = costArray [i] . costFDQO ;
to t a lD i f fO ld += (long) abs (aCost − nCost) ;
to ta lDi f fNew += (long) abs (aCost − fCost) ;

}
aveNDiff = (double) t o t a lD i f fO ld / (double) l inesRead ;
aveFDiff = (double) tota lDi f fNew / (double) l inesRead ;

/∗ Then c a l c u l a t e va r i ance , standard dev ia t i on ∗/
for (i =0; i<l inesRead ; i ++) {

aCost = costArray [i] . co s tActua l ;
nCost = costArray [i] . costNonFDQO;
fCost = costArray [i] . costFDQO ;

nDi f f = (long) abs (aCost − nCost) ;
f D i f f = (long) abs (aCost − fCost) ;

nMeanSq += pow (((double) nDi f f − aveNDiff) , (double) 2) ;
fMeanSq += pow (((double) f D i f f − aveFDiff) , (double) 2) ;

}
nVariance = nMeanSq / (l inesRead − 1) ;
fVar iance = fMeanSq / (l inesRead − 1) ;

nStaDev = sq r t (nVariance) ;
fStaDev = sq r t (fVar iance) ;

improvement1 = ((aveNDiff−aveFDiff) / aveNDiff) ∗ 1 0 0 ;

p r i n t f (”\ t \tNON−FDQO\ t \tFDQO\n”) ;
p r i n t f (” aveDi f f \ t \ t%7.2 f \ t \ t \ t%7.2 f \n” , aveNDiff , aveFDif f) ;
p r i n t f (” va r i ance\ t%7.2 f \ t \ t \ t%7.2 f \n” , nVariance , fVar iance) ;
p r i n t f (” s tdev\ t \ t%7.2 f \ t \ t \ t%7.2 f \n\n” , nStaDev , fStaDev) ;
p r i n t f (”FDQO improvement o f %7.2 f%%\n\n” , improvement1) ;
return ;

}

void pr intQuery (Query ∗ thisQuery) {
switch (thisQuery−>queryType) {

case LSEARCH:
p r i n t f (” l s e a r ch %d %d %d” , thisQuery−>id , thisQuery−>lambda ,

thisQuery−>params . l s e a r ch . numBlocks) ;
break ;

case BSEARCH:
p r i n t f (” bsearch %d %d %d” , thisQuery−>id , thisQuery−>lambda ,

thisQuery−>params . bsearch . numBlocks) ;
break ;

case SELECTION:
p r i n t f (” s e l e c t i o n %d %d %d %d %d” , thisQuery−>id , thisQuery−>lambda ,

16

thisQuery−>params . s e l e c t i o n . indexHeight ,
thisQuery−>params . s e l e c t i o n . s e l e c tCard ,
thisQuery−>params . s e l e c t i o n . f i t I nB l o ck) ;

break ;
case SELECTCOMP:

p r i n t f (” se l ectcomp %d %d %d %d” , thisQuery−>id , thisQuery−>lambda ,
thisQuery−>params . selectComp . s e l e c tCard ,
thisQuery−>params . selectComp . numBlocks) ;

break ;
case SORT:

p r i n t f (” s o r t %d %d %d %d” , thisQuery−>id , thisQuery−>lambda ,
thisQuery−>params . s o r t . numBlocks ,
thisQuery−>params . s o r t . pageFrames) ;

break ;
case HASHJOIN:

p r i n t f (” ha sh jo in %d %d %d %d %d” , thisQuery−>id , thisQuery−>lambda ,
thisQuery−>params . hashJoin . numBlocksR ,
thisQuery−>params . hashJoin . numBlocksS ,
thisQuery−>params . hashJoin . p a r t i t i o n s) ;

break ;
case PROJECTION:

p r i n t f (” p r o j e c t i o n %d %d %d” , thisQuery−>id , thisQuery−>lambda ,
thisQuery−>params . p r o j e c t i o n . numDistinct) ;

break ;
case AGGREGATION:

p r i n t f (” agg r ega t i on %d %d %d” , thisQuery−>id , thisQuery−>lambda ,
thisQuery−>params . agg r ega t i on . numBlocks) ;

break ;
default :

a s s e r t (f a l s e) ;
}
i f (NEWLINES) p r i n t f (”\n”) ;

}

void p r i n tPo l i c y ()
{

switch (s imPol i cy) {
case NOPOLICY:

p r i n t f (”No Po l i cy\n”) ;
break ;

case ADDITIVE:
p r i n t f (”Addit ive Po l i cy\n”) ;
break ;

case MULTIPLICATIVE:
p r i n t f (” Mu l t i p l i c a t i v e Po l i cy\n”) ;
break ;

case RANDOMADD:
p r i n t f (”Randomized Add Po l i cy\n”) ;
break ;

case RANDOMMULT:
p r i n t f (”Randomized Mult iply Po l i cy\n”) ;
break ;

case INCREASING:

17

p r i n t f (” I n c r e a s i ng Po l i cy\n”) ;
break ;

case VALCHANGE:
p r i n t f (”Random Value Changed Po l i cy\n”) ;
break ;

default :
p r i n t f (”UKNOWN POLICY\n”) ;

}
}

C Trace Generator Source Code

/∗∗∗
∗
∗ Feedback−Directed Query Optimization
∗ Trace Generat ion Engine
∗
∗ CS 265 Fina l Pro j e c t
∗ Written by : Kim Hazelwood Cet te i
∗ Last Update : Fr i Dec 1 3 2 2 : 3 0 : 4 2 EST 2002
∗
∗∗∗/

#include ”query . h”
#include ” traceGen . h”

/∗
∗ Main
∗
∗/

int main (int argc , char ∗ argv [])
{

/∗ Check input args ∗/
i f (argc != 2) {

p r i n t f (”Usage: % s [knobsFi l e]\n” , argv [0]) ;
e x i t (−1);

}

/∗ Read knobs f i l e ∗/
readKnobs (argv [1]) ;

/∗ I n i t Query Tables ∗/
in i tQueryTables () ;

/∗ Open the pipe ∗/
openPipe () ;

/∗ Generate t r a ce o f qu e r i e s and send i t to the pipe ∗/
generateTrace () ;

return 0 ;
}

18

/∗
∗ generateTrace
∗/

void generateTrace ()
{

int i ;
QueryType qtype ;

for (i =0; i<TRACELENGTH; i ++) {
qtype = generateType () ;
generateQuery (qtype) ;

}
}

/∗
∗ generateQuery
∗/

void generateQuery (QueryType thisType)
{

switch (thisType) {
case LSEARCH:

generateLsearch () ;
break ;

case BSEARCH:
generateBsearch () ;
break ;

case SELECTION:
g en e r a t eS e l e c t i on () ;
break ;

case SELECTCOMP:
generateSelectComp () ;
break ;

case SORT:
gene ra t eSo r t () ;
break ;

case HASHJOIN:
generateHashJoin () ;
break ;

case PROJECTION:
g ene r a t eP r o j e c t i on () ;
break ;

case AGGREGATION:
generateAggregat ion () ;
break ;

default :
f p r i n t f (s td e r r , ”Error g ene ra t ing query\n”) ;

}
}

/∗
∗ generateType
∗/

QueryType generateType ()

19

{
double currentOdds = 0 ;
double randVal = drand48 () ;

currentOdds += lsearchOdds ;
i f (randVal < currentOdds) return LSEARCH;

currentOdds += bsearchOdds ;
i f (randVal < currentOdds) return BSEARCH;

currentOdds += se l e c t i onOdds ;
i f (randVal < currentOdds) return SELECTION;

currentOdds += selectCompOdds ;
i f (randVal < currentOdds) return SELECTCOMP;

currentOdds += sortOdds ;
i f (randVal < currentOdds) return SORT;

currentOdds += hashJoinOdds ;
i f (randVal < currentOdds) return HASHJOIN;

currentOdds += pro ject ionOdds ;
i f (randVal < currentOdds) return PROJECTION;

else return AGGREGATION;
}

/∗
∗ generateLsearch
∗/

void generateLsearch ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [LSEARCH] [queryIndex] ;

i f (thisQuery . queryType != LSEARCH) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” l s e a r ch %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . l s e a r ch . numBlocks) ;

}

/∗
∗ generateBsearch
∗/

void generateBsearch ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;

20

i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [BSEARCH] [queryIndex] ;

i f (thisQuery . queryType != BSEARCH) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” bsearch %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . bsearch . numBlocks) ;

}

/∗
∗ g en e r a t eS e l e c t i on
∗/

void g en e r a t eS e l e c t i on ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [SELECTION] [queryIndex] ;

i f (thisQuery . queryType != SELECTION) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” s e l e c t i o n %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d ” , thisQuery . params . s e l e c t i o n . indexHeight) ;
f p r i n t f (simPipe , ”%d ” , thisQuery . params . s e l e c t i o n . s e l e c tCard) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . s e l e c t i o n . f i t I nB l o ck) ;

}

/∗
∗ generateSelectComp
∗/

void generateSelectComp ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [SELECTCOMP] [queryIndex] ;

i f (thisQuery . queryType != SELECTCOMP) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” se l ectcomp %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d ” , thisQuery . params . selectComp . s e l e c tCard) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . selectComp . numBlocks) ;

}

/∗
∗ gene ra t eSo r t
∗/

21

void gene ra t eSo r t ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [SORT] [queryIndex] ;

i f (thisQuery . queryType != SORT) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” s o r t %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d ” , thisQuery . params . s o r t . numBlocks) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . s o r t . pageFrames) ;

}

/∗
∗ gene ra teJo in
∗/

void generateHashJoin ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [HASHJOIN] [queryIndex] ;

i f (thisQuery . queryType != HASHJOIN) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” ha sh jo in %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d ” , thisQuery . params . hashJoin . numBlocksR) ;
f p r i n t f (simPipe , ”%d ” , thisQuery . params . hashJoin . numBlocksS) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . hashJoin . p a r t i t i o n s) ;

}

/∗
∗ g ene r a t eP ro j e c t i on
∗/

void g ene r a t eP ro j e c t i on ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [PROJECTION] [queryIndex] ;

i f (thisQuery . queryType != PROJECTION) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” p r o j e c t i o n %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . p r o j e c t i o n . numDistinct) ;

}

22

/∗
∗ generateAggregat ion
∗/

void generateAggregat ion ()
{

Query thisQuery ;
int queryIndex = (int) (drand48 () ∗ 1 0) ;
i f (queryIndex >= MAXQUERIES) queryIndex = MAXQUERIES−1;
thisQuery = queryTables [AGGREGATION] [queryIndex] ;

i f (thisQuery . queryType != AGGREGATION) {
f p r i n t f (s td e r r , ”Problem ac c e s s i n g query !\n”) ;
e x i t (−1);

}
f p r i n t f (simPipe , ” agg r ega t i on %d %d ” , thisQuery . id , thisQuery . lambda) ;
f p r i n t f (simPipe , ”%d\n” , thisQuery . params . agg r ega t i on . numBlocks) ;

}

void readKnobs (char ∗ f i l ename)
{

FILE ∗ knobsFi l e ;
char thisKnob [2 0] , th i sVa l [1 0] ;

/∗ Clear query odds ∗/
lsearchOdds = 0 ;
bsearchOdds = 0 ;
s e l e c t i onOdds = 0 ;
selectCompOdds = 0 ;
sortOdds = 0 ;
hashJoinOdds = 0 ;
pro ject ionOdds = 0 ;
aggregationOdds = 0 ;

knobsFi l e = fopen (f i l ename , ” r ”) ;
i f (knobsFi l e == NULL) {

f p r i n t f (s td e r r , ”Bad knobs f i l e \n”) ;
e x i t (−1);

}
#i f VERBOSE

f p r i n t f (s td e r r , ”Reading %s . . . \ n” , f i l ename) ;
#endif

while (f s c a n f (knobsFi l e , ”%s = %s” , thisKnob , th i sVa l) != EOF) {
i f (strcmp (thisKnob , ”TRACE LENGTH”)==0) {

TRACELENGTH = ato i (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”LSEARCH ODDS”)==0) {

l searchOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”BSEARCH ODDS”)==0) {

bsearchOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”SELECTION ODDS”)==0) {

23

s e l e c t i onOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”SELECTCOMP ODDS”)==0) {

selectCompOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”SORT ODDS”)==0) {

sortOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”HASHJOIN ODDS”)==0) {

hashJoinOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”PROJECTION ODDS”)==0) {

pro ject ionOdds = a to f (th i sVa l) ;
}
else i f (strcmp (thisKnob , ”AGGREGATIONODDS”)==0) {

aggregationOdds = a to f (th i sVa l) ;
}

}
}

void in i tQueryTables () {
int i , j ;
int uniqueID = 0 ;

for (i=LSEARCH; i<MAXTYPES; i ++) {
for (j =0; j<MAXQUERIES; j ++) {

queryTables [i] [j] . queryType = i ;
queryTables [i] [j] . id = uniqueID++;
queryTables [i] [j] . lambda = (int) (drand48 () ∗ 1 0) ;
switch (i){

case LSEARCH: {
LsearchQuery ∗ th i sLs ea r ch ;
th i sLs ea r ch = (LsearchQuery ∗)&(queryTables [i] [j] . params . l s e a r ch) ;
th i sLs ea r ch−>numBlocks =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
break ;

}
case BSEARCH: {

BsearchQuery ∗ th i sBsea r ch ;
th i sBsea r ch = (BsearchQuery ∗)&(queryTables [i] [j] . params . bsearch) ;
th i sBsea r ch−>numBlocks =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
break ;

}
case SELECTION: {

Se lect ionQuery ∗ t h i s S e l e c t ;
t h i s S e l e c t = (Se lect ionQuery ∗)&(queryTables [i] [j] . params . s e l e c t i o n) ;
t h i s S e l e c t−>indexHeight =(int) (drand48 () ∗ 5 0 0) ;
t h i s S e l e c t−>s e l e c tCard =(int) (drand48 () ∗ 1 0 0 0 0) ;
t h i s S e l e c t−>f i t I nB l o ck =(int) (drand48 () ∗ 2 5) ;
break ;

}
case SELECTCOMP: {

SelectCompQuery ∗ t h i s S e l e c t ;
t h i s S e l e c t = (SelectCompQuery ∗)&(queryTables [i] [j] . params . selectComp) ;

24

t h i s S e l e c t−>s e l e c tCard =(int) (drand48 () ∗ 1 0) ;
t h i s S e l e c t−>numBlocks =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
break ;

}
case SORT: {

SortQuery ∗ th i s So r t ;
t h i s So r t = (SortQuery ∗)&(queryTables [i] [j] . params . s o r t) ;
t h i s So r t−>numBlocks =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
t h i s So r t−>pageFrames =(int) (drand48 () ∗ 2 5) ;
break ;

}
case HASHJOIN : {

HashJoinQuery ∗ t h i s J o i n ;
t h i s J o i n = (HashJoinQuery ∗)&(queryTables [i] [j] . params . hashJoin) ;
t h i s J o i n−>numBlocksR =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
t h i s J o i n−>numBlocksS =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
t h i s J o i n−>pa r t i t i o n s =(int) (drand48 () ∗ 1 0 0) ;
break ;

}
case PROJECTION: {

Project ionQuery ∗ t h i sP r o j e c t ;
t h i s P r o j e c t=(Project ionQuery ∗)&(queryTables [i] [j] . params . p r o j e c t i o n) ;
t h i sP r o j e c t−>numDistinct =(int) (drand48 () ∗ 5 0) ;
break ;

}
case AGGREGATION: {

AggregationQuery ∗ thisAgg ;
thisAgg = (AggregationQuery ∗)&(queryTables [i] [j] . params . agg r ega t i on) ;
thisAgg−>numBlocks =(int) (drand48 () ∗ 1 0 0 0 0 0) ;
break ;

}
default :

a s s e r t (f a l s e) ;
}

}
}

}

void openPipe () {

simPipe = (FILE ∗) s tdout ;
f p r i n t f (simPipe , ”%d\n” , TRACELENGTH) ;

}

D Cost Calculation Source Code

/∗∗∗
∗
∗ Feedback−Directed Query Optimization
∗ Query Cost Ca l cu la to r
∗
∗ CS 265 Fina l Pro j e c t
∗ Written by : Kim Hazelwood Cet te i
∗ Last Update : Fr i Dec 1 3 2 2 : 3 0 : 4 2 EST 2002

25

∗
∗ Desc r ip t i on : Ca l cu la t e s the query co s t f o r d i f f e r e n t query opt im i ze r s
∗
∗∗∗/

#include ”query . h”
#include ” sharedSim . h”
#include ”math . h”

int s ta t i cCos tEs t imate (Query ∗ thisQuery) {
int co s t , indexHeight , s e l e c tCard , f i t I nB l o ck , pageFrames , p a r t i t i o n s ;
int numBlocks , numBlocksR , numBlocksS ;

switch (thisQuery−>queryType) {
case LSEARCH:

numBlocks = thisQuery−>params . l s e a r ch . numBlocks ;
co s t = numBlocks / 2 ;
break ;

case BSEARCH:
numBlocks = thisQuery−>params . bsearch . numBlocks ;
c o s t = (int) l o g ((double) numBlocks) ;
break ;

case SELECTION:
indexHeight = thisQuery−>params . s e l e c t i o n . indexHeight ;
s e l e c tCard = thisQuery−>params . s e l e c t i o n . s e l e c tCard ;
f i t I nB l o ck = thisQuery−>params . s e l e c t i o n . f i t I nB l o ck ;
co s t = indexHeight + (s e l e c tCard / f i t I nB l o ck) ;
break ;

case SELECTCOMP:
numBlocks = thisQuery−>params . selectComp . numBlocks ;
s e l e c tCard = thisQuery−>params . selectComp . s e l e c tCard ;
co s t = se l e c tCard + (numBlocks / 2) ;
break ;

case SORT:
/∗ co s t = nb ∗ (2 (l og (pf−1)(nb/ pf))+ 1) ∗/
numBlocks = thisQuery−>params . s o r t . numBlocks ;
pageFrames = thisQuery−>params . s o r t . pageFrames ;
co s t = (int) l o g ((double) (pageFrames−1)) ;
c o s t = co s t / l og ((double) (numBlocks/pageFrames)) ;
c o s t = co s t ∗ 2 + 1 ;
co s t = co s t ∗ numBlocks ;
break ;

case HASHJOIN:
numBlocksR = thisQuery−>params . hashJoin . numBlocksR ;
numBlocksS = thisQuery−>params . hashJoin . numBlocksS ;
p a r t i t i o n s = thisQuery−>params . hashJoin . p a r t i t i o n s ;
c o s t = (3 ∗ (numBlocksR + numBlocksS)) + (4 ∗ pa r t i t i o n s) ;
break ;

case PROJECTION:
co s t = thisQuery−>params . p r o j e c t i o n . numDistinct ;
break ;

case AGGREGATION:
co s t = thisQuery−>params . agg r ega t i on . numBlocks ;

26

break ;
default :

p r i n t f (”costNonFDQO: Got a bogus query\n”) ;
e x i t (1) ;

}
return co s t ;

}

int simulateNonFDQO(Query ∗ thisQuery) {
return s ta t i cCos tEs t imate (thisQuery) ;

}

int simulateFDQO(Query ∗ thisQuery)
{

int co s t ;
int l a s tCos t ;

co s t = s ta t i cCos tEs t imate (thisQuery) ;
l a s tCos t = sea r chHi s to ry (thisQuery−>queryType , thisQuery−>id) ;

i f (l a s tCos t > 0) return l a s tCos t ;
else return co s t ;

}

int s ea r chHi s to ry (QueryType type , int id)
{

int j ;
int co s t = −1;

for (j =0; j<NUMROWS; j ++) {
i f (h i s to ryTab l e [type] [j] . id == id) {

co s t = h i s to ryTab l e [type] [j] . c o s t ;
break ;

}
}
return co s t ;

}

void updateHistory (Query ∗ thisQuery , int co s t)
{

int j ;
int id = thisQuery−>id ;
int type = thisQuery−>queryType ;

for (j =0; j<NUMROWS; j ++) {
i f (h i s to ryTab l e [type] [j] . id == id) {

h i s to ryTab l e [type] [j] . c o s t = co s t ;
break ;

}
else i f (h i s to ryTab l e [type] [j] . id == −1) {

h i s to ryTab l e [type] [j] . id = id ;
h i s to ryTab l e [type] [j] . c o s t = co s t ;
break ;

27

}
}

}

int s imulateActua l (Query ∗ thisQuery)
{

int co s t ;
f loat f l o a t c o s t ;

co s t = s ta t i cCos tEs t imate (thisQuery) ;

switch (s imPol i cy) {
case ADDITIVE:

co s t += thisQuery−>lambda ;
break ;

case MULTIPLICATIVE:
f l o a t c o s t = ((f loat) thisQuery−>lambda /10) + 1 ;
f l o a t c o s t = co s t ∗ f l o a t c o s t ;
c o s t = (int) f l o a t c o s t ;
break ;

case RANDOMADD:
co s t += (int) (drand48 () ∗ thisQuery−>lambda) ;
break ;

case RANDOMMULT:
f l o a t c o s t = (drand48 ()∗ thisQuery−>lambda /10) + 1 ;
f l o a t c o s t = co s t ∗ f l o a t c o s t ;
c o s t = (int) f l o a t c o s t ;
break ;

case INCREASING:
co s t += thisQuery−>lambda ;
co s t += trende r ;
t r ende r ++;
break ;

case VALCHANGE:
changeValue (thisQuery) ;
co s t = s ta t i cCos tEs t imate (thisQuery) ;

default :
break ;

}
return co s t ;

}

void changeValue (Query ∗ thisQuery)
{

int lambda = thisQuery−>lambda ;

switch (thisQuery−>queryType) {
case LSEARCH:

thisQuery−>params . l s e a r ch . numBlocks += lambda ;
break ;

case BSEARCH:
thisQuery−>params . bsearch . numBlocks += lambda ;
break ;

28

case SELECTION:
thisQuery−>params . s e l e c t i o n . s e l e c tCard += lambda ;
break ;

case SELECTCOMP:
thisQuery−>params . selectComp . numBlocks += lambda ;
break ;

case SORT:
thisQuery−>params . s o r t . numBlocks += lambda ;
break ;

case HASHJOIN:
thisQuery−>params . hashJoin . p a r t i t i o n s += lambda ;
break ;

case PROJECTION:
thisQuery−>params . p r o j e c t i o n . numDistinct += lambda ;
break ;

case AGGREGATION:
thisQuery−>params . agg r ega t i on . numBlocks += lambda ;
break ;

default :
break ;

}
}

E README File

This d i r e c t o r y conta in s a l l o f the components for s imu la t ing and ana lyz ing
Feedback−Directed Query Optimization .

The main components c o n s i s t o f a Trace Generator (traceGen . c) and an
Ana ly t i ca l Simulator (ana lyt i cS im . c) . The t r a c e g ene ra to r per forms the
duty o f g ene ra t ing a pseudo−random trac e o f qu e r i e s . This query t ra c e
i s used to dr iv e the a n a l y t i c a l s imu la to r . The two programs communicate
v ia OS p ipe s .

The a n a l y t i c a l s imu la to r attempts to r e p l i c a t e the d e c i s i o n s made by a
standard query opt imiz e r , as we l l as our proposed feedback−d i r e c t ed query
opt im i z e r . Resu l t ing c o s t s and cos t−es t imate e r r o r s are compared on the
two systems .

∗∗∗∗∗ FILES CONTAINED IN THIS DIRECTORY ∗∗∗∗∗

ana lyt i cS im . [ch] : Contains r ou t i n e s that form the core o f the a n a l y t i c a l
s imu la to r .

traceGen . [ch] : Contains r ou t i n e s that form the core o f the pseudo−random
query t ra c e gene ra to r .

cos tCa lc . c : Contains r ou t i n e s for e s t imat ing the query co s t in the th r e e
compared systems : fdqo , non−fdqo , a c tua l .

query . h : Data s t r u c tu r e s and g l oba l s that are shared by both o f the above
systems .

knobs . txt : A knobs f i l e that c on t r o l s the pseudo−randomness o f the query
t r a c e g ene ra to r .

Make f i l e : Contro l s the bu i ld and execute pro ce s s

29

∗∗∗∗∗ EXECUTABLES CONTAINED IN THIS DIRECTORY ∗∗∗∗∗

asim The a na l y t i c a l s imu la to r

tgen The query t r a c e g ene ra to r

Al l f i l e s wr i t t en by Kim Hazelwood Cet te i , December 2 0 0 2 .

30

