DIGITAL ACCESS 10

ity HARVARD LIBRARY
SC HOLAR S HIP arHARVARD Office for Scholarly Communication
DASH.HARVARD.EDU

Scaling Filename Queries in a Large-Scale
Distributed File System

Citation
Ledlie, Jonathan, Laura Serban, and Dafina Toncheva. 2002. Scaling Filename Queries in

a Large-Scale Distributed File System. Harvard Computer Science Group Technical Report
TR-03-02.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23526158

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23526158
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Scaling%20Filename%20Queries%20in%20a%20Large-Scale%20Distributed%20File%20System&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Scaling Filename Queries in a Large-Scale
Distributed File System

Jonathan Ledlie
Laura Serban
and
Dafina Toncheva

TR-03-02

!

)

iy K
o

i
¥ y t'-\\‘?"
\R

Computer Science Group
Harvard University
Cambridge, Massachusetts

Scaling Filename Queries in a Large-Scale Distributed File System

Jonathan Ledlie, Laura Serban, Dafina Toncheva

January 14, 2001

Abstract ing, lookup, and computation, has led to the development
of decentralized systems that aim to scale to millions of
We have examined the tradeoffs in applying regular ambdes. The staple examples of this decentralization are
Compressed Bloom filters to the name query problem @nutella and Freenet, but more recently two other sys-
distributed file systems and developed and tested a nowghs, CFS and PAST, have directly addressed scaling file
mechanism for scaling queries as the network grows largistribution based on replication and intelligent hashing
Filters greatly reduced query messages when using Fasteemes [4, 5]. The prime drawback in these decentral-
“Summary Cache” in web cache hierarchies[6], a simild&ed systems is that they lack a central, reliable source of
albeit smaller, searching problem. We have implementedormation, either for access control, versioning, or name
a testbed that models a distributed file system and run ésekup. In this paper, we address several approaches to
periments that test various configurations of the systemtte name lookup problem in large-scale decentralized file
see if Bloom filters could provide the same kind of imsystems.
provements. In a realistic system, where the chance thageveral studies motivate reducing bandwidth usage due
a randomly queried node holds the file being searched tor file name lookups in large-scale distributed systems.
is low, we show that filters always provide lower bandfwo early studies, one aptly titled “Why Gnutella Can't
width/search and faster time/search, as long as the raggale” [18, 20], underscore the difficulty and inherent in-
of change of the files stored at the nodes is not extremedasibility in searches in a network where a node has es-
high relative to the number of searches. In other wordsentially no residual knowledge about its nearby nodes
we confirm the intuition that keeping some state about the the rest of the network. These papers and Ripeanu’s
contents of the rest of the system will aid in searching agnpirical measurement of Gnutella [17] portray systems
long as acquiring this state is not overly costly and it dogghere nodes with low-bandwidth access not only are
not expire too quickly. themselves swamped with queries, but act as anchors on
The grouping topology we have developed divides the rest of the network as well. Gnutella, the most widely
nodes intolog(n) groups, each of which has a repreused distributed network currently in use, blindly floods
sentative node that aggregates a composite filter for tthe network with search queries, which go five or six hops
group. All nodes not in that group use this low-precisioaway from the originator and then follow the same path
filter to weed out whole collections of nodes by probback. Ritter and Sripanidkulchai show that networks on
ing these filters, only sending a search to be proxied kye order of thousands of nodes are enough to swamp a
a member of the group if the probe of the group filtes6k modem. Tens or hundreds of thousands would exceed
returns positively. Proxied searches are then carried obié capacity of much wider connections.
within a group, where more precise (more bits per file) The newer distributed file systems, CFS and PAST, fo-
filters are kept and exchanged between $h&— nodes cus on data access, not on data lookup. Both view their
in a group. Experimental results show that both bandystems as collections of multiple read-only file systems,
width/search and time/search are improved with this nowehere few authors are the only modifiers of data. The
grouping topology. search problem existent in Gnutella, and other highly dis-
parate distributed file systems of the same generation,
maps entirely onto these new systems: there are still large
1 Introduction numbers of nodes and no good mechanism for them to
locate information based on file names without a central-
Centralized large-scale file systems like AFS, its succézed repository of information. In both SOSP 2001 papers
sor CODA, and NFS have proliferated for two decades CFS and PAST, the authors leave searching as an open
[8, 9, 19]. AFS systems at universities have scaled pooblem for future work.
50,000 nodes or more. More recently, a drive to elim- We propose applying Bloom filters[2] to the problem
inate the bottlenecks imposed by centralized bookkeep-searching in a large-scale distributed file system. One

mechanism would distribute a filter from every node thave been unnecessarily interrupted from handling other
every node, and would lead to reduced bandwidth coqueries or performing other activities.

sumption compared to querying everyone and to moreFreenet has two main enhancements beyond Gnutella:
pinpointed (and therefore faster) searches; this would b
at the cost of storage of the filters at each node that woul
scale linearly in the number of nodes. At the price of 2. It caches search results on their way back to the
more storage used at each node, even fewer query mes- search’s originator.

sages would be necessary if this mechanism emplo?iﬁ1

Compressed Bloqm Filters instead of rggular ones [1 m that maps on to the newer distributed files systems of
A second mechanism would develop a hierarchy of ﬂlteré,FS and PAST — is a good mechanism to locate unigue

where each node would only store a summary filter frOFc]entifiers in the network. All three systems essentially
each subgroup of the system, and then only direct querjes

to nodes in this subgroup if ts filter provided a mate .ash names to unique identifiers but none provides arapid,

One could imagine this hierarchy extending several leve va-bandwidth search.
9 y 9 PAST and CFS differ primarily in their replication

as the number of nodes increased. Other filtering mecha; .
;) . scheme both to allow quick access to data through local-
nisms and topologies clearly exist.

. ... ity and to grant reliability as nodes enter and leave the
We have developed a testbed that emulates ad'St”buﬁ%ﬁ/ork [5, 4]. Analogous to the primary difference be-

file system in both fully-connected and grouped topolcg\—Nee

ies. We have experimented on this system with a varj- N AFS and NFS, PAST copies whole files and CFS
ges. W\ . P o y {istributes block-by-block. CFS has the advantage of par-
ety of filter sizes and with different flavors of compres:

allel download of different parts of the same file from dif-

sion. We have found that almost any filtering mechanis]r(grent nodes. As noted above, both leave name searching
is superior in terms of bandwidth per search and spegg an open ﬁroblem '

of results to naively querying all nodes when the con-
tents of the nodes are not unrealistically dynamic. Fur-
ther, we show that grouping, even when the subgroups &€ Related Work

randomly constructed, beats fully-connected filtering. We 5 haqes have used Bloom filters to make searches faster
also demonstrate that the time for compression can malf.q the early 1980s; R*'s distributed join algorithm uses
using Compresseq Bloom F!Iter§ significantly slowerthemem, for example [11]. More recently, they have been
non-compressed filters and is highly dependent on the URsq in two research systems projects, one of which is

derlying compressor. . _currently in real-world use.
The remainder of this paper proceeds as follows: in S€C-Fan’s “Summary Cache” is a method for reducing the

tion 2, we look at distributed file systems and at other r&;,\\per of search queries in hierarchies of HTTP web

cent uses of Bloom filters; in section 3, we go into MOIE, che storage servers [6]. Without summary caches
detail into the theory behind the tradeoffs in using d'ﬁeréervers would query all nodes in their hierarchy and wait

ent types of Bloom Filters and Compressed Bloom Filtefs; 5 yesponse from each. Since any number or even all of
and we discuss how group filters work; in section 4, W e responses could be negative (the file in question had
describe the |mplement'at|(-)n of our testbed system and fhig ,e\iously been stored in the hierarchy), hierarchies of
protocol used for grouping; section 5 examines our exXpel -hes did not scale well. Summary caches are Bloom fil-
imental results; section 6 discusses future directions far <, maries of the contents of each member of the cache
the project and concludes. hierarchy. Because Bloom filters never generate false neg-
atives, there is no need to query caches whose filters show

. It gives each object a unique identifier.

at it does not provide — and is exactly the same prob-

2 Background that they do not contain the file. With summary caches,
Fan was able to reduce the number of intercache protocol
2.1 Disributed File Systems messages by an order of magnitude and reduces the band-

width consumption by over 50%. Summary Caches have
Gnutella and Freenet are successful, working distributbdcome a part of the Squid Web Proxy cache that is used
file systems that do not suffer from the constraints of ceat many university and corporate gateways.
tralization, like Napster, NFS, and AFS [7, 3]. Both use Like CFS and PAST, OceansStore is another widely dis-
a “hop-based” approach to handle queries, where a nddbuted file system [10]. It focusses on data protection
directly queries its neighbors which then forward the rend availability through redundancy and cryptographic
quest to their neighbors, and so on. If one of these neiglkehniques, aiming to provide these through pro-active
bors is slow or congested, then the search is slow. If ntovement and caching of data before network problems
node on a particular path away from the originator hascur. OceanStore uses “attenuated Bloom Filters” to per-
a match for the query, then all of the nodes on this patbrm local (searches of nearby nodes) quickly and then

- 'I \ Because the nodes are fully connected, they can directly
NN ! probe each other with queries and each node can send ev-
: | ery other a summary of its contents. Figure 3 shows the
S0 paths for queries and filters in a complete graph with six
I nodes. Because the number of edges at any given time is
L€ nn=1) \which is quadratic in the number of nodes, trying

-~ 2 !

|
|
~/ \ e /
oo - / to propagate messages to all nodes (or even a small frac-
I
|

’ % tion) as the number of nodes gets large leads to difficulties
EfF-—__T / like router buffer overflows and low response times.
D In our analysis of using Bloom filters to improve
gueries in distributed systems, we have first compared the
Figure 1. Fully connected search netwogkjuares repre- benefits of when filters are distributed to all nodes and
sent independent nodes. Dashed lines represent node-sizedvfilen queries can pass among all nodes. After comparing
ters (filters based on a function of the number of files stored q}@ naive approach of Sending a query to all nodes we are
node), which are transmitted in both directions along each liggnnected to (which in our implementation, was all of the
(e.9. B~ D and D— B). nodes in the system) with using two filtered approaches,
normal and Compressed Bloom Filter, we examine an ap-

falls back to a slow but reliable hierarchical method if thigIIcatlon of composite filters that describes roughly the
c(;jontents of a group of nodes.

fails to produce results. Similar to our grouping metho
which performs a logicaDR on a distinct subgroup of
its neighboring nodes, the attenuated Bloom filter d&1 Naive Filtering

scribes each directed edge in the network. OceanStore . _ L
does not have the concept of hierarchies of filters with i€ SImPlest toimplement and visualize, “naive” filtering

creasing reliabilities or of representative nodes that cdh£ans No f||ter|ng(;at all: whenha_llno:_e performsha search,ll(t
tain their subgroups filters; all nodes are representatid1tacts every node it can. While this approach may wor

in OceanStore. for extremely dynamic systems where any summary in-

. ._formation that would assist in improving search accuracy
Other schemes being developed seek to optimize L . : .
o . . ould expire immediately, it has the drawback of being
searches for peers that exhibit locality of interests [21].

oth high in bandwidth consumption (many messages are

Using their idea, a query would be categorized and thggm per search) and slow. If files are evenly distributed

sent to a part of the network that had a high concentrgﬁd if the file a node is searching for actually exists in

tion of nodes that were also interested in this categom. o .

. ., . e system, a search will yield a positive result only after
Sripanidkulchai’s proposed solution works on top of exéontactin half of the nodes. on average
isting protocols like Gnutella, Chord, and Pastry, and as- 9 ' ge-
sociates lists of peers who share the same interests. Like
us, they argue that for scalability, it is impossible to mair8.2 Bloom Filters

tain up-to-date state for all peers. Their project is still in o] o
development and it did not have published results at tAgBloom filter is a quick and space-efficient data structure

current date. Our filters and particularly our grouping arid” 'éPresenting a set of elements to support member-

subgrouping would interface well with their locality in in-ShiP queries. To represent a et= {s1, s3, ..., 5,} of
terests idea. n elements a Bloom filter uses an arr&yof m bits and

k independent hash functionk;, hs, - - -, hj, with range
{0,1,...,m—1}. Initially, all the bits of the array are set to
. 0. An element of S is included in the Bloom filter by set-
3 Query M echanisms ting each of the bité; (s) to 1 forl < i < k. To verify if
anitemz is in S the bits with indiced; () for1 <i <k
Our model of a distributed file system allows every nodf the arrayX are checked. Clearly, if at least one of them
direct communication with every other node. This modelg 0, z cannot be a member &. If all of them are set to
the environment supplied by both CFS and PAST, whete; is assumed to belong t§. However, this assumption
every node can “mount” the file system of every pubs incorrect with a certain probability since the same bit
lisher and then query it directly. Of course, the underlyingbuld be set to 1 for multiple items. That is, a Bloom fil-
network, usually IP, does not supply direct connectionsr may generate false positives, where it indicates that an
among all nodes. element is in the set even though it is not.

Since in our design each node maintains a local Bloom 0.6 ——
filter to represent its own file system, changes of the set ,,
S must be supported [6]. This is achieved by maintain-
ing for each location bit in the Bloom filter a count of g
how many times that bit was set to 1 (i.e., the number cg 01} .
elements of S that hashed to that bit position under thg | i
collection of hash functions used). This array is convens
tionally said to contain the bitphase All the counts are & ooor i
initialized to zero. Whenever a fileis added or removed 0.04 1
from the file system of a node; counts corresponding 002}]
to the bits with indicesi (), ho (z),- -+, hy (z)are in- . L L
cremented or decremented, respectively. Whenacount 2 4 6 8 10 12 14 16 18 20
changes from 1 to 0, its corresponding bit is turned off Bits per File
since all the files that hashed to that bit had been re- , . i ,
moved. In addition, we maintain a saturation variable {:dgure 25 Theoretical False Positive rates for increasing
keep track of the total number of bits that are set to 1 FitS Per file,5-
the Bloom filter. If the number of files at a node increases,
we expect the saturation count to approach the length of
the filter in bits. When the filter becomes saturated, i.e., a

majority of the bits are 1, the false positive rate increases,uea“y, if Bloom filters can be efficiently distributed

and the filter must be re-created to accommodate the Hﬁd stored, their use will preempt many unnecessary

crease in the number of files at the node. In our simyyery messages from ever leaving the origin of the search.
lation, Bloom filters are regenerated when the saturation

variable exceeds a given percentage of the filter's capaciéy. i
Itis useful to notice that in the Bloom filter data struc3-3 Compressed Bloom Filters

ture there is a clear tradeoff between the amount of Aq Mitzenmacher suggests in [12], Compressed Bloom
memory used to represent the Seand the probability of iterg may be more appropriate in situations when the fil-

a false positivef. Assuming that the hash functions useg,; is not only a data structure used to summarize infor-

are random, after inserting keys into a table of sizéx, 4ti0n at the nodes, but also a message that is passed
the probability that a particular bit is still O is exactly: between the nodes in order to support updates in a dy-
kn namic system. By using Compressed Bloom filters, nodes
1 —kn . o
(1 — _> ~em can reduce the number of bits broadcast, the false positive
rate, and/or the amount of computation per look-up. The
main cost of filter compression is the increased memory
requirements at the end nodes that must process the larger
uncompressed version of the filter. Additionally, the end
1\ Fn sk points must compress and decompress the transmitted fil-
(1 — <1 — —)) =S (1 — eT") =(1- p)’“ ter, thus ensuring additional processsing requirements.

m The optimization problem for Compressed Bloom fiters
an be cast in two ways. First, in parallel to the regular
ilters optimization problem, in the case of Compressed

ﬁoom filters, one can also optimize for the false positive
rate given a constraint on size, i.e., the number of trans-
mission bits. That is;w andk can be chosen to minimize
k= m the false positive rate subject to a constraint on the size
= (In2) (—) Ject Ic
of the compressed/transmitted filter,If p denotes as be-
fg)re the probability that after n insertions a particular bit

In this case the resulting minimum false positive ratef . . .
equals g P is still 0, the expected size of the Compressed Bloom filter

ismH (p), whereH (p) = —plog, (p) — (1 — p) log, (p)
k - is the entropy function.
f= <§> = (0.6185) " According to the analysis in [12] the number of hash
functions that minimizes the false positive rate for an un-
Pictorially, the false positive rate follows an exponercompressed Bloom filter maximizes the false positive rate
tial curve of the form in Figure 2. when the filter is compressed. More technically, sub-

T T T T T
Theoretical FP rate —t

0.12 - B

Lettingp = e%“, the probability of a false positive in
this situation is

According to the analysis in [14] and [16], the optim
number of hash functions that minimizes the false positi
rate above for a given size of the Bloom filter is given

by

ject to the constrainin x H (p) z the expression

<
AN
defining the false positive ratgé (— exp) =

—k

(1—p) () wherep = =", achieves a global /L
maximum forp = 1, or equivalently fork — (In2) (). |
It can be shown that given a number of transmitted bil
per entry = and the contraintn = 7, minimizing | A
|
|
|
|

H(p)’
f is equivalent to minimizing the expressian(p) =

1
ln(l p) + m(,f) The derivative ofx (p) becomes 0 when

p= 5, is negative fop < 1 5 and positive otherwise. That
p < = |mpI|esk < In2(%) indicating that Compressed C
BIoom filters achieve a smaller probability of false pos-
itives by employing a smaller number of hash functions
than the optimal number of hash functions for regular

Bloom filters that use same number of transmitted bits p[gr ure 3: Group-based search netwariuares represent

entry. independent nodes. Dashed lines represent node-sized filters.
Alternatively, for a given false positive rate one camhick lines are group filters and travel in the direction of the

optimize for the compressed size Asymptotic analy- arrow. Ovals represent groups. A is the representative of group

sis shows that the theoretical size of a compressed filfeD of group 1.

achieving the same false positive rate as a regular Bloom

filter approaches = m In 2, wherem is the of the size of

the standard filter.

Group 0

and may impose additional time requirements. In addi-

tion, Lossy Dictionaries imply a small rate of false nega-

In brief, theoretical results suggest that compressumeS (i.e., negative response for an entry in the set), which

can be used to improve performance in a distributed s;iﬁay not be a desirable feature for some systems
tem by reducing the false positive rate for a given com- '

pressed size and by reducing the transmission size for a

given false positive rate. In addition, Compressed Bloom

filters use smaller number of hash functions, which could)
potentially decrease the amount of processing per look4 Adgregate Filters

up- When we began looking at having every node have a fil-
As suggested in [12], arithmetic coding has been usgg from every other node, we immediately recognized
to compress filters. The choice of arithmetic coding is Nahe problem that in order for filtering to truly scale it had
ural since this scheme achieves “near-optimal compregsrequire less than quadratic communication among the
sion with low Val’iab”ity” in flttlng with the theoretical nodes. By grouping nodes and then Sending less precise
analysis which assumes that optimal compression is f@#ers which describe all of the files in these groups, we
sible. We used a publicly available adaptive arithmetigalieved that less overall bandwidth and per-node storage
compressor implemened by Carpinelli, Moffat, Neal, angould be used at the expense of some complexity. What
Witten [13]. The compressor was run with default paranjye describe and what we have tested are two-tiered ag-
eters and the bits option on. gregate filters, but the reader can extrapolate that a similar
Similar highly compressed filtering mechanisms exigirouping system would work recursively.
and would be interesting to try on the same problem. Aggregate filters are the “logical or” of all of the filters
Lossy Dictionaries, for example, weigh each member of a group. A probe against an aggregrate filter shows a
the setS, and uses a greedy algorithm to build a dictionatch in the group with high probability, but, obviously,
nary of maximum weight given constraints on space[15}.cannot also tell which member of the group contains the
The dictionary consists of two tables of equal length. Threal match. The group size we use in our experiments is
keys in the sefS are hashed to a cell value in one of théog(n) of the nodes.
tables, and a union-find data structure is used to solve coldf group filters are less precise or if a content-based
lions in an optimal manner. To verify if an element begrouping scheme is used as described later in this section,
longs to the sef, at most two cells of the dictionary musteach node will use less storage with group filters than if it
be checked. Since the data strcture requires at most tstored a filter for everyone, even if it stores precise filters
memory accesses per query, Lossy Dictionaries may dieits immediate neighbors. Figure 3 portrays the topol-
more time efficient than Bloom filters. However, the comgy of aggregated filters. Init, A and D aepresentative
struction and updating of this data structure are not trivialpdes that receive inter-group sized filters from the nodes

in their group. The size of intergroup filters depend on the
total number of filesn the groupx the group bits per file
rate, which can be less that the intragroup size, in order
to generate smaller, less precise intergroup filters. For ex-
ample, A, B, and C all contain some number of files and
communicate among themselves about how large to make
their intergroup filter. B and C send A a Bloom filter (pos-
sibly compressed, as it will be mostly empty), A tHeRs
these filters with its own of the same size and send it to any
requestors that would like a summary of the groups con-
tents. A, B, and C all exchange filters like in a microcosm
of Figure 3. Because the cardinality of the subgroups are
substantially less than the total number of nodes, far fewer
filters need to be exchanged. Where we ﬂé@—l) filter
messages before, with log(n) groups there are:

n

o ((ontopt 1) |

2
log(n)(n —log(n)) + (n — log(n))(log(n))
where the first term is the number of aggregate intergroup
messages, the second is the number of intragroup mes-
sages, and the third is the cost of group members sending
the representatives their to-be-aggregated filters. Looking
at how this grows with the number of nodes, we see:

| Nodes [Fully Connected Edge$ Grouping Edges|
1,000 499500 19742
10,000 4999950000 3321392
1,000,000| 5 x 10! 39862362

Further subgrouping through recursion would reduce the
number of messages even more.

the first neighbor or group that matched. If none
matched, it chooses another file (which is does not
already have within its local file system), and begins
probing again. The Search object is then added to the
list of ongoing searches, and the thread goes back to
sleep. Note that because the Query thread only ini-
tiates searches and these are then completed by the
Protocol thread, there can be multiple searches and
proxied searches occurring concurrently at the same
node. In the experiments, we saw many searches tak-
ing over one second to complete, although they were
beiing generated at a constant rate of approximately
one per second.

File system changer This thread waits for a (different)

random number of milliseconds specified in the con-
figuration and then updates (adds or removes) a file
from the node’s “shared” files. It rebuilds the copy
of the node’s filter (based on the bits changed and
phase) and adds a new entry to the list of filter deltas,
noting the (possibly zero) bits changed and a times-
tamp for the action. This timestamp is used in the
filter deltas, described in Section 4.2.

Protocol Server This thread functions as a UDP server,

listening for protocol messages, responding to them,
and then resuming listening. The actions it takes are
outlined in Section 4.3. It serves to send neighbors
any of this node’s filters, to ACK or NACK query
verify requests, and to proxy intergroup searches to
other nodes in the same group, using its more precise
intragroup filters.

Cache Refresh This thread looks at the caches of neigh-

4 System Design and Implementa-
tion

Each node in the system is an independent Java process

bor, group, and possibly representative filters and, if
any are significantly out of date (null in our case),
sends the node a request for its filter. It is primarily
used to bootstrap the system and sleeps when all the
nodes are up and the filters have been distributed.

consisting of four threads. Because they are §eparate PrOThe system also consists of two extra processes: one
cesses, they can run on _separate machines, ideally |9t%tstrapping:onfiguratorand oneLogger The Con-
the tests scale to many (i.e. 1000) nodes. The componggt ator supplies a stable base from which any node can

threads of the system are:

discover the parameters for a particular experiment (e.g.

Query This thread waits for a random number of milwhether to use compressed deltas). It is identified by its
liseconds based on an entry in the configuratidff @ddress and port, as are all the nodes. The Logger sits
and then chooses a random file from the domain ¥fiting for Log messages about the events in the system
all possible files (also part of the configuration) t&0 arrive from the nodes and aggregates them.
search for. Described in more detail in Section 4.1, The code is approximately 5700 lines of Java split up
the thread probes the local cache of neighbor’s nodé&$0 35 classes.

for matches. If any are found, it creates a Search ob-
ject and associates with it any neighbors (or groupa)_l
whose filters said they matched. For “naive” filter-

Filter Implementation

ing, all filters match. The Query thread then initiThe implementation of the Bloom filters is based on the
ates the search by sending ouVerify message to analysis in [16]. Ramakrishna suggests using Universal

hash functions of the form: 11

Add ‘a’
(1,2,8,9)

Add ‘¢’
(1,3,6,8)

Remove 'b'

he,a(w) = ((cz + d) mod p)mod m, and ° (2.4,6,8)

Hi=hea()|0 <e<p,0<d<p

Herem is the size of the filter, which we calculated®
as the number of files stored at the nadéhe bits per
file, which is part of the configuration for each experi-,
ment. Values for ¢ and d were randomly generated by the
Configurator at the beginning of each experimgntvas o
chosen to be a large prime number less than the maximuim t Time t, Time t, Time t,
value of an integer on the machine we were using. Empir-
ically we found that indices were well distributed over thgjq re 4: Filter Deltas. At time to, the filter is created: at
size of the filter. time t,, file a, which hashes to (1,2,8,9) is added. Because bits

For bookkeeping, each node associated a saturation anghd 8 are already set, only bits 1 and 9 (in bold) are changed
a phase with its local filter. This information was nogalthough the phase at all four locations is updated). A time
passed among nodes. The saturation kept track of fliebis removed; 2 and 8 is not switched off because their phases
number of changes to a filter, and the phase noted tkre greater than zero. At tinte, file c is added. If a requester’s
exact number of times a bit had been set to 1. With tffgestamp ist;, the counter would put -1s at indices 4 and 6,

phase, we were able to unset bits (and include removal<S{i! then add one at locations 3 and 6, giving index 6 a net value
deltas) of zero. The delta bit array sent back to the requester would then

have bits 3 and 4 set. The requester would flip these bits, setting
index 3 to “on” and index 4 to “off,” giving it the correct current

4.2 Filter Deltas filter.

In order to reduce the size of the messages being sent be-

tween nodes, we implemented a system of timestamps &Meviously, if the requester’s timestamp is earlier than the
filter deltas. Instead of only including new bits to “turrPrigin of the filter (i.e.Zo), the requester must be sent the
on” (or their indices), we send a bit string which is thentire filter.

size of the original filter with the bits the receiver needs to

invert set to one. Becr_;luse this array is sparse, it acts likaa Protocol

Compressed Bloom filter, and is highly compressible. In

addition to keeping track of a filter to associate with eackhe protocol used to communicate among the nodes be-
node, nodes must associate timestamps with each filtee@ines significantly more complex as it move from the
their cache. They send this timestamp with every filtavorld where every node is a neighbor to the world of
request and then the responder decides whether to segaups, representatives, and proxied queries. The proto-
new filter or a filter delta. col for a fully-connected system works as follows:

w
BREREREREREEREEREIEE

RREREEREREREEREREE

RREREEEREEEREEE)

[elrlrlrlolrlr]olr]r]o]o]

Because the responder keeps a list of which bits wef&RIFY Verify that the receiver actually has a file and
turned on with a file add or off with a file removal, it that the sender did not have a false bloom hit. Re-

can generate exactly which bits need to be set in the re- SPonds with either an ACK or a NACK.

guester’s filter, given the timestamp of the requester’s cuy: . .
rent filter. Which bits to flip is determined by the follow. \CK_Node acknowledges that it has the file requested.

ing algorithm: NACK Node says that it does not have the file requested.
In our original implementation, NACKs would then
always trigger a filter request from the receiver, be-
cause it assumed that its filter was out of date. To
2. Each time the bit is set to one, increment the counter €liminate these two messages, the timestamp of the

at that slot. Decrement when the bit is unset (e.g the Nnode’s filteraccompanies every VERIFY request and
removal at»). then a filter delta (or a whole filter) can piggyback

on the NACK. ACKs also have the ability to port fil-
3. Any bit that is non-zero, set this bit to one in the bit ters, and could do so if the timestamp showed the
set sent to the requester of the filter. requester’s copy of the filter was very out of date,

1. Create an empty integer array the size of the filter,
initializing all slots to zero.

Proxy request group and its representative (representative), (4) for an in-

H /-\' tergroup proxied search (proxy).
T

roxy response
(opt. wifilter)

D (representative)

VERIFY Intragroup follows the same form as above, in
the fully-connected protocol. Between groups, this
initiates a proxy search, where a randomly chosen
node in a group uses its filters to search for an extra-
group node. A proxy verify message signals that the
requester is performing a proxied search.

Intergroup

Intergroyp
Search|

Components
of grqup filter

ACK Intragroup ACKs work as above. Intergroup ACKs
signal the end of a successfully proxied search.
Proxy ACKs come from within the same group and
cause an intergroup ACK to be sent back to the query
originator.

Intergroup

Intergroup
filter response

NACK Intragroup NACKs work as above. Intergroup
NACKSs signal a negative group proxied lookup and

Figure 5: Grouping communication protocol(A,B,C), may initiate another intra- or intergroup VERIFY
(D,E,F), and (G,H,I) are groups. E and F send their group-sized equest if more filters match; otherwise there has
components of group (D,E,F)'s intergroup filter. D, the repre- been no match for the search. Proxy NACKs come
sentative of this groupQRs these filters with its own group- from within the same group and initiate a lookup in
sized component and sends it to C, which has requested it. B the list of ongoing proxied searches; if more possi-
is performing a search and its cache of intergroup filters has ple nodes from within the group are found, another
suggested that group (G,H,I) has the file it is looking for. It proxy VERIFY message is sent, otherwise an inter-
randomly chooses H to proxy this request to the rest of group group NACK is sent to the originator. Filters can
(G,H,l). H looks at its more precise intragroup filters and at its piggyback on both intragroup NACKs and proxied

locally shared files and determines that | might have the file B
is looking for. | responds to H with a NACK, which then in ggn?g;}:jpthey are both always to members of the

turn responds to B with the same. B will then ask G, (G,H,l)’s

tative f int filter.)
representaiive fora new intergrotp Titer FILTER REQUEST Intragroup filter requests work as
above. Intergroup requests are only directed to the

but this was not used. The Search object for this file ~group’s representative, as only this node holds all
is contacted and it initiates a new VERIFY request if ~ Of the composite filter components. Representative
there are more possible nodes to contact or it signals requests come from the group representative and in-

that the search has completed unsuccessfully. struct the receiver to respond with its intergroup filter
component.

FILTER REQUEST Node requests that the receiver _
sends it the receivers filter and timestamp. FILTER RESPONSE Intragroup this works as above,

but more often these are piggybacked on intragroup
FILTER RESPONSE Node receives filter from a neigh- and proxy NACKs. Intergroup filter responses send
bor and adds it to its cache of filters, possibly by ap- the extragroup node the logic®R of the con-
plying deltas. stituents of this group; these only come from the rep-
resentative.
Currently, the initial bootstrapping of network discovery
is part of the configuration received from the Configura-
tor, but the ability to discover the network existed in th& Experiments
protocol of an early implementation.

The grouping topology and communication is moréVe examined network usage from two perspectives: (1)
complicated but based on the same protocol. The growpmore idealized, evenly distributed network where all
ing topology, seen pictorially in Figure 5, consists of theodes start off with the same number of files and add
same messages as in the fully-connected case, folloveadi remove files at the same rate and (2) an empirically
by a flag which further describes the action to take. Thederived model based on studies on the actual usage of
flags show whether the action is: (1) within the group (irfile sharing networks like Gnutella [1]. (1) is actually
tragroup), (2) among groups (intergroup), (3) betweenret as idealized as it may seem because a collection of

Bandwidth Consumption (32 nodes, Unbalanced) Naive Approach (Broadcast)
T T T 550 T T

350 T 140000

T T
Bandwidth —+—

R 4ebpt/3ht----- Semmmmmmm oo ==ge==3 500 Time V.

? 300 5 bpf/3hf - T a0l + 120000
2 f/4hf B s
£ 8 bpf/5h o | & 40k i —
S 250 | 10 bpf/7hf I 5 100000 @
g L 12 bpf/ghf - - 5 350 - 4 S
2 Koooooeo-eoo. 16 bpfilihf e 8 480000 3
5 200k g 5 bpt/3hf 8 gbpf/Shf- Ao 5 300 h @2
g _— 8 bpf/5hf 12 gbpf/8hf A 2 5ol | z
£ -2 bpf/8hf; 16 gbpf/11hf —— £ - 60000 <=
g 15 5 bpt/3hf; 16 gbpfLLhf e e 2 200 i o

- m 4 E
E NN 2 150} o a0000
o s o

Loa 100 - g

100 ~ - 20000
: 50 [e
50 1 1 1 1 0 1 1 I B it E—
0 100 200 300 400 500 600 700 800 0 0.05 0.1 0.15 0.2 0.2 0.3
Search rate (avg searches between FS delta) Percent of Domain of File System at Each Node

Figure 6: Bandwidth consumed per search in an “unbdtigure 7: Bandwidth/search and time/search consumption
anced” network, where very few nodes store almost all efhen performing naive file queries
the files.

the communication among them. At startup, each node

distributed file systems, like CFS and PAST, may foleceives a list of all the neighbors in the group. Also
low a more balanced and controlled model of usage thaﬂ startup each node contacts [@enﬁgurator process
the highly decentralized Gnutella. Adar and Hubermargr a derived configuration file in which we specify dif-
study on Gnutella usage shows how very few nodes gegent parameters such as run time, number of distinct
the sharers of the vast majority of files and thatr0% files in the distributed file system, values ferand d,
of nodes share none. They refer to this disparity as “fr@ghether the node is Representativevho are the mem-
riding.” In a distributed file system, publishers may seefers of the groups (if the experiment is using grouping),
to load balance their own multiple publications and suchtgne between two consecutive searches, the type of search
disparity may not materialize as these systems come iffethod used (Naive, regular Bloom filters, Compressed),
fruition. Most of our experiments follow the more idealetc. In the case when the configuration file specifies that
ized system of (1), although we do look at an unbalancgfoom filters are used, the thread generates a Bloom fil-
system in Figure 6. The unbalanced system follows th for the files in its file system, based on the parameters
same behavior as seen in Section 5.5. in its configuration file. Each process then starts its four

Because the tested system is fairly complex, with nthreads, as described in Section 4, that send filter requests
merous variables to change, we mainly tried varying thogg other nodes and that begin generating file queries.
which we postulated would have the largest affect. For ex-The experiments were run on machines with Linux
ample, we did not experiment with many different typeg 2.16 kernels, 800 Mhz Pentium Ill processors, and 1G
of hash functions. Instead we varied the number @gfaAM. The external compression process forked to per-
nodes, the? rate, and the number of hash functions usegbrm delta compression and Compressed Bloom filters
the rate of search (the amount of time Qeerythread ysed /tmp on the root disk.
would sleep for between initiating new searches), whetherygR|Fy, ACK, and NACK packet sizes were 20 bytes
deltas were used and whether they were compressed, @géh. Filter message sizes depended on the bits per file of
whether the filters themselves, when propagated in thgigiven experiment. A NACK could also be large if a filter
entirety, were compressed. was piggybacked onto it.

51 Experimental Setup 5.2 Naive (Broadcast) Queries

All of the experiments presented have data collected olrathe naive approach, each node does a search by se-
system running with 32 nodes and each node generatiopgentially querying every node on the system until it gets

a search request every second. The distributed file sgspositive response. Thus the bandwidth consumed per
tem has 4000 distinct files and each node generates $@@rch is dependent on the number of requests and re-
out of those 4000 files at system startup. All the nodeponses sent per search — no filters exist to add band-
are threads running on the same machine and have a (pdadth. The number of messages exchanged between the
number, IP) pair that uniquely identifies them and enablesquestor and the rest of the nodes is dependent on the

percent chance that the requested file is at the node being Average milliseconds per completed search
queried. Since every file from the distributed file system 35000 . = ——
has an equal cha_nce of t_)elng at the pinged node (in the ;00| ot o —
test results for this experiment), the percent chance ofa

node having the file as the requestor searches for is ti§e
same as the ratio between the number of files at the node 20000F - oo 8

%)

and the total number of files in the distributed file systemg 150001 |
When a node has a large percentage of the files in the sy&-
tem, the chance of that node being able to send a positi#e 1000 |
response is higher. In our experiments we varied the ratio sooo| i
between the number of files at a node and the total num- | —— L .
ber of distinct files in the system. The results are shown in 4 5 6 7 8 9 10 11 12
Figure 7 on the left y-axis. As can be seen, the bandwidth Bits per File

per search grows almost exponentially as the number of
files at the nodes decreases. In the case when a node con-
tains 30% of the files in the file system, the false positive
rate is 0.7 on average and the bandwidth is approximat&y3 Segrch Time

50 bytes per search. As the number of files at a node de-

creases, the false positive rate grows and, in the case whefrigure 8, we compare the average amount of time re-

anode has 2% of the files, the false positive is about 989slired to complete a file search in our system for two
search mechanisms: standard and Compressed Bloom fil-

Figure 7's right y-axis shows the time spent per sear¢fyys - Grouping times, because they are much smaller are
Note that this time is a little bit higher than in reality sinCg;an in the following table:

we do not account for searches that did not complete at the

time when the tests ran for the specified period. The time

spent also grows exponentially as the number of files|aBroup Combination | Milliseconds per Search
the nodes decreases. It starts with about 0.8 sec/searsbpf/3hf, 8 gbpf/5hf 35.4
when a node has 30% of the files and goes up to 128 bpf/5hf, 12 gbpf/8hf | 39.4
sec/search when a node has only 2% of the files. Not&2 bpf/8hf, 16 gbpf/11hf| 182.1
that our implementation of naive queries sequentially agks bpf/3hf, 16 gbpf/11hf | 62.4
neighbors; i.e. it first waits for the neighbor’s response
before asking the next neighbor. There obviously could

be a time improvement at a higher bandwidth cost if a

node sent all requests in parallel to all neighbors. In thid1e groups use non-compressed Bloom filters. The ex-
case, searching for a given file, the time would take juBeriments were run for 15 minutes in a system with a rate
the round trip time to a node on the network, if the ne@f 800 searches per file change at a node.

work could sustain this usage. However, the bandwidth Search time is defined as the elapsed time from the mo-
expense will be nx (bandwidth for a request + a responsgyent a query is submitted until the moment either the
where n is the number of nodes on the network. The barfdst positive acknowledgement is received or the last con-
width usage per search will always be the same and will t&eted neighbor replied negatively. Note that in the case
equal to what the bandwidth per request is in the sequéilters, our definition accounts for the amortized time
tial naive case that we implemented with nodes having 2®quired by updates and initial set-up phase, as well as the
of the files of the file system (note that in the case whertigne necessary for hashing and sequential filter checking

node has only 2% of the files we are likely to query all that the node that generated the query.
nodes). Time per search for all filter configurations increases

. i . . with the number of bits per file used at the nodes. A higher
In conclusion, for file systems in which the nodes havg, her of hash functions and longer transmission times

30 or more percent of the files in the system, sequentigle nt for the almost proportional increase of time per
search ‘(’)V'" be better. In the case when a node has I85,.ch as a function of bits per file in the case of Bloom
than 10% of the files, sending simultaneous requestsgighs although the false positive rate drops, longer pro-

everyone will work better. cessing and transmission time for the larger filters com-
pensate for the lower frequency of updates.
To compare processing time at nodes for regular and
compressed filters we selected the parameters of the lat-
ter such that bandwidth consumed per search is approx-

25000 - e

Figure 8: Time per Search

10

0.9 . . P — . . positive rate correctly because we are not recording the
er-node filter size behavior on a per-filter basis, only on a per-node’s cache
basis. In other words, we are not keeping track of the total
number oNACK messages generated by a particular filter
and dividing by the total number ®ERIFYmessages this
filter has generated. We are confident that the problem is
one with measurement and not with implementation (and
we are unable to extract the information to compute the
rate in this different way from our current completed ex-

0.8 -

0.7 |-

0.6 -

05

04

False Positive Rate

03

02

o1l periments).
. , I Even with this proviso, the false positive rate achieved
2 4 6 8 10 12 14 16 in our system does not entirely comply with the predicted
Bits per File minimum probability of a false positive, which decreases

exponentially with the number of bits per file. For 4, 6

Figl,;:!'le 9;? Obsirvedbfalse positive drates ffp r differir}fg tc’;@ﬁnd 8 bits per file the system’s false positive rate is partic-
perfile. Rates have been averaged over five query/ts dgjiay, high having a value of about 80%. It then decreases

rates. drastically to about 5% for 10, 12 and 16 bits per file.

imately equal for the two filter types. Due to the slow

compression/decompression mechanism, time per search

in the case of compressed filters is about 10 times lar . .
than for the corresponding standard filter with identicgf'[5 Bandwidth Consumption

transmission size. Qur experiments indicate that, at least yiscussed in Section 5.2, the bandwidth consumption
for a small system like ours (32 nodes), the compreg; he case of the naive querying protocol depends on the
sion/decompression operations dominate processing tith&rcentage of files in the system owned by each node. In
such that time savings from faster hashing (smaller NUBntrast, percentage file ownership at nodes does not af-
ber of hash funtions) and smaller false positive rates §f& the performance of Bloom filters since each mem-
'”S'Qn'f'cam- . .) ber of the system contains the Bloom filters of all other
Time per search for the grouping design is MOfg,jes and therefore have equal information regarding the
than 100 times smaller than the smallest time for fullyiterent files its neighbors possess. In Figure 10 we ex-
connected setup with regular Bloom filters. This is COIegyine the variation of bandwidth consumption per search
lated with smaller bandwith consumption for groupingsy standard Bloom filters as a function of the number of
o) |t_ is mainly due to small_er overall transrmssmn time. gaarches per file system change (i.e., a measure of the fre-
_ Similar to our observations on bandwidth consumpg,ency of updates in the system) for the fully connected
tion, the naive query protocol performs better than regr 4rouping system designs. Bandwidth consumption is
ular Bloom filters timewise when the percentage of totgfyijed into bandwidth used by filter updates and verifi-
files in the system owned by any node is higher than 10%;ion message¥ERIFY, ACK andNACK messages).
Otherwise, time per search using the standard Bloom fil- - 1o fully-connected network set-up, we ran experi-
ter mechanism is smaller. Groups compete well with the., .« \vith 4.6, 8, 10 and 12 bits file and optimal number
naive protocol even when the percentage of files owngg, - 1, functions, 3, 4, 6, 7 and 8 hash functions, respec-
by nodes is fairly_large. On average, time per search USiﬁ\gely. For the grouping design, we experimented with the
any of the grouping parameters is less than 79 ms, whylg\in 4 combinations of bits per file and hash functions

time per search for naive queries when nodes own 30%f8f the intergroup filters: (5, 3), (8, 5), (12, 8). With these

all the files is about 839ms. we associate “more precise” combinations of bits per file
and hash functions for the intragroup filters: (8,5), (12, 8),
and (16, 11).
54 False Positive Rates We observe that in the fuIIy-connec_ted system, there is
a tradeoff between memory consumption at end nodes and
In Figure 9 we plot average achieved false positives ratestwork traffic. Network traffic for Bloom filters in the
against number of bits per file. The latter is computed &dly-connected set-up is highly correlated with the false
number ofNACK messages (number of contacted nodgmsitive rates. The false positive rate of our system re-
that responded negatively to a query) over the numbermfins high at about 80% for 4, 6 and 8 bits, and it drops
verify messages (total number of nodes contacted). In reteeply below 5% for 10, 12 and 16 bits per file. As a con-
rospect, we believe that we are not recording the falsequence, the combined average bandwidth per search for

11

250 [

[] Verification consumption
200 [—

I Filter consumption

=
Ul
o

=
o
o

Bandwidth/search (bytes)

50

O fiepws glg2gdgd Ufl 234 f5glg2gdegd Ifl £213 f4 15 gl g2g3gd Ufl £213 f4 £5 gl g2 g3 g4 (Ifl £2 £3 4 f5 gl g2 g3 g4

50/delta 100/delta 300/delta 500/delta 800/delta

Figure 10: Bandwidth consumed at differing rates of searches per file system update (e.g. 50 searches on average per change in
an average node’s file system). Bandwidth is split into its two components, verification me3&aB#sY ACK, NACK) and filter
messageRILTER REQUES]TFILTER RESPONSENACK WITH FILTERwhere the filter has been piggybacked ontoNA«CK

message when there has been a file system change at the queried node). The notations on the x-axis correspond to the following
bits per file / hash function combinations: £ 4 bits per file, 3 hash functions; f2 6 bpf, 3 hf, f3— 8 bpf/5hf; f{4— 10 bpf/7hf;

f5 — 12 bpf/8hf; g1— 5 bpf/3hf; 8 gbpf/5hf; g2— 8 bpf/5hf; 12 gbpf/8hf, g3— 12 bpf/8hf; 16 gbpf/11hf; g4+ 5 bpf/3hf; 16

gbpf/11hf

4, 6 and 8 bits per file is 21% higher than the combindd verification bandwidth consumption decreases as the
average bandwidth per search for 10 and 12 bits per fikearch rate per file change grows.

Therefore, nodes can reduce network traffic by decreasingrecall that in the case of naive queries bandwith con-
the false positive rate at the expense of higher memory seimption increases exponentially as the percentage of
quirements at the end nodes. In contrast, the groupifigs owed by a node declines below 10% of the files in
setup shows little variation with the false positive rate dhe system. Namely, bandwith increases from 50 bytes per
the system. While the false positive rate varies from 75%¢arch when nodes own 10% of the total files, to 150 bytes
to 28% in the three situations we looked at, the bandwidithen they own 5%, and to 350 bytes when they own 1%.
consumption remains around an average of 63 bytes peicontrast, the Bloom filter bandwidth consumption does
search. not vary with the percentage of files owned by nodes, and

As predicted by our theoretical considerations, tHanges between an average 50 bytes per search for group-

bandwidth per search in the case of grouping is alwa r%gs and 175 bytes per search for Bloom filters with high
alse positive rates. Therefore, in a system where nodes

significantly lower than bandwidth per search in the fully-) . .
connected setup, and decreases only slightly with tH}Q’n less the_m 10% _Of the total files, B_Ioom filters are a
search rate per file change. In particular, the average baf§2" bandwidth saving search mechanisms.

width consumption for groupings is about 50% lower than

the average bandwidth consumption for 10 and 12 bits pei6 Compressed Bloom Filters

file in the fully-connected set-up. We compare the bandwidth consumption of standard and

In contrast, the average bandwidth per search in t®mpressed Bloom filters for small and medium false
fully-connected setup decreases as the number of searghestive rates in the system. To tune the compressed fil-
per file change at nodes increases. This is expected siteys’ parameters we picked the theoretical false positive
more searches per file change implies fewer updates peges for regular Bloom filters with 8 bits and 16 bits per
search, and therefore lower bandwidth consumption. THike, 0.0216 and 0.00049, respectively. In practice, we ob-
is confirmed by the fact that, on average, the ratio of filtéain an average false positive rate of 0.270 and 0.00920.

12

For a given false positive rate, we run the system with thits Per File| Band/srch| Nack w/filter | FP rate]

available combinations of bits per file at nodes and nuimg 54 172 0.221

ber of hash functions that yield a theoretical false positiye 59 187 0.333

rate closest to the desired rate and a theoretical numpeap 60 187 0.346

of transmitted bits per file below at least 90% of the bi{s13 58 219 0.219

per file ratio required by the optimal regular filters corre-46 50 178 0.232

sponding to that false positive rate. The following table16 41 303 0.0056

shows the choices of bits per file at nodes, number of haspg 42 406 0.0074

functions and expected number of transmitted bits per fileg 42 365 0.0078

for the small and medium false positive rates considergd3g 44 310 0.0159

93 42 285 0.0091

| Bits per File| Hash func| Exp Trans| Exp FP | Figure 12: Compressed Bloom Filters: Bandwidth Con-
8 6 8 0.0216 sumption per Search. Bandwidth and Nack with filter
9 3 5.36 0.0227 sizes are in bytes.
10 3 5.72 0.0174
13 2 5.32 0.0203
46 1 4.77 0.0215 to compress. In all our experiments, end nodes own 100
16 11 11.09 0.00045 files such that the size of the largest uncompressed filter
21 5 10.84 0.00042 in our experiments is 1163 bytes. To show that, we com-
26 4 10.65 0.00041 pute the size of AIACK with filter for each choice of pa-
38 3 10.20 0.00043 rameters. Observe that for less than 93 bits per file, fil-
93 2 957 0.00045 ters compress to more than the size of the regular Bloom

filter. However, using 93 bits per filter compressed to
Figure 11: Compressed Bloom Filters: Expected Trand85 bytes, while the corresponding regular Bloom filter
mission bits per File is 303 bytes long. In addition, we note that although
the false positive rates for standard and compressed fil-
ters should be identical (the parameters of the compressed
filters were chosen such that a given false positive rate is
The experiments were run for 16.67 minutes in maintained), the false positive we obtain for Compressed
system with 32 nodes, where each node generates §Wlom filters is on average slightly higher than the match-
searches per file change. We noticed that due to the lajigg rate for regular filters. We believe this result might be
compression/decompression time requirements, the iniéje to delayed updates caused by the lengthy compres-
set up period (i.e., the period between the time when tBRn/decompression process. In our implementation, fil-
system is started until every node receives and decofr compression requires a forked process and several in-
presses the filters of its neighbors) of the system is mughit/output operations, which add significant overhead to
longer when compressed filters are used. In reality, thife actual compression.
system would be run for a sufficiently long time such that Qur results suggest that Compressed Bloom filters
the additional compression overhead is amortized acr@§suld most probably improve bandwidth in large dis-
searches. Since in our experiments the system was ttibuted files system where the number of files at nodes
for a relatively short period of time, our analysis ignoregre significantly more numerous that 100.
the bandwidth consumed during the initial set-up to avoid
distortion of the results. .
6 Conclusion

Our initial plan was to derive some formula where a par-
From this table we note that, contrary to expectationicular instance of a distributed file system using filtering
bandwidth per search is on average 4.47% and 3.128enhance filename queries could plug in the number of
higher than in the case of regular Bloom filters with 8odes it had and the rate of change of its constituent file
bits and 16 bits per file respectively under all parametsystems versus the rate of queries, and out would come
combinations. Several reasons explain our results. Firte right filter dimensions. We have found that the num-
the size of the uncompressed Bloom filters is not suffier of variables is large and significantly interdependent
ciently large to achieve optimal compressions with arith— initial experiments with fewer nodes showed different
metic encoding. Due to memory constraints, we were preesults than with 32 although patterns were clearly emerg-
hibited from simulating larger file systems, with more bithg. Even with this interdependence, we believe that our

13

grouping construct provides a scalable alternative to naivip] Peter Druschel and Antony Rowstron. Past: A large-
searching and to hop-based schemes.

In the future, we would like to experiment on far more
nodes and include an implementation of Sripanidkulchai’s
proposal [21], where domains with similar interests are

late that this grouping scheme would achieve even better
results if combined with his scheme, described in section

2.2.

We would also like to perform a more thorough analy-m
sis of Compressed Bloom filters, in particular when they
are used with aggregation and deltas when the compres-
sor itself is not a major bottleneck. In particular, we think
the large, sparce constituents of the intergroup filters, sefg] John Howard, Michael Kazar, Sherri Menees, David
to the group representatives, would compress well. Be-

cause the nodes are written as separate processes and gethotham, and Michael West. Scale and performance
their configuration remotely, running them on many ma-

chines may not be very difficult.

We would also like

to analyze the actual false positive rates better; our cur-
rent implementation does not keep per-filter statistics anf®] J. J. Kistler and M. Satyanarayanan. Disconnected
these could be informative. We are confident in the under-
lying Bloom filter implementation, however, as we ver-
ified it with several separate experiments, including run-
ning it against a standard UNIX dictionary, and the resul@:o]
matched the theoretical expectations.

After a more thorough analysis of the tradeoffs in intra-
group and intergroup filter size and when to propagate fil-
ters based on file system changes, we believe that Bloom
filters and the network topology we have constructed will
be ready for a large-scale implementation on top of an ex-
isting distributed file system, like CFS or PAST. To twis ¢
an old aphorism, users cannot find what they cannot see;
we think this will let them see.

References

[1]

(2]

3]

[4]

Eytan Adar and Bernardo Huberman. Free riding di2]
gnutella.First Monday 5(10), October 2000.

Burton H. Bloom. Space/time trade-offs in hash cod-
ing with allowable errors.Communications of the [13]
ACM, 13(7):422-426, 1970.

lan Clarke. Freenet: A distributed anony—l4]
mous information storage and retrieval systenL.
http://freenetproject.org/cgi-bin/
twiki/view/Main/ICSI , 2001. [15]
Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and lon Stoica. Wide-area cooper-
ative storage with CFS. IRroceedings of the 18th[16]
ACM Symposium on Operating Systems Principles
(SOSP '01)October 2001.

14

scale, persistent peer-to-peer storage utilityPio-
ceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP '0Dctober 2001.

grouped together. Although this was not tested, we postd6] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z.

Broder. Summary cache: a scalable wide-area web
cache sharing protocolEEE/ACM Transactions on
Networking 2000.

Gnutella. Gnutella protocol specifica-
tion v0.4. http://www.clip2.com/
GnutellaProtocol04.pdf , 2001.

Nichols, Mahadev Satyanarayanan, Robert Side-

in distributed file system. ACM Transactions of
Computer SystemBebruary 1988.

operation in the coda file system. Thirteenth ACM
Symposium on Operating Systems Principl€®91.

John Kubiatowicz, David Bindel, Yan Chen, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi,
Sean Rhea, Hakim Weatherspoon, Westly Weimer,
Christopher Wells, and Ben Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Proceedings of ACM ASPLO®CM, November
2000.

Lothar F. Mackert and Guy M. Lohman. R* opti-
mizer validation and performance evaluation for lo-
cal queries. In Carlo Zaniolo, editd?yoceedings of
the 1986 ACM SIGMOD International Conference
on Management of Data, Washington, D.C., May 28-
30, 1986 1986.

Michael Mitzenmacher. Compressed bloom filters.
In Twentieth ACM Symposium on Principles of Dis-
tributed Computing (PODC 20012001.

A. Moffat, R. Neal, and I.H. Witten. Arithmetic cod-
ing revisted ACM Transactions on Information Sys-
tems 16(3):256—294, 1998.

James K. Mullin. A second look at bloom filters.
Communications of the ACM6(8):570-571, 1983.

Rasmus Pagh and Flemming Friche Rodler. Lossy
dictionaries. InAlgorithms — ESA 20Q1volume
2161 ofLNCS pages 300-311. Springer, 2001.

M. Ramakrishna. Practical performance of bloom
filters and parallel free-text searchinGommunica-
tions of the ACM32(10):1237-1239, October 1989.

[17]

[18]

[19]

[20]

[21]

Matei Ripeanu. Peer-to-peer architecture case study:
Gnutella network. InProceedings of Interna-
tional Conference on Peer-to-peer Computidgl-
gust 2001.

Jordan Ritter. Why gnutella can't scale.
http://www.darkridge.com/ jpr5/
doc/gnutella.html , 2001.

R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh,
and B. Lyon. Design and implementation of the sun
network filesystem. IProceedings of the Summer
1986 USENIX Technical Conferendé86.

Kunwadee Sripanidkulchai. The popularity of
gnutella queries and its implications on scalability.
http://mwww-2.cs.cmu.edu/"kunwadee/
research/p2p/gnutella.html ,2001.

Kunwadee Sripanidkulchai, Bruce Maggs, and Hui
Zhang. Enabling efficient content location and
retrieval in peer-to-peer systems by exploiting local-
ity in interests. http://detache.cmcl.cs.
cmu.edu/kunwadee/research/papers/
sigcommposter0%21.ps.gz , 2001.

15

