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Abstract

We have examined the tradeoffs in applying regular and
Compressed Bloom filters to the name query problem in
distributed file systems and developed and tested a novel
mechanism for scaling queries as the network grows large.
Filters greatly reduced query messages when using Fan’s
“Summary Cache” in web cache hierarchies[6], a similar
albeit smaller, searching problem. We have implemented
a testbed that models a distributed file system and run ex-
periments that test various configurations of the system to
see if Bloom filters could provide the same kind of im-
provements. In a realistic system, where the chance that
a randomly queried node holds the file being searched for
is low, we show that filters always provide lower band-
width/search and faster time/search, as long as the rates
of change of the files stored at the nodes is not extremely
high relative to the number of searches. In other words,
we confirm the intuition that keeping some state about the
contents of the rest of the system will aid in searching as
long as acquiring this state is not overly costly and it does
not expire too quickly.

The grouping topology we have developed divides�

nodes into������ groups, each of which has a repre-
sentative node that aggregates a composite filter for the
group. All nodes not in that group use this low-precision
filter to weed out whole collections of nodes by prob-
ing these filters, only sending a search to be proxied by
a member of the group if the probe of the group filter
returns positively. Proxied searches are then carried out
within a group, where more precise (more bits per file)
filters are kept and exchanged between the�

������ nodes
in a group. Experimental results show that both band-
width/search and time/search are improved with this novel
grouping topology.

1 Introduction

Centralized large-scale file systems like AFS, its succes-
sor CODA, and NFS have proliferated for two decades
[8, 9, 19]. AFS systems at universities have scaled to
50,000 nodes or more. More recently, a drive to elim-
inate the bottlenecks imposed by centralized bookkeep-

ing, lookup, and computation, has led to the development
of decentralized systems that aim to scale to millions of
nodes. The staple examples of this decentralization are
Gnutella and Freenet, but more recently two other sys-
tems, CFS and PAST, have directly addressed scaling file
distribution based on replication and intelligent hashing
schemes [4, 5]. The prime drawback in these decentral-
ized systems is that they lack a central, reliable source of
information, either for access control, versioning, or name
lookup. In this paper, we address several approaches to
the name lookup problem in large-scale decentralized file
systems.

Several studies motivate reducing bandwidth usage due
to file name lookups in large-scale distributed systems.
Two early studies, one aptly titled “Why Gnutella Can’t
Scale” [18, 20], underscore the difficulty and inherent in-
feasibility in searches in a network where a node has es-
sentially no residual knowledge about its nearby nodes
or the rest of the network. These papers and Ripeanu’s
empirical measurement of Gnutella [17] portray systems
where nodes with low-bandwidth access not only are
themselves swamped with queries, but act as anchors on
the rest of the network as well. Gnutella, the most widely
used distributed network currently in use, blindly floods
the network with search queries, which go five or six hops
away from the originator and then follow the same path
back. Ritter and Sripanidkulchai show that networks on
the order of thousands of nodes are enough to swamp a
56k modem. Tens or hundreds of thousands would exceed
the capacity of much wider connections.

The newer distributed file systems, CFS and PAST, fo-
cus on data access, not on data lookup. Both view their
systems as collections of multiple read-only file systems,
where few authors are the only modifiers of data. The
search problem existent in Gnutella, and other highly dis-
parate distributed file systems of the same generation,
maps entirely onto these new systems: there are still large
numbers of nodes and no good mechanism for them to
locate information based on file names without a central-
ized repository of information. In both SOSP 2001 papers
on CFS and PAST, the authors leave searching as an open
problem for future work.

We propose applying Bloom filters[2] to the problem
of searching in a large-scale distributed file system. One

1



mechanism would distribute a filter from every node to
every node, and would lead to reduced bandwidth con-
sumption compared to querying everyone and to more
pinpointed (and therefore faster) searches; this would be
at the cost of storage of the filters at each node that would
scale linearly in the number of nodes. At the price of
more storage used at each node, even fewer query mes-
sages would be necessary if this mechanism employed
Compressed Bloom Filters instead of regular ones [12].
A second mechanism would develop a hierarchy of filters,
where each node would only store a summary filter from
each subgroup of the system, and then only direct queries
to nodes in this subgroup if its filter provided a match.
One could imagine this hierarchy extending several levels
as the number of nodes increased. Other filtering mecha-
nisms and topologies clearly exist.

We have developed a testbed that emulates a distributed
file system in both fully-connected and grouped topolo-
gies. We have experimented on this system with a vari-
ety of filter sizes and with different flavors of compres-
sion. We have found that almost any filtering mechanism
is superior in terms of bandwidth per search and speed
of results to naively querying all nodes when the con-
tents of the nodes are not unrealistically dynamic. Fur-
ther, we show that grouping, even when the subgroups are
randomly constructed, beats fully-connected filtering. We
also demonstrate that the time for compression can make
using Compressed Bloom Filters significantly slower than
non-compressed filters and is highly dependent on the un-
derlying compressor.

The remainder of this paper proceeds as follows: in sec-
tion 2, we look at distributed file systems and at other re-
cent uses of Bloom filters; in section 3, we go into more
detail into the theory behind the tradeoffs in using differ-
ent types of Bloom Filters and Compressed Bloom Filters
and we discuss how group filters work; in section 4, we
describe the implementation of our testbed system and the
protocol used for grouping; section 5 examines our exper-
imental results; section 6 discusses future directions for
the project and concludes.

2 Background

2.1 Distributed File Systems

Gnutella and Freenet are successful, working distributed
file systems that do not suffer from the constraints of cen-
tralization, like Napster, NFS, and AFS [7, 3]. Both use
a “hop-based” approach to handle queries, where a node
directly queries its neighbors which then forward the re-
quest to their neighbors, and so on. If one of these neigh-
bors is slow or congested, then the search is slow. If no
node on a particular path away from the originator has
a match for the query, then all of the nodes on this path

have been unnecessarily interrupted from handling other
queries or performing other activities.

Freenet has two main enhancements beyond Gnutella:

1. It gives each object a unique identifier.

2. It caches search results on their way back to the
search’s originator.

What it does not provide – and is exactly the same prob-
lem that maps on to the newer distributed files systems of
CFS and PAST – is a good mechanism to locate unique
identifiers in the network. All three systems essentially
hash names to unique identifiers but none provides a rapid,
low-bandwidth search.

PAST and CFS differ primarily in their replication
scheme both to allow quick access to data through local-
ity and to grant reliability as nodes enter and leave the
network [5, 4]. Analogous to the primary difference be-
tween AFS and NFS, PAST copies whole files and CFS
distributes block-by-block. CFS has the advantage of par-
allel download of different parts of the same file from dif-
ferent nodes. As noted above, both leave name searching
as an open problem.

2.2 Related Work

Databases have used Bloom filters to make searches faster
since the early 1980s; R*’s distributed join algorithm uses
them, for example [11]. More recently, they have been
used in two research systems projects, one of which is
currently in real-world use.

Fan’s “Summary Cache” is a method for reducing the
number of search queries in hierarchies of HTTP web
cache storage servers [6]. Without summary caches,
servers would query all nodes in their hierarchy and wait
for a response from each. Since any number or even all of
these responses could be negative (the file in question had
not previously been stored in the hierarchy), hierarchies of
caches did not scale well. Summary caches are Bloom fil-
ter summaries of the contents of each member of the cache
hierarchy. Because Bloom filters never generate false neg-
atives, there is no need to query caches whose filters show
that they do not contain the file. With summary caches,
Fan was able to reduce the number of intercache protocol
messages by an order of magnitude and reduces the band-
width consumption by over 50%. Summary Caches have
become a part of the Squid Web Proxy cache that is used
at many university and corporate gateways.

Like CFS and PAST, OceanStore is another widely dis-
tributed file system [10]. It focusses on data protection
and availability through redundancy and cryptographic
techniques, aiming to provide these through pro-active
movement and caching of data before network problems
occur. OceanStore uses “attenuated Bloom Filters” to per-
form local (searches of nearby nodes) quickly and then
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Figure 1: Fully connected search networkSquares repre-
sent independent nodes. Dashed lines represent node-sized fil-
ters (filters based on a function of the number of files stored at a
node), which are transmitted in both directions along each line
(e.g. B� D and D� B).

falls back to a slow but reliable hierarchical method if this
fails to produce results. Similar to our grouping method
which performs a logicalOR on a distinct subgroup of
its neighboring nodes, the attenuated Bloom filter de-
scribes each directed edge in the network. OceanStore
does not have the concept of hierarchies of filters with in-
creasing reliabilities or of representative nodes that con-
tain their subgroups filters; all nodes are representatives
in OceanStore.

Other schemes being developed seek to optimize
searches for peers that exhibit locality of interests [21].
Using their idea, a query would be categorized and then
sent to a part of the network that had a high concentra-
tion of nodes that were also interested in this category.
Sripanidkulchai’s proposed solution works on top of ex-
isting protocols like Gnutella, Chord, and Pastry, and as-
sociates lists of peers who share the same interests. Like
us, they argue that for scalability, it is impossible to main-
tain up-to-date state for all peers. Their project is still in
development and it did not have published results at the
current date. Our filters and particularly our grouping and
subgrouping would interface well with their locality in in-
terests idea.

3 Query Mechanisms

Our model of a distributed file system allows every node
direct communication with every other node. This models
the environment supplied by both CFS and PAST, where
every node can “mount” the file system of every pub-
lisher and then query it directly. Of course, the underlying
network, usually IP, does not supply direct connections
among all nodes.

Because the nodes are fully connected, they can directly
probe each other with queries and each node can send ev-
ery other a summary of its contents. Figure 3 shows the
paths for queries and filters in a complete graph with six
nodes. Because the number of edges at any given time is
������

� , which is quadratic in the number of nodes, trying
to propagate messages to all nodes (or even a small frac-
tion) as the number of nodes gets large leads to difficulties
like router buffer overflows and low response times.

In our analysis of using Bloom filters to improve
queries in distributed systems, we have first compared the
benefits of when filters are distributed to all nodes and
when queries can pass among all nodes. After comparing
the naive approach of sending a query to all nodes we are
connected to (which in our implementation, was all of the
nodes in the system) with using two filtered approaches,
normal and Compressed Bloom Filter, we examine an ap-
plication of composite filters that describes roughly the
contents of a group of nodes.

3.1 Naive Filtering

The simplest to implement and visualize, “naive” filtering
means no filtering at all: when a node performs a search, it
contacts every node it can. While this approach may work
for extremely dynamic systems where any summary in-
formation that would assist in improving search accuracy
would expire immediately, it has the drawback of being
both high in bandwidth consumption (many messages are
sent per search) and slow. If files are evenly distributed
and if the file a node is searching for actually exists in
the system, a search will yield a positive result only after
contacting half of the nodes, on average.

3.2 Bloom Filters

A Bloom filter is a quick and space-efficient data structure
for representing a set of� elements to support member-
ship queries. To represent a set� � ���� ��� � � � � ��� of
� elements a Bloom filter uses an array	 of 
 bits and
� independent hash functions,��� ��� � � � � �� with range
��� �� ����
���. Initially, all the bits of the array are set to
0. An element� of� is included in the Bloom filter by set-
ting each of the bits�� ��� to 1 for� � 
 � �. To verify if
an item� is in� the bits with indices�� ��� for � � 
 � �

in the array	 are checked. Clearly, if at least one of them
is 0,� cannot be a member of�. If all of them are set to
1,� is assumed to belong to�. However, this assumption
is incorrect with a certain probability since the same bit
could be set to 1 for multiple items. That is, a Bloom fil-
ter may generate false positives, where it indicates that an
element is in the set even though it is not.
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Since in our design each node maintains a local Bloom
filter to represent its own file system, changes of the set
� must be supported [6]. This is achieved by maintain-
ing for each location bit in the Bloom filter a count of
how many times that bit was set to 1 (i.e., the number of
elements of S that hashed to that bit position under the
collection of hash functions used). This array is conven-
tionally said to contain the bit’sphase. All the counts are
initialized to zero. Whenever a file� is added or removed
from the file system of a node,� counts corresponding
to the bits with indices�� ��� � �� ��� � � � � � �� ���are in-
cremented or decremented, respectively. When a count
changes from 1 to 0, its corresponding bit is turned off
since all the files that hashed to that bit had been re-
moved. In addition, we maintain a saturation variable to
keep track of the total number of bits that are set to 1 in
the Bloom filter. If the number of files at a node increases,
we expect the saturation count to approach the length of
the filter in bits. When the filter becomes saturated, i.e., a
majority of the bits are 1, the false positive rate increases,
and the filter must be re-created to accommodate the in-
crease in the number of files at the node. In our simu-
lation, Bloom filters are regenerated when the saturation
variable exceeds a given percentage of the filter’s capacity.

It is useful to notice that in the Bloom filter data struc-
ture there is a clear tradeoff between
, the amount of
memory used to represent the set�, and the probability of
a false positive,� . Assuming that the hash functions used
are random, after inserting� keys into a table of size
,
the probability that a particular bit is still 0 is exactly:

�
��

�




���
� �

���

�

Letting� � �
���

� , the probability of a false positive in
this situation is�

��

�
��

�




�����
�
�
�� �

���

�

��
� ��� ��

�

According to the analysis in [14] and [16], the optimal
number of hash functions that minimizes the false positive
rate above for a given size
 of the Bloom filter is given
by

� � �����
�

�

�
In this case the resulting minimum false positive rate f

equals

� �

�
�

�

��
� ������	�

�

�

Pictorially, the false positive rate follows an exponen-
tial curve of the form in Figure 2.
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Figure 2: Theoretical False Positive rates for increasing
bits per file,�

�

Clearly, if Bloom filters can be efficiently distributed
and stored, their use will preempt many unnecessary
query messages from ever leaving the origin of the search.

3.3 Compressed Bloom Filters

As Mitzenmacher suggests in [12], Compressed Bloom
filters may be more appropriate in situations when the fil-
ter is not only a data structure used to summarize infor-
mation at the nodes, but also a message that is passed
between the nodes in order to support updates in a dy-
namic system. By using Compressed Bloom filters, nodes
can reduce the number of bits broadcast, the false positive
rate, and/or the amount of computation per look-up. The
main cost of filter compression is the increased memory
requirements at the end nodes that must process the larger
uncompressed version of the filter. Additionally, the end
points must compress and decompress the transmitted fil-
ter, thus ensuring additional processsing requirements.

The optimization problem for Compressed Bloom fiters
can be cast in two ways. First, in parallel to the regular
filters optimization problem, in the case of Compressed
Bloom filters, one can also optimize for the false positive
rate given a constraint on size, i.e., the number of trans-
mission bits. That is,
 and� can be chosen to minimize
the false positive rate subject to a constraint on the size
of the compressed/transmitted filter,�. If � denotes as be-
fore the probability that after n insertions a particular bit
is still 0, the expected size of the Compressed Bloom filter
is
� ���, where� ��� � �� 
��� ���� ��� �� 
��� ���
is the entropy function.

According to the analysis in [12] the number of hash
functions that minimizes the false positive rate for an un-
compressed Bloom filter maximizes the false positive rate
when the filter is compressed. More technically, sub-
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ject to the constraint
 � � ��� � � the expression

defining the false positive rate� �
�
�� 
��

���

�

�
��

�

��� ��
�� �� ����� �, where� � �

���

� , achieves a global
maximum for� � �

� , or equivalently for� � �
� ��
�
�
�

�
.

It can be shown that given a number of transmitted bits
per entry 	

�
and the contraint
 � 	


��� , minimizing
f is equivalent to minimizing the expression� ��� �

�

������� �
���
����� . The derivative of� ��� becomes 0 when

� � �
� , is negative for� � �

� and positive otherwise. That
� � �

� implies� � 
� ���
�
� indicating that Compressed

Bloom filters achieve a smaller probability of false pos-
itives by employing a smaller number of hash functions
than the optimal number of hash functions for regular
Bloom filters that use same number of transmitted bits per
entry.

Alternatively, for a given false positive rate one can
optimize for the compressed size�. Asymptotic analy-
sis shows that the theoretical size of a compressed filter
achieving the same false positive rate as a regular Bloom
filter approaches� � 
 
� �, where
 is the of the size of
the standard filter.

In brief, theoretical results suggest that compression
can be used to improve performance in a distributed sys-
tem by reducing the false positive rate for a given com-
pressed size and by reducing the transmission size for a
given false positive rate. In addition, Compressed Bloom
filters use smaller number of hash functions, which could
potentially decrease the amount of processing per look-
up.

As suggested in [12], arithmetic coding has been used
to compress filters. The choice of arithmetic coding is nat-
ural since this scheme achieves “near-optimal compress-
sion with low variability” in fitting with the theoretical
analysis which assumes that optimal compression is fea-
sible. We used a publicly available adaptive arithmetic
compressor implemened by Carpinelli, Moffat, Neal, and
Witten [13]. The compressor was run with default param-
eters and the bits option on.

Similar highly compressed filtering mechanisms exist
and would be interesting to try on the same problem.
Lossy Dictionaries, for example, weigh each member of
the set�, and uses a greedy algorithm to build a dictio-
nary of maximum weight given constraints on space[15].
The dictionary consists of two tables of equal length. The
keys in the set� are hashed to a cell value in one of the
tables, and a union-find data structure is used to solve col-
lions in an optimal manner. To verify if an element be-
longs to the set�, at most two cells of the dictionary must
be checked. Since the data strcture requires at most two
memory accesses per query, Lossy Dictionaries may be
more time efficient than Bloom filters. However, the con-
struction and updating of this data structure are not trivial,

A

C

B

D

F

E

Group 0 Group 1

Figure 3: Group-based search networkSquares represent
independent nodes. Dashed lines represent node-sized filters.
Thick lines are group filters and travel in the direction of the
arrow. Ovals represent groups. A is the representative of group
0; D of group 1.

and may impose additional time requirements. In addi-
tion, Lossy Dictionaries imply a small rate of false nega-
tives (i.e., negative response for an entry in the set), which
may not be a desirable feature for some systems.

3.4 Aggregate Filters

When we began looking at having every node have a fil-
ter from every other node, we immediately recognized
the problem that in order for filtering to truly scale it had
to require less than quadratic communication among the
nodes. By grouping nodes and then sending less precise
filters which describe all of the files in these groups, we
believed that less overall bandwidth and per-node storage
would be used at the expense of some complexity. What
we describe and what we have tested are two-tiered ag-
gregate filters, but the reader can extrapolate that a similar
grouping system would work recursively.

Aggregate filters are the “logical or” of all of the filters
in a group. A probe against an aggregrate filter shows a
match in the group with high probability, but, obviously,
it cannot also tell which member of the group contains the
real match. The group size we use in our experiments is
������ of the nodes.

If group filters are less precise or if a content-based
grouping scheme is used as described later in this section,
each node will use less storage with group filters than if it
stored a filter for everyone, even if it stores precise filters
of its immediate neighbors. Figure 3 portrays the topol-
ogy of aggregated filters. In it, A and D arerepresentative
nodes that receive inter-group sized filters from the nodes
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in their group. The size of intergroup filters depend on the
total number of filesin the group� the group bits per file
rate, which can be less that the intragroup size, in order
to generate smaller, less precise intergroup filters. For ex-
ample, A, B, and C all contain some number of files and
communicate among themselves about how large to make
their intergroup filter. B and C send A a Bloom filter (pos-
sibly compressed, as it will be mostly empty), A thenORs
these filters with its own of the same size and send it to any
requestors that would like a summary of the groups con-
tents. A, B, and C all exchange filters like in a microcosm
of Figure 3. Because the cardinality of the subgroups are
substantially less than the total number of nodes, far fewer
filters need to be exchanged. Where we had������

� filter
messages before, with log(n) groups there are:

�

������

�
�������������� ��

�

�
�

��������� ������� � ��� ���������������

where the first term is the number of aggregate intergroup
messages, the second is the number of intragroup mes-
sages, and the third is the cost of group members sending
the representatives their to-be-aggregated filters. Looking
at how this grows with the number of nodes, we see:

Nodes Fully Connected Edges Grouping Edges

1,000 499500 19742
10,000 4999950000 3321392
1,000,000 	� ���� 39862362

Further subgrouping through recursion would reduce the
number of messages even more.

4 System Design and Implementa-
tion

Each node in the system is an independent Java process
consisting of four threads. Because they are separate pro-
cesses, they can run on separate machines, ideally letting
the tests scale to many (i.e. 1000) nodes. The component
threads of the system are:

Query This thread waits for a random number of mil-
liseconds based on an entry in the configuration
and then chooses a random file from the domain of
all possible files (also part of the configuration) to
search for. Described in more detail in Section 4.1,
the thread probes the local cache of neighbor’s nodes
for matches. If any are found, it creates a Search ob-
ject and associates with it any neighbors (or groups)
whose filters said they matched. For “naive” filter-
ing, all filters match. The Query thread then initi-
ates the search by sending out aVerify message to

the first neighbor or group that matched. If none
matched, it chooses another file (which is does not
already have within its local file system), and begins
probing again. The Search object is then added to the
list of ongoing searches, and the thread goes back to
sleep. Note that because the Query thread only ini-
tiates searches and these are then completed by the
Protocol thread, there can be multiple searches and
proxied searches occurring concurrently at the same
node. In the experiments, we saw many searches tak-
ing over one second to complete, although they were
beiing generated at a constant rate of approximately
one per second.

File system changer This thread waits for a (different)
random number of milliseconds specified in the con-
figuration and then updates (adds or removes) a file
from the node’s “shared” files. It rebuilds the copy
of the node’s filter (based on the bits changed and
phase) and adds a new entry to the list of filter deltas,
noting the (possibly zero) bits changed and a times-
tamp for the action. This timestamp is used in the
filter deltas, described in Section 4.2.

Protocol Server This thread functions as a UDP server,
listening for protocol messages, responding to them,
and then resuming listening. The actions it takes are
outlined in Section 4.3. It serves to send neighbors
any of this node’s filters, to ACK or NACK query
verify requests, and to proxy intergroup searches to
other nodes in the same group, using its more precise
intragroup filters.

Cache Refresh This thread looks at the caches of neigh-
bor, group, and possibly representative filters and, if
any are significantly out of date (null in our case),
sends the node a request for its filter. It is primarily
used to bootstrap the system and sleeps when all the
nodes are up and the filters have been distributed.

The system also consists of two extra processes: one
bootstrappingConfiguratorand oneLogger. The Con-
figurator supplies a stable base from which any node can
discover the parameters for a particular experiment (e.g.
whether to use compressed deltas). It is identified by its
IP address and port, as are all the nodes. The Logger sits
waiting for Log messages about the events in the system
to arrive from the nodes and aggregates them.

The code is approximately 5700 lines of Java split up
into 35 classes.

4.1 Filter Implementation

The implementation of the Bloom filters is based on the
analysis in [16]. Ramakrishna suggests using Universal
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hash functions of the form:

�
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Here
 is the size of the filter, which we calculated
as the number of files stored at the node� the bits per
file, which is part of the configuration for each experi-
ment. Values for c and d were randomly generated by the
Configurator at the beginning of each experiment.� was
chosen to be a large prime number less than the maximum
value of an integer on the machine we were using. Empir-
ically we found that indices were well distributed over the
size of the filter.

For bookkeeping, each node associated a saturation and
a phase with its local filter. This information was not
passed among nodes. The saturation kept track of the
number of changes to a filter, and the phase noted the
exact number of times a bit had been set to 1. With the
phase, we were able to unset bits (and include removals in
deltas).

4.2 Filter Deltas

In order to reduce the size of the messages being sent be-
tween nodes, we implemented a system of timestamps and
filter deltas. Instead of only including new bits to “turn
on” (or their indices), we send a bit string which is the
size of the original filter with the bits the receiver needs to
invert set to one. Because this array is sparse, it acts like a
Compressed Bloom filter, and is highly compressible. In
addition to keeping track of a filter to associate with each
node, nodes must associate timestamps with each filter in
their cache. They send this timestamp with every filter
request and then the responder decides whether to send a
new filter or a filter delta.

Because the responder keeps a list of which bits were
turned on with a file add or off with a file removal, it
can generate exactly which bits need to be set in the re-
quester’s filter, given the timestamp of the requester’s cur-
rent filter. Which bits to flip is determined by the follow-
ing algorithm:

1. Create an empty integer array the size of the filter,
initializing all slots to zero.

2. Each time the bit is set to one, increment the counter
at that slot. Decrement when the bit is unset (e.g the
removal at��).

3. Any bit that is non-zero, set this bit to one in the bit
set sent to the requester of the filter.
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Figure 4: Filter Deltas. At time ��, the filter is created; at
time ��, file a, which hashes to (1,2,8,9) is added. Because bits
2 and 8 are already set, only bits 1 and 9 (in bold) are changed
(although the phase at all four locations is updated). A time��,
file b is removed; 2 and 8 is not switched off because their phases
are greater than zero. At time��, file c is added. If a requester’s
timestamp is��, the counter would put -1s at indices 4 and 6,
and then add one at locations 3 and 6, giving index 6 a net value
of zero. The delta bit array sent back to the requester would then
have bits 3 and 4 set. The requester would flip these bits, setting
index 3 to “on” and index 4 to “off,” giving it the correct current
filter.

Obviously, if the requester’s timestamp is earlier than the
origin of the filter (i.e.��), the requester must be sent the
entire filter.

4.3 Protocol

The protocol used to communicate among the nodes be-
comes significantly more complex as it move from the
world where every node is a neighbor to the world of
groups, representatives, and proxied queries. The proto-
col for a fully-connected system works as follows:

VERIFY Verify that the receiver actually has a file and
that the sender did not have a false bloom hit. Re-
sponds with either an ACK or a NACK.

ACK Node acknowledges that it has the file requested.

NACK Node says that it does not have the file requested.
In our original implementation, NACKs would then
always trigger a filter request from the receiver, be-
cause it assumed that its filter was out of date. To
eliminate these two messages, the timestamp of the
node’s filter accompanies every VERIFY request and
then a filter delta (or a whole filter) can piggyback
on the NACK. ACKs also have the ability to port fil-
ters, and could do so if the timestamp showed the
requester’s copy of the filter was very out of date,
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Figure 5: Grouping communication protocol.(A,B,C),
(D,E,F), and (G,H,I) are groups. E and F send their group-sized
components of group (D,E,F)’s intergroup filter. D, the repre-
sentative of this group,ORs these filters with its own group-
sized component and sends it to C, which has requested it. B
is performing a search and its cache of intergroup filters has
suggested that group (G,H,I) has the file it is looking for. It
randomly chooses H to proxy this request to the rest of group
(G,H,I). H looks at its more precise intragroup filters and at its
locally shared files and determines that I might have the file B
is looking for. I responds to H with a NACK, which then in
turn responds to B with the same. B will then ask G, (G,H,I)’s
representative for a new intergroup filter.

but this was not used. The Search object for this file
is contacted and it initiates a new VERIFY request if
there are more possible nodes to contact or it signals
that the search has completed unsuccessfully.

FILTER REQUEST Node requests that the receiver
sends it the receiver’s filter and timestamp.

FILTER RESPONSE Node receives filter from a neigh-
bor and adds it to its cache of filters, possibly by ap-
plying deltas.

Currently, the initial bootstrapping of network discovery
is part of the configuration received from the Configura-
tor, but the ability to discover the network existed in the
protocol of an early implementation.

The grouping topology and communication is more
complicated but based on the same protocol. The group-
ing topology, seen pictorially in Figure 5, consists of the
same messages as in the fully-connected case, followed
by a flag which further describes the action to take. These
flags show whether the action is: (1) within the group (in-
tragroup), (2) among groups (intergroup), (3) between a

group and its representative (representative), (4) for an in-
tergroup proxied search (proxy).

VERIFY Intragroup follows the same form as above, in
the fully-connected protocol. Between groups, this
initiates a proxy search, where a randomly chosen
node in a group uses its filters to search for an extra-
group node. A proxy verify message signals that the
requester is performing a proxied search.

ACK Intragroup ACKs work as above. Intergroup ACKs
signal the end of a successfully proxied search.
Proxy ACKs come from within the same group and
cause an intergroup ACK to be sent back to the query
originator.

NACK Intragroup NACKs work as above. Intergroup
NACKs signal a negative group proxied lookup and
may initiate another intra- or intergroup VERIFY
request if more filters match; otherwise there has
been no match for the search. Proxy NACKs come
from within the same group and initiate a lookup in
the list of ongoing proxied searches; if more possi-
ble nodes from within the group are found, another
proxy VERIFY message is sent, otherwise an inter-
group NACK is sent to the originator. Filters can
piggyback on both intragroup NACKs and proxied
NACKs, as they are both always to members of the
same group.

FILTER REQUEST Intragroup filter requests work as
above. Intergroup requests are only directed to the
group’s representative, as only this node holds all
of the composite filter components. Representative
requests come from the group representative and in-
struct the receiver to respond with its intergroup filter
component.

FILTER RESPONSE Intragroup this works as above,
but more often these are piggybacked on intragroup
and proxy NACKs. Intergroup filter responses send
the extragroup node the logicalOR of the con-
stituents of this group; these only come from the rep-
resentative.

5 Experiments

We examined network usage from two perspectives: (1)
a more idealized, evenly distributed network where all
nodes start off with the same number of files and add
and remove files at the same rate and (2) an empirically
derived model based on studies on the actual usage of
file sharing networks like Gnutella [1]. (1) is actually
not as idealized as it may seem because a collection of
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Figure 6: Bandwidth consumed per search in an “unbal-
anced” network, where very few nodes store almost all of
the files.

distributed file systems, like CFS and PAST, may fol-
low a more balanced and controlled model of usage than
the highly decentralized Gnutella. Adar and Huberman’s
study on Gnutella usage shows how very few nodes are
the sharers of the vast majority of files and that� ���
of nodes share none. They refer to this disparity as “free
riding.” In a distributed file system, publishers may seek
to load balance their own multiple publications and such a
disparity may not materialize as these systems come into
fruition. Most of our experiments follow the more ideal-
ized system of (1), although we do look at an unbalanced
system in Figure 6. The unbalanced system follows the
same behavior as seen in Section 5.5.

Because the tested system is fairly complex, with nu-
merous variables to change, we mainly tried varying those
which we postulated would have the largest affect. For ex-
ample, we did not experiment with many different types
of hash functions. Instead we varied the number of
nodes, the�

�
rate, and the number of hash functions used,

the rate of search (the amount of time theQuery thread
would sleep for between initiating new searches), whether
deltas were used and whether they were compressed, and
whether the filters themselves, when propagated in their
entirety, were compressed.

5.1 Experimental Setup

All of the experiments presented have data collected on a
system running with 32 nodes and each node generating
a search request every second. The distributed file sys-
tem has 4000 distinct files and each node generates 100
out of those 4000 files at system startup. All the nodes
are threads running on the same machine and have a (port
number, IP) pair that uniquely identifies them and enables
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Figure 7: Bandwidth/search and time/search consumption
when performing naive file queries

the communication among them. At startup, each node
receives a list of all the neighbors in the group. Also
at startup each node contacts theConfigurator process
for a derived configuration file in which we specify dif-
ferent parameters such as run time, number of distinct
files in the distributed file system, values for
 and �,
whether the node is aRepresentative, who are the mem-
bers of the groups (if the experiment is using grouping),
time between two consecutive searches, the type of search
method used (Naive, regular Bloom filters, Compressed),
etc. In the case when the configuration file specifies that
Bloom filters are used, the thread generates a Bloom fil-
ter for the files in its file system, based on the parameters
in its configuration file. Each process then starts its four
threads, as described in Section 4, that send filter requests
to other nodes and that begin generating file queries.

The experiments were run on machines with Linux
2.2.16 kernels, 800 Mhz Pentium III processors, and 1G
RAM. The external compression process forked to per-
form delta compression and Compressed Bloom filters
used /tmp on the root disk.

VERIFY, ACK, and NACK packet sizes were 20 bytes
each. Filter message sizes depended on the bits per file of
a given experiment. A NACK could also be large if a filter
was piggybacked onto it.

5.2 Naive (Broadcast) Queries

In the naive approach, each node does a search by se-
quentially querying every node on the system until it gets
a positive response. Thus the bandwidth consumed per
search is dependent on the number of requests and re-
sponses sent per search — no filters exist to add band-
width. The number of messages exchanged between the
requestor and the rest of the nodes is dependent on the
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percent chance that the requested file is at the node being
queried. Since every file from the distributed file system
has an equal chance of being at the pinged node (in the
test results for this experiment), the percent chance of a
node having the file as the requestor searches for is the
same as the ratio between the number of files at the node
and the total number of files in the distributed file system.
When a node has a large percentage of the files in the sys-
tem, the chance of that node being able to send a positive
response is higher. In our experiments we varied the ratio
between the number of files at a node and the total num-
ber of distinct files in the system. The results are shown in
Figure 7 on the left y-axis. As can be seen, the bandwidth
per search grows almost exponentially as the number of
files at the nodes decreases. In the case when a node con-
tains 30% of the files in the file system, the false positive
rate is 0.7 on average and the bandwidth is approximately
50 bytes per search. As the number of files at a node de-
creases, the false positive rate grows and, in the case when
a node has 2% of the files, the false positive is about 98%.

Figure 7’s right y-axis shows the time spent per search.
Note that this time is a little bit higher than in reality since
we do not account for searches that did not complete at the
time when the tests ran for the specified period. The time
spent also grows exponentially as the number of files at
the nodes decreases. It starts with about 0.8 sec/search
when a node has 30% of the files and goes up to 120
sec/search when a node has only 2% of the files. Note
that our implementation of naive queries sequentially asks
neighbors; i.e. it first waits for the neighbor’s response
before asking the next neighbor. There obviously could
be a time improvement at a higher bandwidth cost if a
node sent all requests in parallel to all neighbors. In this
case, searching for a given file, the time would take just
the round trip time to a node on the network, if the net-
work could sustain this usage. However, the bandwidth
expense will be n� (bandwidth for a request + a response)
where n is the number of nodes on the network. The band-
width usage per search will always be the same and will be
equal to what the bandwidth per request is in the sequen-
tial naive case that we implemented with nodes having 2%
of the files of the file system (note that in the case when a
node has only 2% of the files we are likely to query all the
nodes).

In conclusion, for file systems in which the nodes have
30 or more percent of the files in the system, sequential
search will be better. In the case when a node has less
than 10% of the files, sending simultaneous requests to
everyone will work better.
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Figure 8: Time per Search

5.3 Search Time

In Figure 8, we compare the average amount of time re-
quired to complete a file search in our system for two
search mechanisms: standard and Compressed Bloom fil-
ters. Grouping times, because they are much smaller are
given in the following table:

Group Combination Milliseconds per Search

5 bpf/3hf, 8 gbpf/5hf 35.4
8 bpf/5hf, 12 gbpf/8hf 39.4
12 bpf/8hf, 16 gbpf/11hf 182.1
5 bpf/3hf, 16 gbpf/11hf 62.4

The groups use non-compressed Bloom filters. The ex-
periments were run for 15 minutes in a system with a rate
of 800 searches per file change at a node.

Search time is defined as the elapsed time from the mo-
ment a query is submitted until the moment either the
first positive acknowledgement is received or the last con-
tacted neighbor replied negatively. Note that in the case
of filters, our definition accounts for the amortized time
required by updates and initial set-up phase, as well as the
time necessary for hashing and sequential filter checking
at the node that generated the query.

Time per search for all filter configurations increases
with the number of bits per file used at the nodes. A higher
number of hash functions and longer transmission times
account for the almost proportional increase of time per
search as a function of bits per file in the case of Bloom
filters. Although the false positive rate drops, longer pro-
cessing and transmission time for the larger filters com-
pensate for the lower frequency of updates.

To compare processing time at nodes for regular and
compressed filters we selected the parameters of the lat-
ter such that bandwidth consumed per search is approx-
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imately equal for the two filter types. Due to the slow
compression/decompression mechanism, time per search
in the case of compressed filters is about 10 times larger
than for the corresponding standard filter with identical
transmission size. Our experiments indicate that, at least
for a small system like ours (32 nodes), the compres-
sion/decompression operations dominate processing time,
such that time savings from faster hashing (smaller num-
ber of hash funtions) and smaller false positive rates are
insignificant.

Time per search for the grouping design is more
than 100 times smaller than the smallest time for fully-
connected setup with regular Bloom filters. This is corre-
lated with smaller bandwith consumption for groupings,
so it is mainly due to smaller overall transmission time.

Similar to our observations on bandwidth consump-
tion, the naive query protocol performs better than reg-
ular Bloom filters timewise when the percentage of total
files in the system owned by any node is higher than 10%.
Otherwise, time per search using the standard Bloom fil-
ter mechanism is smaller. Groups compete well with the
naive protocol even when the percentage of files owned
by nodes is fairly large. On average, time per search using
any of the grouping parameters is less than 79 ms, while
time per search for naive queries when nodes own 30% of
all the files is about 839ms.

5.4 False Positive Rates

In Figure 9 we plot average achieved false positives rates
against number of bits per file. The latter is computed as
number ofNACK messages (number of contacted nodes
that responded negatively to a query) over the number of
verify messages (total number of nodes contacted). In ret-
rospect, we believe that we are not recording the false

positive rate correctly because we are not recording the
behavior on a per-filter basis, only on a per-node’s cache
basis. In other words, we are not keeping track of the total
number ofNACKmessages generated by a particular filter
and dividing by the total number ofVERIFYmessages this
filter has generated. We are confident that the problem is
one with measurement and not with implementation (and
we are unable to extract the information to compute the
rate in this different way from our current completed ex-
periments).

Even with this proviso, the false positive rate achieved
in our system does not entirely comply with the predicted
minimum probability of a false positive, which decreases
exponentially with the number of bits per file. For 4, 6
and 8 bits per file the system’s false positive rate is partic-
ularly high having a value of about 80%. It then decreases
drastically to about 5% for 10, 12 and 16 bits per file.

5.5 Bandwidth Consumption

As discussed in Section 5.2, the bandwidth consumption
in the case of the naive querying protocol depends on the
percentage of files in the system owned by each node. In
contrast, percentage file ownership at nodes does not af-
fect the performance of Bloom filters since each mem-
ber of the system contains the Bloom filters of all other
nodes, and therefore have equal information regarding the
different files its neighbors possess. In Figure 10 we ex-
amine the variation of bandwidth consumption per search
for standard Bloom filters as a function of the number of
searches per file system change (i.e., a measure of the fre-
quency of updates in the system) for the fully connected
and grouping system designs. Bandwidth consumption is
divided into bandwidth used by filter updates and verifi-
cation messages (VERIFY, ACK andNACK messages).

For the fully-connected network set-up, we ran experi-
ments with 4, 6, 8, 10 and 12 bits file and optimal number
of hash functions, 3, 4, 6, 7 and 8 hash functions, respec-
tively. For the grouping design, we experimented with the
following combinations of bits per file and hash functions
for the intergroup filters: (5, 3), (8, 5), (12, 8). With these
we associate “more precise” combinations of bits per file
and hash functions for the intragroup filters: (8,5), (12, 8),
and (16, 11).

We observe that in the fully-connected system, there is
a tradeoff between memory consumption at end nodes and
network traffic. Network traffic for Bloom filters in the
fully-connected set-up is highly correlated with the false
positive rates. The false positive rate of our system re-
mains high at about 80% for 4, 6 and 8 bits, and it drops
steeply below 5% for 10, 12 and 16 bits per file. As a con-
sequence, the combined average bandwidth per search for
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4, 6 and 8 bits per file is 21% higher than the combined
average bandwidth per search for 10 and 12 bits per file.
Therefore, nodes can reduce network traffic by decreasing
the false positive rate at the expense of higher memory re-
quirements at the end nodes. In contrast, the grouping
setup shows little variation with the false positive rate of
the system. While the false positive rate varies from 75%
to 28% in the three situations we looked at, the bandwidth
consumption remains around an average of 63 bytes per
search.

As predicted by our theoretical considerations, the
bandwidth per search in the case of grouping is always
significantly lower than bandwidth per search in the fully-
connected setup, and decreases only slightly with the
search rate per file change. In particular, the average band-
width consumption for groupings is about 50% lower than
the average bandwidth consumption for 10 and 12 bits per
file in the fully-connected set-up.

In contrast, the average bandwidth per search in the
fully-connected setup decreases as the number of searches
per file change at nodes increases. This is expected since
more searches per file change implies fewer updates per
search, and therefore lower bandwidth consumption. This
is confirmed by the fact that, on average, the ratio of filter

to verification bandwidth consumption decreases as the
search rate per file change grows.

Recall that in the case of naive queries bandwith con-
sumption increases exponentially as the percentage of
files owed by a node declines below 10% of the files in
the system. Namely, bandwith increases from 50 bytes per
search when nodes own 10% of the total files, to 150 bytes
when they own 5%, and to 350 bytes when they own 1%.
In contrast, the Bloom filter bandwidth consumption does
not vary with the percentage of files owned by nodes, and
ranges between an average 50 bytes per search for group-
ings and 175 bytes per search for Bloom filters with high
false positive rates. Therefore, in a system where nodes
own less than 10% of the total files, Bloom filters are a
clear bandwidth saving search mechanisms.

5.6 Compressed Bloom Filters

We compare the bandwidth consumption of standard and
Compressed Bloom filters for small and medium false
positive rates in the system. To tune the compressed fil-
ters’ parameters we picked the theoretical false positive
rates for regular Bloom filters with 8 bits and 16 bits per
file, 0.0216 and 0.00049, respectively. In practice, we ob-
tain an average false positive rate of 0.270 and 0.00920.
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For a given false positive rate, we run the system with the
available combinations of bits per file at nodes and num-
ber of hash functions that yield a theoretical false positive
rate closest to the desired rate and a theoretical number
of transmitted bits per file below at least 90% of the bits
per file ratio required by the optimal regular filters corre-
sponding to that false positive rate. The following table
shows the choices of bits per file at nodes, number of hash
functions and expected number of transmitted bits per file
for the small and medium false positive rates considered.

Bits per File Hash func Exp Trans Exp FP

8 6 8 0.0216
9 3 5.36 0.0227
10 3 5.72 0.0174
13 2 5.32 0.0203
46 1 4.77 0.0215
16 11 11.09 0.00045
21 5 10.84 0.00042
26 4 10.65 0.00041
38 3 10.20 0.00043
93 2 9.57 0.00045

Figure 11: Compressed Bloom Filters: Expected Trans-
mission bits per File

The experiments were run for 16.67 minutes in a
system with 32 nodes, where each node generates 500
searches per file change. We noticed that due to the large
compression/decompression time requirements, the initial
set up period (i.e., the period between the time when the
system is started until every node receives and decom-
presses the filters of its neighbors) of the system is much
longer when compressed filters are used. In reality, the
system would be run for a sufficiently long time such that
the additional compression overhead is amortized across
searches. Since in our experiments the system was run
for a relatively short period of time, our analysis ignores
the bandwidth consumed during the initial set-up to avoid
distortion of the results.

From this table we note that, contrary to expectations,
bandwidth per search is on average 4.47% and 3.12%
higher than in the case of regular Bloom filters with 8
bits and 16 bits per file respectively under all parameter
combinations. Several reasons explain our results. First,
the size of the uncompressed Bloom filters is not suffi-
ciently large to achieve optimal compressions with arith-
metic encoding. Due to memory constraints, we were pro-
hibited from simulating larger file systems, with more bits

Bits Per File Band/srch Nack w/filter FP rate

8 54 172 0.221
9 59 187 0.333
10 60 187 0.346
13 58 219 0.219
46 50 178 0.232
16 41 303 0.0056
21 42 406 0.0074
26 42 365 0.0078
38 44 310 0.0159
93 42 285 0.0091

Figure 12: Compressed Bloom Filters: Bandwidth Con-
sumption per Search. Bandwidth and Nack with filter
sizes are in bytes.

to compress. In all our experiments, end nodes own 100
files such that the size of the largest uncompressed filter
in our experiments is 1163 bytes. To show that, we com-
pute the size of aNACK with filter for each choice of pa-
rameters. Observe that for less than 93 bits per file, fil-
ters compress to more than the size of the regular Bloom
filter. However, using 93 bits per filter compressed to
285 bytes, while the corresponding regular Bloom filter
is 303 bytes long. In addition, we note that although
the false positive rates for standard and compressed fil-
ters should be identical (the parameters of the compressed
filters were chosen such that a given false positive rate is
maintained), the false positive we obtain for Compressed
Bloom filters is on average slightly higher than the match-
ing rate for regular filters. We believe this result might be
due to delayed updates caused by the lengthy compres-
sion/decompression process. In our implementation, fil-
ter compression requires a forked process and several in-
put/output operations, which add significant overhead to
the actual compression.

Our results suggest that Compressed Bloom filters
would most probably improve bandwidth in large dis-
tributed files system where the number of files at nodes
are significantly more numerous that 100.

6 Conclusion

Our initial plan was to derive some formula where a par-
ticular instance of a distributed file system using filtering
to enhance filename queries could plug in the number of
nodes it had and the rate of change of its constituent file
systems versus the rate of queries, and out would come
the right filter dimensions. We have found that the num-
ber of variables is large and significantly interdependent
— initial experiments with fewer nodes showed different
results than with 32 although patterns were clearly emerg-
ing. Even with this interdependence, we believe that our
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grouping construct provides a scalable alternative to naive
searching and to hop-based schemes.

In the future, we would like to experiment on far more
nodes and include an implementation of Sripanidkulchai’s
proposal [21], where domains with similar interests are
grouped together. Although this was not tested, we postu-
late that this grouping scheme would achieve even better
results if combined with his scheme, described in section
2.2.

We would also like to perform a more thorough analy-
sis of Compressed Bloom filters, in particular when they
are used with aggregation and deltas when the compres-
sor itself is not a major bottleneck. In particular, we think
the large, sparce constituents of the intergroup filters, sent
to the group representatives, would compress well. Be-
cause the nodes are written as separate processes and get
their configuration remotely, running them on many ma-
chines may not be very difficult. We would also like
to analyze the actual false positive rates better; our cur-
rent implementation does not keep per-filter statistics and
these could be informative. We are confident in the under-
lying Bloom filter implementation, however, as we ver-
ified it with several separate experiments, including run-
ning it against a standard UNIX dictionary, and the results
matched the theoretical expectations.

After a more thorough analysis of the tradeoffs in intra-
group and intergroup filter size and when to propagate fil-
ters based on file system changes, we believe that Bloom
filters and the network topology we have constructed will
be ready for a large-scale implementation on top of an ex-
isting distributed file system, like CFS or PAST. To twist
an old aphorism, users cannot find what they cannot see;
we think this will let them see.
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