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Chapter 1

Introduction

Throughout the history of computers, a primary design goal in all systems has been to

achieve maximum performance. When digital computing was in its infancy, performance

was measured in terms of throughput of scientific calculations: in the mid-1940s, the

then-new ENIAC’s most-touted design feature was its ability to calculate artillery trajec-

tory tables over 1,000 times faster than earlier electromechanical computers [18]. Surpris-

ingly, this traditional approach to performance evaluation and optimization remains in

widespread use today. Admittedly, one does not see today’s processor designers optimizing

their commodity CPUs for use in anti-aircraft guns, but it is still true that the perfor-

mance evaluation suites in widespread use are based either on models of scientific compu-

tation or on a systems programming or hardware design workload [23][24]. These models

are becoming progressively less valid for today’s applications: modern users are focusing

more and more of their attentions on applications heavy with multimedia and networking

content. One need not look farther than the explosive success of the world-wide web and

the plethora of multimedia extensions and protocols that it has spawned to see this trend

in action.

The demands that such modern applications make on the hardware and software sub-

systems that support them are very different than those simulated and evaluated by the

traditional set of performance analysis tools. As modern applications become increasingly

dependent on multimedia, graphics, and data movement, they are spending an increasing
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fraction of their execution time in the operating system (OS) kernel, an area of the system

almost completely ignored by such traditional performance-evaluation tools. As an illus-

trative example, consider what must undoubtedly be today’s leading server application:

the web server. Web servers have been shown to spend over 85% of their CPU cycles run-

ning operating system code [4]; in contrast, the near-ubiquitous SPEC benchmarks exe-

cute less than 9% of their instructions in the OS kernel [7]. The figures in Table 1 show

that the web server is not unique: the other typical multimedia, commercial, and GUI

workloads listed similarly spend between 20% and 90% of their instructions in the ker-

Benchmark User Kernel %-Kernel

Dynamic Instruction Counts (in millions)

SP
E

C
9
2

compress 70.9 3.5 4.7

espresso 332.3 6.2 1.8

gcc 145.7 4.3 2.9

022.li 121.4 4.6 3.7

072.sc 81.8 7.8 8.7

089.su2cor 385.2 2.2 0.1

IB
S

jpeg_play 138.9 12.2 8.1

mpeg_play 77.8 21.6 21.7

verilog 36.4 10.6 22.6

video_play 15.8 36.7 69.9

M
ay

n
ar

d

TPC-A not available not available 40

TPC-C not available not available 43

Netperf not available not available 97

Laddis not available not available 100

Kenbus not available not available 23

Sdet not available not available 50

C
h

en

Ghostscript 538.7 49.3 8.4

Web 163.6 764.1 82.4

Wish 193.6 23.0 10.6

By Cycle Count (in millions)

C
h

en

Ghostscript 1275.9 242.2 16.0

Web 568.5 3793.4 87.0

Wish 492.5 138.5 21.9

Table 1: Percent Time Spent in Kernel Code. The SPEC benchmarks spend
significantly less time in the kernel than a large number of commercial and multimedia
workloads, represented here by the IBS, Maynard, and Chen suites. The SPEC and IBS
measurements are from [7], the Maynard workloads are from [12], and the Chen
measurements are from the data that accompany [4].
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nel. Amdahl’s law tells us that if we want modern applications such as these to run

quickly, the operating system must run quickly as well. Since traditional performance

models essentially ignore the operating system and modern OS-dependent applications, a

need has arisen for new tools and methodologies that direct their attention at the perfor-

mance of the OS kernel and the applications that depend on it. The goal of this thesis is

to fulfill that need.

In order to develop new tools and methodologies for OS measurement, we must first

recognize the unique role played by the OS in a modern system, and consider how exist-

ing performance analysis techniques fail to take this role into account. These understand-

ings will provide the foundation for a new set of tools and methodologies that accurately

characterize the true nature of OS and OS-dependent application performance.

The modern operating system is, above all else, a provider of abstraction: it takes the

raw resources of the low-level hardware and abstracts them into a well-behaved interface

for use by the system’s resource consumers: user applications and the users themselves.

This is a very different role than is played by any other part of the computer system, and,

as a result, the designer of an OS kernel faces a unique set of performance challenges that

are not conducive to traditional performance analysis techniques. One such challenge

arises from the inherent performance penalty imposed by abstraction: the OS designer

needs to build abstractions that properly virtualize resources yet at the same time preserve

as much of the hardware’s raw performance for the end user. A more significant challenge

comes in analyzing the abstractions selected for and built into an operating system, for

operating system performance cannot be studied in isolation. Because the OS is primarily

an abstraction provider, its performance depends directly upon the capabilities of the low-

level hardware interface that it is abstracting, as well as on the way that the abstractions it

creates are used by applications (since not all applications exercise the same OS abstrac-

tions). Thus any methodology for analyzing OS performance must take into account both

the OS’s dependence on features of the underlying hardware architecture as well as on the

patterns of application load that indicate which abstractions are important.

Traditional methods for performance analysis are poorly suited to this task. They

break down into three basic categories: macrobenchmarking, kernel profiling, and micro-

benchmarking. Macrobenchmarking, or timing runs of real applications, can be useful for
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measuring end-to-end performance on a specific workload, but does not produce enough

detail in its results to unravel the complex interactions between the application load and

the OS performance, or between the OS and the hardware. Kernel profiling, in which the

amount of time spent in each kernel function is measured, gives a highly detailed picture

of the kernel’s execution, but does not provide the time-sequence information necessary to

correlate an application’s varying use of kernel abstractions with potential kernel perfor-

mance bottlenecks. Additionally, standard kernel profiling1 cannot accurately associate

I/O and sleep time with user-process requests, and thus does not provide an accurate

mechanism for associating user-visible latency with time spent in kernel routines. Finally,

we are left with microbenchmarking, in which the performance of very small pieces of the

OS kernel’s abstraction layer are measured individually. By itself, microbenchmarking

only measures the efficiency of individual kernel abstractions; it ignores how the abstrac-

tions are used by user applications, and thus, like the other two techniques, does not indi-

cate how to evaluate and optimize the performance of kernel abstractions under realistic

application load.

With an understanding of both the demands of OS performance measurement and

the flaws in existing measurement techniques, we can now return to the problem of devel-

oping tools and methodologies appropriate for analyzing OS performance in its true con-

text, intertwined with hardware performance and OS-dependent application load. The

approach that we propose for accomplishing this goal is grounded heavily in the notion of

an abstraction hierarchy. We can view a complete computer system as a continuum of

abstractions stretching from the silicon of the hardware up through the operating system

and ending at the application’s user interface. The abstractions within this continuum

form a natural hierarchy that complements traditional modular design methodology: the

hardware provides abstractions of computation and I/O upon which the OS is built; the

OS in turn provides virtualized abstractions of physical resources upon which applications

are built; finally, applications provide high-level abstractions that organize the OS’s

abstractions and with which users interact. Figure 1 presents this idea graphically.

1. Some of the problems with traditional kernel profiling are remedied in pkprof, a kernel profiler that associates all
acquired performance data with user-process requests [16]. However, pkprof is currently available only on stock
4.4BSD-Lite running on the MIPS-based DECstation platform, and thus does not provide a general solution to the
kernel-profiling problem.
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The structure of a system’s abstraction hierarchy is inherently intertwined with the

system’s performance, for the performance of any given abstraction depends on the perfor-

mance of the abstractions upon which it is layered. Thus it is easy to transform the

abstraction hierarchy into a performance hierarchy, in which the nodes have the same struc-

ture as those in the abstraction hierarchy, but the connections between nodes represent

the performance dependencies between various abstractions: at each abstraction bound-

ary, the connections to higher level abstractions represent the performance demands of the

part of the hierarchy above the boundary, while the connections to lower level abstractions

represent the performance resources of the portion of the hierarchy below the boundary.

The performance hierarchy provides an ideal framework for understanding operating

system performance, for it captures in one construct the details of the performance inter-

actions between the hardware, operating system, and application. As the application runs,

it exercises paths that weave their way from the apex of the hierarchy (where the applica-

tion’s highest-level abstractions or operations are found) through the OS’s abstractions

and down to the base of the hierarchy (which consists of the fundamental hardware

abstractions). By looking at how these paths intersect the hierarchy at the level of the OS-

exported abstractions, the operating system designer can determine which abstractions are

Figure 1: Computer System Abstraction Hierarchy. The gray trapezoids represent layers of abstraction;
the arrows represent performance dependencies between layers. The user interacts with the application’s
abstractions, which in turn depend on the operating system’s abstractions, which then depend on the hard-
ware’s abstractions. This same abstraction hierarchy transforms easily into a performance hierarchy.

Hardware Abstractions
CPU, MMU, Interrupts, DMA, . . .

Operating System Abstractions
Files, Sockets, Processes, VM, . . .

Application Abstractions
GUIs, Servers, . . .

USER
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critical for the application’s performance, and can focus optimization effort appropriately;

the application designer can use the same information to optimize his or her application’s

use of potentially-slow operating system abstractions.2 Analogously, by looking at how the

paths cluster at the bottom of the performance hierarchy, the hardware designer can see

where to tune the hardware to maximize the operating system’s (and therefore the applica-

tion’s) performance; the operating system designer can use the same data to determine

where optimizations to the kernel are warranted.

Thus the first task in understanding the performance of a specific operating system is

to construct the performance hierarchy that includes the hardware on which it will run

and the primary applications that it will support. The primary technique that we have

used to do this is performance decomposition, in which the performance of each abstraction

in a given level of the performance hierarchy is decomposed into the performance of

abstractions in the next-lower level of the hierarchy. This is usually accomplished in one of

two ways. Where the performance of an abstraction can be derived analytically from the

performance of those below it, the decomposition can be taken directly from the analytic

model. In the more common case where analytic models are not available, the dependen-

cies must be reconstructed by varying the performance of the lower-level abstractions

(usually by manipulating the hardware platform) while observing the response in the per-

formance of the higher-level abstraction. Chapters 2 and 3 introduce tools and methodol-

ogies that help perform such performance decompositions in the operating system and

application domains, respectively; they also present case studies that demonstrate the use

of the techniques and some interesting sample results.

The technique of developing a performance hierarchy by performance decomposition

is a solution to only part of the problem of operating systems measurement, however.

While useful to the system designer in that it provides enough information to show where

optimizations need be applied, the performance hierarchy approach produces too much

detail to be of much use to the less-sophisticated consumer. These consumers include any-

one else who cares about operating system performance, from application designers to sys-

tem administrators; one might think that the kinds of performance results desired by such

2. In the context of an extensible operating system, such data would provide important clues as to where specialized
extensions and interfaces should be installed.
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consumers are mutually incompatible with the details that the performance hierarchy pro-

duces for the system engineers. If we consider the types of information that would be use-

ful for such consumers, however, a pattern quickly emerges: all the measurements of

interest can be taken at the major abstraction boundaries in the performance hierarchy.

For example, an application designer might want to know the performance characteristics

of the major abstractions exported by a particular operating system/hardware pairing;

these are obtained by taking a horizontal cross-section of the performance hierarchy at the

lower (OS) side of the boundary between operating system and application. Similarly, a

hardware designer interested in optimizing for the operating system would most likely be

interested in a cross-section of the hierarchy at the upper side of the OS-hardware bound-

ary. Finally, a system administrator interested in picking the best OS/hardware pairing to

support a given application (such as a web server) might find two cross-sections useful:

one at the upper side of the OS-application boundary to characterize the application’s

demands on the operating system (independent of the OS/hardware platform) and one at

the lower side of the same boundary (to characterize the operating system’s ability to sat-

isfy the application’s demands).

Thus, to complete our methodology of OS performance analysis, we must find a way

to distill the detail of the performance hierarchy into a characterization of performance

interactions at a given abstraction boundary; ideally, this characterization should take the

form of a vector of performance demands by the part of the system above the boundary, a

vector of performance resources offered by the part of the system below the boundary, and

a way to combine these vectors to get a single, simple metric representing how well the

demands are satisfied by the available resources. Although a complete solution to this

problem at all abstraction boundaries is well beyond the scope of this thesis, in Chapter 4

we consider the specific case of the application-OS boundary, and derive a methodological

approach that transforms the performance hierarchies for an application and an OS into a

single metric that predicts user-visible system performance.

Thus throughout this thesis we present methodologies and tools explicitly designed

for building and analyzing the performance hierarchies that define modern system perfor-

mance. We begin in Chapter 2 with techniques to characterize and link together the foun-

dation layers of the hierarchy: the hardware and the operating system. Next, in Chapter 3,
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we extend the hierarchy to include the performance abstractions of OS-dependent user

applications by presenting techniques for decomposing user-visible application perfor-

mance into dependencies upon the operating system. Finally, in Chapter 4 we take the

performance hierarchy obtained by the techniques in the earlier chapters and discuss a

methodology that is capable of reducing the intricate detail of the performance hierarchy

into a set of simple characterization vectors that can be transformed into a single applica-

tion-specific metric for gauging or predicting operating system and application perfor-

mance. The result of the analysis in these three chapters is thus a methodology that

restores relevancy and rigor to operating system measurement: it discards ad hoc, artificial

measurement in favor of a well-defined blueprint for analyzing operating system perfor-

mance in the context of real hardware and real application load, and, as a result, produces

metrics that can be used in a meaningful way for system performance evaluation and com-

parison.
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Chapter 2

Decomposing the Performance of the
Operating System Kernel

The first step in understanding operating system performance is to understand how the

performance of the operating system’s major abstractions depends on the performance of

the underlying hardware platform. Gaining this understanding is a prerequisite for con-

structing the lower half of the system performance hierarchy, which encompasses both the

hardware and operating system layers. The methodology that we have chosen to accom-

plish this task is based heavily on the notion of performance decomposition, and relies on

microbenchmarking for its tools. Although we have seen how microbenchmarks used in a

vacuum do not provide the information needed to understand the interactions and per-

formance characteristics of a given system, when combined with the performance decom-

position technique they provide the means that we need to achieve the desired

characterization of the lower half of the system performance hierarchy.

The microbenchmarks that we use (hbench-OS, described in Section 2.2) divide

roughly into two areas: one set quantifies hardware capabilities and performance (e.g.,

memory bandwidth), while the other measures the primitive functionality that is exported

from the kernel to applications (such as the system calls, process creation, and file/net-

work access). The results produced by these two sets correspond naturally to the bottom

layers of the system performance hierarchy; Figure 2 depicts the structure of this piece of
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the hierarchy as a pyramid of relationships between layers representing components of OS

performance.

The performance decomposition methodology enters when we need to reconstruct

the interdependencies in the OS/hardware portion of the performance hierarchy, a task

for which the microbenchmarks themselves do not provide any guidance. As described in

Chapter 1, this task can be approached from two directions, analytically or experimen-

tally. We will use both techniques, but will direct our focus on the experimental model,

for it is rare that the performance of such a complex system as the combination of OS and

hardware can be predicted analytically. The key idea in performing a performance decom-

position experimentally is to use controlled variation of the performance of a low-level

primitive or abstraction in order to gauge its impact on, and thus its connections to,

higher-level primitives or abstractions. Thus our decomposition methodology consists of

two steps: first, using our hbench-OS benchmarks to measure performance at each of the

lower levels of the hierarchy while varying features of the hardware in a controlled manner

(i.e., changing only one component of the test system at a time); and second, using the

changes in hardware as well as software analysis (via hardware counters, software profiling,

or code analysis) to relate the performance of primitives in a given layer to the perfor-

Figure 2: Decomposition of OS Performance via hbench-OS Primitives. The performance of OS-
dependent applications can be decomposed into high-level OS-provided services and primitives, which can
in turn be decomposed into low-level kernel primitives (that may themselves be used by applications).
These low-level kernel primitives can, in turn, be decomposed again into hardware capabilities. In many
cases, hbench-OS’s suite of tests allows us to measure and relate the lower three levels of this hierarchy.

Hardware Capabilities
e.g., CPU and Memory System

Low-level OS Primitives
e.g., bcopy, mmap, fork, . . .

High-level OS Primitives
e.g., process creation, . . .

OS-
dependent
Application
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mance of primitives in layers above and below it. Once the interaction between each pair

of adjacent layers is understood, the hierarchy of performance dependencies can be recon-

structed.

In many cases, our hbench-OS benchmark tests provide enough detail about the inter-

nal structure of individual layers of the hierarchy so that it is possible to analytically recon-

struct the performance dependency paths that connect application-visible OS abstractions

and primitives to hardware performance; this is especially true when the primitives being

evaluated are related to bulk data transfer, as will be seen in the case study below. In other

cases, however, the tests by themselves may only be capable of measuring the performance

of the top-layer abstraction, and thus we are forced to rely on the experimental technique,

bypassing the middle layers of the hierarchy to directly determine the hardware dependen-

cies of the upper-layer primitives; as an example, we found it necessary to resort to this

technique to relate the lowest-level primitives measured by hbench-OS (such as raw mem-

ory bandwidths) to features of the hardware architecture.

With this methodology for building the lower levels of the system performance hierar-

chy in hand, we are now ready apply it to a real system. Before doing so, however, we first

present some other approaches to OS performance evaluation, and discuss how our

decompositional methodology differs from these traditional techniques. Next, in Section

2.2, we describe in greater detail the hbench-OS tools that we have developed for measur-

ing the performance of OS primitives. These tools are based on the lmbench benchmark

suite [14], but have been significantly enhanced and modified; we describe these modifi-

cations as well. Finally, in Section 2.3, we apply our tools and methodology to the task of

understanding and decomposing the performance of the NetBSD operating system [15]

on the Intel x86 platform. In this last section, we also demonstrate the types of detailed

conclusions that the performance-hierarchy approach allows us to draw about the interac-

tions between OS and hardware performance, and how these conclusions provide guid-

ance for future hardware and software tuning; we defer discussion concerning the OS’s

impact on application performance to Chapters 3 and 4.

2.1 Related Work: Benchmarking Operating Systems

The operating systems research community has not ignored OS performance; on the con-
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trary, there is a large body of work aimed at understanding OS performance and its hard-

ware dependencies. The typical approach that has been taken is the microbenchmarking

approach: various OS primitives are measured across a wide range of hardware platforms,

and any trends in the data are used to draw conclusions relating OS performance to hard-

ware performance. Probably the most frequently cited example of this type of work is

Ousterhout’s 1990 paper “Why Aren’t Operating Systems Getting Faster As Fast As Hard-

ware?” [17] in which Ousterhout uses a set of tests (originally designed to measure the

performance of the Sprite operating system) to analyze the performance of OS primitives

across a range of then-common processor and system architectures, primarily to deter-

mine the performance impact of the move from CISC to RISC architecture. Ousterhout’s

benchmarks isolate a number of kernel primitives and, when run across multiple plat-

forms, provide some indication of the dependence of OS performance on machine archi-

tecture. However, they do not include enough detailed tests to characterize the

capabilities of the underlying hardware and to use that characterization to understand the

performance of higher-level kernel primitives; thus they are not useful for the perfor-

mance decomposition approach.

Anderson et al. pursued a similar approach in order to examine the interplay of hard-

ware architecture and the operating system in a multiprocessing microkernel design [1]:

they used a set of ad hoc microbenchmarks to perform a cross-platform comparison of OS

primitives targeted to microkernel bottlenecks (IPC and communications latency, thread

overhead, etc.). Again, the benchmarks they used were not complete enough to provide

the detail necessary for constructing a full system performance hierarchy.

In 1995, McVoy improved the state-of-the-art in OS microbenchmarking with the

introduction of his lmbench package: a suite based on a broad array of portable OS

microbenchmarks capable of measuring both hardware capabilities (e.g., memory band-

width and latency) and OS primitives (e.g., process creation and cached file reread) [14].

Although lmbench’s detailed tests offered the breadth and detail needed to decompose

operating system primitives into their hardware-dependent components, McVoy used

them primarily to draw conclusions about the relative merit of various operating system

and hardware architectures. Additionally, the lmbench tests suffer from several statistical

and methodological flaws that make them difficult to use as the basis of a performance
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decomposition methodology; we discuss these flaws and our attempts to fix them in Sec-

tion 2.2.

Although the microbenchmarking approach used by these researchers is similar to the

one that we have chosen, there are two important differences. First, and most important,

in this chapter we are not trying to make general claims about operating system perfor-

mance. This type of conclusion can only be made when the OS is considered in the con-

text of realistic application load, which we do later in Chapters 3 and 4; here, we are

instead trying to reconstruct the dependencies of OS abstractions on hardware, without

making any claims about the relative or absolute importance of any given abstraction. The

other difference is in the methodology that we use to determine the performance depen-

dencies: instead of trying to draw conclusions from comparisons across widely divergent

hardware platforms, as do McVoy, Ousterhout, and Anderson, we rely on the principle of

controlled experimentation, making the smallest possible changes to the hardware plat-

form that produce noticeable performance differences. This technique is essential in order

to control as many extraneous variables as possible; otherwise, it is impossible to isolate

the effect of specific hardware features on OS performance, and the details of the connec-

tions between OS performance and hardware are lost.

2.2 Microbenchmark Tools: Revising lmbench into hbench-OS

Since microbenchmarks play such a key role in the decomposition-based methodology

that we have developed, our first task in implementing the methodology was to construct

a set of rigorous microbenchmark programs capable of producing accurate, reproducible

results. We initially chose McVoy’s lmbench [14], described above in Section 2.1, for the

breadth of its tests and the detail they claimed to provide. However, as we began to use

lmbench to study NetBSD’s performance for the case study in Section 2.3, we found that

it had several shortcomings as a tool for the detailed scientific study of OS-hardware inter-

action, which is what we needed to construct the lower levels of the system performance

hierarchy. Most notably, it did not provide the statistical rigor and self-consistency needed

for detailed architectural studies. To resolve these shortcomings, we decided to revise

lmbench into a suite of tests that would be useful for both cross-platform comparison and

detailed system analysis—we wanted to fulfill the lmbench promise of providing a set of
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tools capable of illuminating the inner workings of an operating system in order to bring

to light how that operating system’s performance depends on the hardware upon which it

runs. Since lmbench provides a sufficiently complete set of tests to cover a broad range of

operating system functionality, our modification efforts were directed at making the exist-

ing tests more rigorous, self-consistent, reproducible, and conducive to statistical analysis.

The specific problems that we encountered with lmbench ranged from minor (we

found the output format of the benchmarks difficult to analyze) to substantial (with a rea-

sonable compiler, the test designed to read and touch data from the file system buffer

cache never actually accessed the data). Our biggest concerns, however, were with the

benchmarks’ measurement and analysis techniques: we were not confident that the meth-

odology used in a number of tests was rigorous enough to produce accurate, reproducible

results. In the following sections we document the difficulties that we encountered and

the methods that we used to solve them. The original lmbench tests that are used in this

thesis are summarized in Table 2; we refer the reader to McVoy’s original lmbench paper

[9] for a more detailed description of the benchmark tests discussed.

Test Description

Memory read/write bandwidths Determines the bandwidth to memory by timing
repeated summing of a large array.

bcopy() bandwidth Determines the memory bandwidth achieved by
the bcopy() memory copy routine.

File reread bandwidth Measures the bandwidth attainable in reading
cached files from the system buffer cache.

TCP bandwidth Measures the bandwidth attainable through an
already-established TCP connection through the
loopback interface.

Cached mmap-read bandwidth Measures the bandwidth attainable when reading
from a cached file mapped into the process’s
address space

Process creation Measures the latencies of three different methods
of process creation: via a simple fork(),
fork()+exec(), and system().

Signal handler installation Measures the latency of installing a new signal
handler from a user process.

TCP connection latency Measures the latency of setting up a TCP connec-
tion across the loopback interface.

Null system call latency Measures the latency of writing one byte to
/dev/null, to approximate the cost of entering
the kernel through the system call dispatcher.

Table 2: Summary of a subset of the original lmbench benchmarks [9]. Both the
lmbench and hbench-OS suites include many other benchmark tests; those listed above
are the most useful, and are the ones used in this thesis.
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For the remainder of this section, we will use lmbench to refer to the original lmbench-

1.1 test suite, and hbench-OS to refer to the modified test suite. Also, we will refer to the

on-chip cache as the L1 (first level) cache and the secondary cache as the L2 (second level)

cache.3 Note that the Pentium Pro integrates the L2 cache into the same package as the

CPU, while earlier CPUs use an external L2 cache.

2.2.1 Timing Methodology

Lmbench performs all of its timing using the gettimeofday() system call to sample

the system time before and after the operation that is being measured. On systems that do

not have (or use) hardware microsecond timers, the resolution of gettimeofday() is

only that of the system clock—as coarse as 10 ms in some cases. One particularly severe

real-life example that demonstrates the problems imposed by a coarse-grained timer can

be seen in the DEC Alpha 21164 running Digital UNIX 3.2F; the resolution of get-

timeofday() on such systems is 1 ms. This is far too coarse to accurately time individ-

ual low-latency events or to measure high bandwidths, as some of the lmbench tests

attempt to do. For example, the lmbench TCP connection latency benchmark times indi-

vidual connection requests through the loopback interface (a software-simulated network

interface that reroutes outgoing data back into the system’s input queues, bypassing the

real network interface and physical medium entirely). As these take much less than 1 ms,

lmbench reports a 0 microsecond connection latency on the Alpha. Similarly, the memory

bandwidth benchmark times a single buffer read; if the test is run with buffers small

enough to fit in the L1 or L2 cache, lmbench on the Alpha reports infinite bandwidth.

We made two modifications to avoid the timer resolution constraint imposed by

gettimeofday(). First, we modified each benchmark to run its tests in an internal

loop, timing the entire loop and reporting the average time (total time divided by number

of iterations). While many of the lmbench latency tests already used such internal loops,

the loops were run an arbitrary, predetermined number of times, causing scalability prob-

lems on different-speed systems. To fix this, we modified the internal loops to run for a

3. A cache is a piece of small, high-speed memory that is used to reduce the access time to frequently used data normally
stored in slow main memory (DRAM). As data is retrieved from DRAM, it is cached in the CPU’s caches under the
assumption that it will be reused in the near future; subsequent accesses to the data incur only the cache’s low latency,
not the DRAM’s high latency. A system usually has two or more levels of caches; the L1 cache (closest to the CPU) is the
smallest and fastest, and those at higher levels are slower but larger.
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minimum of one second, calculating the number of iterations dynamically. The dynamic

calculation of the iteration count ensures that the running time of the benchmark will

exceed any reasonable timer resolution by a factor of 10 or more, regardless of the system

or CPU being used. In addition, the inclusion of internal iteration with the bandwidth

tests makes possible precise measurement of the memory and copy bandwidths to the L1

and L2 caches.

For benchmarks where the measurement is destructive and can only be taken once

(for example measuring the virtual memory and TLB overhead in reading a memory

mapped region), the loop-and-average method is not effective. For these tests, we had to

appeal to a hardware-specific solution to gain the timing accuracy needed: we introduced

hooks to allow hardware cycle counters (which tick at the CPU’s internal clock speed) to

replace gettimeofday() for timing. Currently hbench-OS only supports the Pentium

and Pentium Pro counters, but adding support for other architectures (such as the Alpha

or SuperSPARC) is not difficult. Note, however, that if an architecture supports no hard-

ware counters/timers, it is not possible to measure such destructive events accurately.

Adding the hardware-timer hooks also significantly enhances the flexibility of the

hbench-OS package, as the high-resolution timers give hbench-OS the capability of mea-

suring events with low latencies without the need to run the event in a loop, thus allowing

collection of cold-cache performance numbers. When using the gettimeofday()

timing method, only warm-cache results can be measured, as the loops that are required

for accuracy also allow the benchmark to run entirely from the cache.

Our last modification to the timing routines was to include code to measure and

remove the overhead introduced by the timing mechanism (either the gettimeof-

day() system call or the instructions to read the hardware counters). Removal of this

timer overhead is essential, especially when using the hardware timers to measure single

low-latency events. When combined with the use of the hardware counters, this allows for

precise timing measurements: on a 120 MHz Pentium, for example, our timings are accu-

rate to within one clock cycle, or 8.3 ns.
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2.2.2 Statistical Methodology

With the timing irregularities solved through iteration and the use of hardware counters,

we discovered another shortcoming in lmbench’s methodology: it was inconsistent in its

statistical treatment of the data. Several of the benchmarks reported the result of one mea-

surement, others reported the average of multiple repeated measurements, and yet others

reported the minimum of multiple repeated measurements. We wanted to run each test a

number of times to obtain more statistically sound results, but with the goal of applying a

consistent policy to the data analysis. To achieve this goal, the benchmarks were each

restructured to make a single timing measurement. The tests are run multiple times by a

driver script (each run in a new process), and the result from each run is appended to a

file. Since our reformulation of the tests preserves the value from each run of the bench-

mark, we have divorced the data analysis policy from the benchmark itself.

The most-used statistical policy in lmbench is to take the minimum of a few repeti-

tions of the measurement; this is intended to pick out the best possible result by ignoring

results contaminated by system overhead. However, in doing so it can pick out results that

are flukes—especially when the measurement involves subtracting an overhead value, as in

the context-switch latency benchmark. If the actual overhead on a specific run is lower

than the pre-calculated overhead, an abnormally good result will be obtained when the

pre-calculated overhead is removed from the result. To avoid these problems, in most cases

we take an n%-trimmed mean of the results: we sort the results from a benchmark, dis-

card the best and worst n% of the values, and average the remaining (100–2n)%. n is typ-

ically 10%. With this policy, we discard both the worst values resulting from extraneous

system overhead as well as the overly-optimistic results.

For certain benchmark tests, however, a simple trimmed mean is not sufficient to cap-

ture all of the important features of the results. This is particularly noticeable when the

results of a test do not approximate a normal distribution, but are (for example) bimodal.

Such cases are easily detected by their large standard deviations, and since all data is pre-

served, it is easy to view the actual distribution of the data to determine the best interpre-

tation. We encountered this problem in measuring L2 cache bandwidth, as cache conflicts

within our test buffer produced a bimodal distribution where the true bandwidth was rep-

resented by a large, narrow peak and the false (conflict) bandwidth was represented by a
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lower peak with larger spread. In this case, we merely increased the percentage that was

trimmed from the data in order to isolate only the true bandwidth peak.

Finally, we have modified the benchmarks (where possible) to perform one iteration of

the test before beginning the real measurement. Since we run most of the tests in loops

anyway, we expect warm-cache results. Running the test once before commencing mea-

surement ensures that the caches are primed and that any needed data (e.g., files in the

buffer cache) are available.

Note that in gathering the results in this chapter, we ran each benchmark (each of

which runs a large number of internal iterations) fifty times on all machines but the 386-

33 and 486-33 (due to limited access to the hardware, only five iterations were performed

on these machines), and we report the 10% trimmed average across these iterations. Stan-

dard deviations are represented by error bars in the graphs; in all cases standard deviations

were less than 1% (and are frequently not visible in the graphs) except in the file reread

benchmark, which produced standard deviations of less than 5%.

2.2.3 Increased Parameterization

In order to make the lmbench tests more amenable to our investigations, we made several

modifications to increase the flexibility of the benchmarks by making them more parame-

terizable. For example, we modified the pipe, TCP, and file-reread bandwidth tests to

accept a transfer size as an argument in order to investigate the effect of write-back caches

on small-buffer transfers. We also modified the memory read/write/copy bandwidth tests

to allow for measurement of the L1 and L2 cache bandwidths. Finally, we modified the

process creation benchmark to allow for measurement of both dynamic and statically-

linked processes.

2.2.4 Context Switch Latency

Measuring context switch latency is particularly challenging, as the latency of a context

switch is not very well-defined. In the strictest sense, context switch latency is the time

that it takes for the OS to suspend and save the hardware state of a running process (e.g.,

registers, stack pointer, page table pointers), select a new process to run, load the new pro-

cess’s saved hardware state, and then begin executing it. Lmbench uses a looser definition

of context switch latency: in addition to the above components of context switch time, it
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includes the latency that results from faulting the working set of the new process into the

CPU’s cache. This cache-filling overhead is not strictly a part of context-switch time, for it

only occurs when the two processes collide in the cache; thus, it is a function of the sizes

of the processes’ working sets and the OS’s page-mapping policy, and not of the hardware

or of the OS’s context-switch code. What lmbench measures is closer to what a user might

see for context-switch time with several large, data-intensive processes than to the raw

context-switch speed of the OS.

Although measuring cache conflict overhead is useful (especially for estimating con-

text-switch time for large processes), lmbench’s context switch benchmark demonstrates

that there are problems with this approach that make it infeasible for a portable context

switch benchmark. The most significant problem occurs when the operating system does

not support intelligent page coloring, i.e., it chooses physical addresses for virtual pages

randomly.4 To understand why this is a problem for lmbench, we need to investigate how

lmbench collects its context switch latency data.

The lmbench context switch latency benchmark measures the time to pass a token

around a ring of processes via pipes; to duplicate the effect of a large working set, each

process sums a large, private data array before forwarding the token, thereby forcing the

pages of the array into the cache. When the total time for this operation is divided by the

number of processes in the ring, lmbench is left with a number that includes the raw con-

text-switch time, the time to fault the array into the cache, the time to sum an already-

cached array, and the time to pass a token through a pipe. The latter two factors are mea-

surement overhead and must be removed. To do so, lmbench passes a token through a ring

of 20 pipes within one process, summing the same data array each time the token changes

pipes, then divides by the number of times the token went through a pipe. The problem

with this approach is that the test assumes that summing the buffer produces no unneces-

sary cache conflicts, for the summing overhead should not include any cache-fill time.

However, if the virtually-contiguous pages of the buffer are randomly assigned to physical

addresses, as they are in many systems, including NetBSD, then there is a good probabil-

ity that pages of the buffer will conflict in the cache, even when the size of the buffer is

4. It is also this random page-mapping policy that introduces the somewhat large (5%) standard deviations that we see
in the file reread benchmark.
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smaller than the size of the caches [3]. Thus the overhead will contain some cache-fill

time, and as a result might be too high; if the actual context switch test obtains good page

mappings, the overhead may even be so high that when lmbench subtracts it from the total

time to get just the context-switch latency, the resulting (reported) context switch latency

is negative or zero. A similar problem exists if the overhead-measurement test obtains

good page mappings while the real context switch latency test obtains conflicting map-

pings; here the overhead will be too small, and the reported context switch latency will be

too large.

Because with lmbench there is no guarantee of reproducible context-switch latency

results in the absence of OS support for intelligent page coloring, we decided, in hbench-

OS, to restrict the test to measure only the true context switch time, without including the

cost to satisfy extra cache conflicts or to fault in the processes’ data regions, as these can be

approximated from the cache and memory read bandwidths. To this end, we introduced a

new context switch latency benchmark to supplement the existing lmbench test. We did

not replace the lmbench test completely, as it can be useful in estimating user-visible con-

text-switch latencies for applications with a known memory footprint, and for determin-

ing cache associativity. In our new test, context switch latency is a function of the speed of

the OS in selecting a new process and changing the hardware state to run it. To accom-

plish this, we carve each process’s data array out of a large region shared between all the

processes in the ring. To compute the overhead for nproc processes, we measure the time

to pass a token through nproc pipes in one process, summing the appropriate piece of the

shared region as the token passes through each pipe. Thus we duplicate exactly what the

real context switch test does: we use the same memory buffers with the same cache map-

pings, and touch them in the same order. When we subtract this overhead from the con-

text switch measurement, we are left with the true context switch time plus any hardware-

imposed overhead (such as refilling non-tagged TLBs and any cached data that got

flushed as a result of the context switch but not as a result of faulting in the process). With

these modifications, we can obtain results with a standard deviation of about 3% over 10

runs, even with large processes, and without having to flush the caches. In contrast, on the

same machine, lmbench reports results with standard deviations greater than 10%.
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2.2.5 Memory Bandwidths

In the interest of consistency, we made some modifications to the benchmarks that touch,

read, or write memory buffers. The lmbench bandwidth tests use inconsistent methods of

accessing memory, making it difficult to directly compare the results of, say memory read

bandwidth with memory write bandwidth, or file reread bandwidth with memory copy

bandwidth. The tests that read memory primarily use array-offset addressing to iterate

through the buffer, while the write and copy-based benchmarks dereference and incre-

ment pointers. On pipelined or superscalar architectures, using array-offset addressing

produces address generation interlocks (due to the implicit add), while using pointers can

cause false data dependency interlocks. The difference between the two approaches is evi-

dent upon examination of the compiler’s output for the two benchmarks: gcc (on the x86)

implements the array-offset addressing in the C statements (ebx[0]=1;

ebx[1]=1;) as:

movl $1, (%ebx)
movl $1, 4(%ebx),

while a similar example using pointers (*ebx++ = 1; *ebx++ = 1;) is imple-

mented as:

movl $1, (%ebx)
addl $4, %ebx
movl $1, (%ebx)
addl $4, %ebx.

Depending on how the processor’s pipeline handles interlocks, the two methods can pro-

duce different timings. For example, on the Alpha processor, memory read bandwidth via

array indexing is 26% faster than via pointer indirection; the Pentium Pro is 67% faster

when reading with array indexing, and an unpipelined i386 is about 10% faster when

writing with array indexing. To avoid errors in interpretation caused by these discrepan-

cies, we converted all data references to use array-offset addressing. In addition, we modi-

fied the memory copy bandwidth to use the same size data types as the memory read and

write benchmark (which use the machine’s native word size); originally, on 32-bit

machines, the copy benchmark used 64-bit types whereas the memory read/write band-

width tests used 32-bit types.
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2.2.6 New Output Format

Lmbench placed all of its output into one large file whose name identified the machine

being benchmarked. In this format, the raw data was not very easy to extract for graphing

or statistical analysis. Thus we decided to revamp the output format to make it easier to

generate and process the raw data automatically.

In our new scheme, the user can specify in a configuration file exactly which tests are

to be run; the driver script is automatically generated from this script. Each machine

tested is assigned its own directory. Although the benchmark results are still stored ini-

tially in one large file, a script is provided to separate the large file such that the results

from each parameterization of each benchmark are placed in a separate file whose name

includes the name of the test and the parameters. Each file contains n numbers where n is

the number of runs that were made of the benchmark. For example, if 10 runs were made

of the context switch latency benchmark with 32 processes of size 16 KB, there would be

10 numbers in the file lat_ctx_16k_32. Several other files are used to hold the ver-

sion/RCS and system configuration information. Each of the benchmark result files is

processed by a script that sorts the values, strips the low and high tails, and calculates the

average and standard deviation as described in Section 2.2.2; these processed results are

placed back into individual files, which are then combined into a summary file. Another

script produces an lmbench-style summary report from this. Thus the summary output is

still available to the end user, but the raw data is preserved and made available to the

researcher who wishes to use it; the use of the file-system namespace as a database of

results allows easy selection of datasets for graphing or analysis of the raw data.

2.3 Case Study: Constructing a Performance Decomposition for NetBSD on

the Intel x86 Platform

With both the decomposition methodology discussed at the beginning of this chapter and

the hbench-OS tools described above in hand, we now turn to a case study in order to

illustrate both the interaction between the tools and the methodology as well as the type

of results that emerge in the process of constructing the lower levels of the system perfor-

mance hierarchy. For our subject operating system, we chose NetBSD 1.1 [15], a deriva-

tive of the CSRG 4.4BSD-Lite release [5], which shares a common ancestry with many of

today’s commercial UNIX implementations. We selected NetBSD for its openness and its
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multiplatform support: having the source code meant that we could use kernel profiling

and source code analysis to verify our techniques, and its multi-platform support provided

the possibility of future cross-architecture comparisons. For our hardware test platforms,

we selected eight machines from the Intel x86 architectural family: a 386, two 486’s, four

Pentiums, and one Pentium Pro. The hardware details of these machines are given in

Table 3. We selected the Intel x86 architecture as our subject architecture due to its

breadth: in its evolution from the i386 through the Pentium Pro, the Intel x86 architec-

ture has progressively included more and more of the advanced features that characterize a

modern architecture, including pipelining, superscalar execution, and an out-of-order

core with an integrated second-level cache. It thus allows us to build a set of performance

hierarchies that include most of the hardware features that are typically found in modern

microprocessors. All of our machines ran the same NetBSD-1.1PL1 “GENERIC” kernel;

we did not optimize the kernels for their target platforms, for we were particularly inter-

ested in the effects of hardware evolution on operating system performance in the absence

of processor-specific optimizations.5

Name-MHz Caches Features
Memory/
Bus-MHz

Processor

386-33 no L1

64K async. L2

70 ns

33 MHz

i386DX

486-33 8K combined L1

256K async. L2

60 ns

33 MHz

i486DX

486-66 60 ns

33 MHz

i486DX2

Endeav-90 16K split L1

512K pipeline-burst L2

60 ns EDO

60 MHz

Pentium

(i430FX chipset)

Endeav-100 60 ns EDO

66 MHz

Pentium

(i430FX chipset)

Endeav-120 60 ns EDO

60 MHz

Pentium

(i430FX chipset)

Prem-100 16K split L1

512K async. L2

70 ns

66 MHz

Pentium

(i430NX chipset)

Pro-200 16K L1, 256K L2, both
writeback and on-chip

60 ns EDO

66 MHz

Pentium Pro

(i440FX chipset)

Table 3: Features of Test Machines. Note that the 100 Mhz Pentiums run the memory bus at 66
MHz as opposed to the 60 MHz of the other Pentium processors. Unless otherwise noted, all L1
caches are write-through.
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As described earlier in this chapter, the experimental approach to performance decom-

position requires controlled variation of hardware features in order to isolate the depen-

dencies of OS primitives on those features. The set of test platforms that we used were

carefully selected to allow for such controlled variation. For example, the use of several

different motherboards with the same CPU and several different CPUs with the same

motherboard allowed certain comparisons to reveal dependencies on features of the CPU

architecture and the memory system. For example, comparing the 100 MHz Endeavor

Pentium with the 100 MHz Premiere-II Pentium reveals the effect of pipelining the L2

cache and installing EDO memory; similarly, comparisons between the 90, 100, and 120

MHz Endeavor Pentiums reveal the effects of increasing the CPU clock rate while hold-

ing the memory system constant. The specific comparisons that we used and the connec-

tions that they allowed us to form in the performance hierarchy are detailed in the

following sections.

2.3.1 Bulk Data Transfer

We begin our study with an example of the best-case performance decomposition meth-

odology, where the performance of high-level OS primitives can be tracked analytically all

the way down to hardware dependencies and then verified experimentally. The most illu-

minating example of this is the case of bulk data transfer. We choose bulk data transfer as

an illustrative OS primitive since it is an essential component of the performance of band-

width-sensitive applications such as web servers and multimedia/network video applica-

tions. When running a heavily-used web server, bcopy is the most-frequently called kernel

function, accumulating more than 55% of the total in-kernel time. Even typical develop-

ment work involves large amounts of bulk data transfer: our kernel profiling results under

NetBSD indicate that the kernel can spend as much as 23% of its time in bcopy while

supporting a mix of editing, compiling, debugging, and mail.

Applications that rely on bulk data transfer use one of three methods to access their

data: reading from a file in the file system, sending and receiving data on a TCP connec-

tion, or mapping a file into their address spaces. Since each of these data-access methods

5. This issue is especially important for portable OS’s that may not be tuned for a particular architecture (e.g., Linux,
Windows NT, UNIX), as well as for OS software that can reasonably be expected to outlive the hardware for which it
was originally optimized (e.g., Windows 3.x).
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involves a significant number of memory accesses, we can base our decomposition on the

hbench-OS tests that measure the hardware memory read, write, and copy bandwidths. If

we ignore the effects of disk and network latency (since we run all of our disk tests within

the buffer cache and all of our network tests on the software loopback interface, which

bypasses the physical network medium), we arrive at the decomposition shown in Figure

3. There is also a CPU computation component in each of the application-level primi-

tives; it is most significant in the TCP test due to the complexity of protocol encapsula-

tion and checksumming.

Hardware Bandwidth Capabilities
The hardware’s ability to move data is a function of the main memory speed, the memory

bus bandwidth, the size of the L1 and L2 caches, the write policy of the caches (e.g.,

write-back, write-through, write-allocate), and the processor’s ability to efficiently use

these resources (i.e., via pipelining or reordering memory operations). It is not possible to

directly measure any one of these features; hbench-OS measures the interaction of all the

components of a particular system. However, by using comparisons between different sys-

tem configurations, we can measure how each component affects performance.

The hbench-OS tests that can be used to quantify the hardware’s capability for bulk

data transfer, i.e., those that measure the bottom layer of Figure 3, are the raw memory

bandwidth tests, which measure effective software read and write bandwidths—the attain-

able bandwidths when array-addressing operations (needed to index through memory) are

Figure 3: Decomposition of Application Data-access Primitives. All of the application-level data primi-
tives for bulk data access depend on the hardware’s memory read bandwidth since they all touch data. File
reading interposes the extra overhead of a cross-protection-domain bcopy to move the requested data to
user-space buffers; TCP transfer interposes three bcopy’s as it shuffles the data through the loopback inter-
face and between user and kernel space; mmap adds virtual memory system overhead as it enters new map-
pings into the process’s address space.
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inserted between each memory reference. Although the raw hardware transfer bandwidths

are potentially higher, the software bandwidths are more representative of what is attain-

able by actual code.

Figure 4 plots the peak raw bandwidths for reading from and writing to both caches

and main memory of several of the test machines. The almost 4-fold improvement in L2

and main memory read performance between the 486-66 and the Prem-100 is due to

increased bus bandwidth and bus burst capability. The Pentium system has a 64-bit data

bus, twice as wide as the 486’s 32-bit bus; in addition, the Pentium supports burst trans-

fers from the system’s fast page mode DRAM, while the 486 does not. The measured

write performance only doubles from the 486-66 to the Prem-100, because the older

chipset on the Premiere system does not burst writes to DRAM; only the wider path to

memory plays a role in the speedup compared to the 486.

The write performance of the Endeav-100 doubles that of the Prem-100 because of

the Endeavor motherboard’s pipeline-burst L2 cache and EDO DRAM. The pipeline-
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Figure 4: Raw Memory Bandwidth. The 64-bit, burst-capable memory bus of the Pentiums produces a
factor of four improvement in L2 and DRAM read memory bandwidth from the i486 architecture. The
combination of pipeline-burst cache and EDO DRAM gives the Endeav-100 a significant performance
advantage over the Prem-100; its higher memory bus clock allows the Endeav-100 to outperform its 90 and
120 MHz siblings. The Pentium Pro exhibits exceptional cache performance and good memory read band-
width (due to its out-of order prefetching memory unit), but suffers on memory writes due to an unneces-
sary cache coherency protocol that prevents back-to-back bus write transactions.
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burst cache can latch three out of every four memory references in one bus cycle each and

then burst them off to the DRAM. This explains why the main memory write bandwidth

is comparable to the L2 cache’s inherent read bandwidth—the pipelined cache is hiding

much of the already-low DRAM latency from the CPU. Note that on the Endeav-120,

which shares the same memory subsystem as the Endeav-100 and Endeav-90, the DRAM

and L2 read bandwidths are higher than expected from comparison with the Endeav-90,

since the processor is clocked at an integral multiple of the memory bus speed. This allows

the Endeav-120 to utilize more of the bus bandwidth (61% vs. 54% for the Endeav-100,

as determined with the Pentium hardware event counters) since CPU and bus cycles coin-

cide more frequently.

It is interesting to note that in the raw memory bandwidth tests, the dual-issue capa-

bility of the Pentium is being very poorly utilized. We instrumented hbench-OS with the

Pentium’s built-in hardware counters, and discovered that when memory is accessed by

summing an array using array-offset instructions, less than 0.1% of the memory instruc-

tions are parallelized. Similar results are found when the built-in string opcodes are used.

Parallelism can be increased to nearly 50% by using pointer arithmetic to step through the

array. In this case, each pointer increment is issued along with a memory reference, and is

essentially free; however, two memory references are never issued simultaneously. In addi-

tion, this extra parallelism is introduced at the cost of an extra stall cycle on each memory

access due to address generation interlocks. Thus both methods of memory access provide

approximately the same performance, so we predict that memory intensive workloads

may profit less than expected from the superscalar architecture of the Pentium.

This conclusion also raises the interesting issue of the usefulness of micro-optimizing

compilers for the OS kernel. We experimented with the PCG version of pgcc (an adapta-

tion of the GNU gcc compiler that performs aggressive instruction scheduling for the

Pentium pipelines) and discovered that pgcc’s optimizations had essentially no effect on

the performance of the memory-intensive benchmarks, even when the memory accesses

were explicitly coded (as opposed to using the built-in string operations). The problem is

that the hardware itself does not allow dual-issue of memory references in the cases we

tested, and thus no instruction scheduling policy could improve performance in these

cases.
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Returning to the data in Figure 4, we see that the most spectacular feature is the per-

formance of the Pentium Pro system. The Pro-200 exhibits a strange combination of

impressive across-the-board memory bandwidth, except for uncharacteristically poor

main memory write bandwidth. The Pro-200’s nonblocking write-back L1 cache gives it

an extreme performance advantage over the Pentiums on small cached reads and writes.

The Pro-200 L2 cache also significantly outperforms that of the Pentiums, as the Pentium

Pro runs its on-chip, lockup-free L2 cache at the CPU clock speed, as opposed to the sys-

tem bus speed. Also, while the Pentiums’ non-write-back caches access memory on every

write, the Pentium Pro’s write-back caches are intelligent enough to combine writes into

cache-line-sized increments, resulting in cached write performance that nearly equals

cached read performance, as the write-back cache is not forced to read a line before writ-

ing to it. The astounding cache performance on the Pro-200 suggests that write-back

caches offer a major performance advantage to those applications that perform bulk data

transfer in small, cache-sized chunks, for example, the size of a typical HTML file; our

later application measurements in Chapter 4 confirm this hunch.

Along with its high cache performance, the Pro-200 also sports exceptionally high

main memory read bandwidth. In fact, the 216 MB/s that it achieves approaches the 226

MB/s theoretical maximum bandwidth out of 3/2/2/2-clocked EDO DRAM on a 66

MHz bus. The reason for this exceptional performance is twofold. First, the Pentium Pro

sports an out-of-order execution engine that is capable of reordering memory reads and

removing the data dependencies implicit in the benchmark. By using register renaming

and speculative memory reads, the Pentium Pro can implicitly batch and prefetch data

reads, thus allowing it to issue memory reads as fast as the external memory system can

handle them. Second, and more importantly, the Pentium Pro’s pipelined, transaction-

based system bus allows it to issue consecutive back-to-back data read transactions with-

out incurring bus turn-around time and transaction set-up costs [9]. In contrast, the Pen-

tium executes all memory operations in sequence, inserts extra data dependency stalls due

to its small register set, and negotiates for the system bus on each read request.

The Pro-200’s main memory write bandwidth, in contrast, is exceptionally low—

almost 18% slower than the write bandwidth of the Endeav-100, a system with identical

DRAM and the same bus speed. To determine why this was the case, we instrumented the
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benchmark with the Pentium Pro’s built-in hardware counters [11]. For each 32-byte line

of data written by the CPU, the counters indicate that two bus transactions take place: a

writeback transaction and a read-for-ownership (RFO) transaction. The writeback is

expected, since as the CPU stores a line into the cache it must displace an existing dirty

line from a previous write. The RFO on the line about to be written is used to guarantee

cache-coherency: the CPU must ensure that no other CPU in the system has a dirty copy

of the line it is about to write. However, there is no need for a read-for-ownership transac-

tion in our case, as the Pro-200 is a single-processor system, and thus there are no other

CPUs that could contain a dirty line; there is similarly no need to read the entire line, as

we have seen in the L2 cache bandwidth that the write-back cache is intelligent enough

not to load a line that is about to be entirely rewritten. Thus by interspersing a RFO

transaction between each write, the available bus bandwidth drops significantly, as the

CPU must renegotiate for the bus on each write, instead of performing back-to-back

writes (as it does in the read case). Also, there is the bus overhead of the read-for-owner-

ship transaction itself, and the bus turn-around time needed to switch between the trans-

actions. Thus it seems that requiring the demonstrably high overhead of a RFO-based

cache coherency protocol even when there is only one CPU in the system is a suboptimal

design, as it severely cripples the available memory write bandwidth on the Pentium Pro.

It appears that Intel may have attempted to compensate for this design by including

an undocumented “FastStrings” flag in one of the Pentium Pro’s control registers: when

FastStrings are enabled, the RFO transactions are converted to Invalidate transactions (so

the cache does not read the new line but merely invalidates it in other CPUs). However,

on a single-CPU system the Invalidate transaction is still unnecessary since there is only

one cache on the bus. Additionally, this feature only improves DRAM write bandwidth

slightly (about 5%) and only when certain string instructions are used to perform the

write; converting the RFOs to Invalidates does not remove the bus transaction and rene-

gotiation overhead, the major factor in the low DRAM write bandwidth.

Kernel and Application Bandwidth Primitives
From the hbench-OS measurements of the hardware capabilities of each machine, we can

now generalize to the kernel primitive, bcopy, and from there to the application primi-

tives such as file reread, mmap’d file reread, and TCP throughput. If each primitive were
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completely dependent on the memory subsystem, we would expect to see similar patterns

as were discovered with the hardware primitives; any deviation from these hardware pat-

terns should indicate that the primitive showing the deviation has a non-memory-system

dependent component.

The primary kernel primitive relied upon by bulk-data application primitives is bcopy,

used to transfer data around the kernel and between kernel and user space. Our bcopy

benchmark uses the libc bcopy routine (identical to kernel bcopy in NetBSD) to copy

both cached and uncached buffers in user space; this routine uses the x86 string instruc-

tions to efficiently move data. In the ideal case, we expect the results of the bcopy bench-

mark be one-half of the harmonic mean of the read and write bandwidths for each

machine, since each byte copied requires one read and one write. However, when reads

and writes are combined into copies, unexpected interactions can develop and cause the

measured copy bandwidth to exceed or fall short of the half-harmonic mean prediction.

These are the more interesting cases, as they illustrate optimizations or flaws in the hard-

ware design, and how such design characteristics affect performance. In Figure 5, we

present the results of the non-cached bcopy test along with the half-harmonic means cal-

culated from the raw bandwidth results in Figure 4; the cached bcopy results are similar.

For all systems but the Pro-200, the graph shows the expected result that bcopy band-

width is directly correlated with the raw memory bandwidths. The measured results

slightly exceed the predictions in most cases because the CPU (executing the x86 string

operations) can issue the reads and writes back-to-back, without decoding and executing

explicit load and store instructions.

Those machines with poor raw write bandwidth suffer in the bcopy test, since both

read and write bandwidths have an equal influence on the copy bandwidth: for example,

although it uses the same processor, the Prem-100 achieves only half the bcopy bandwidth

of the Endeav-100. This again demonstrates the effectiveness of an enhanced memory

subsystem with a pipelined L2 cache and EDO DRAM at improving performance of

operations requiring the movement of large quantities of data. The disappointing DRAM

write performance of the Pentium Pro memory system completely negates the advantages

of its advanced cache system, resulting in bcopy performance that is actually worse than

that of some of the Pentiums. The Pro-200’s copy bandwidth also falls far short of our pre-
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diction, since, when copying, the processor cannot issue back-to-back reads on the system

bus, and must alternate read, write, and read-for-ownership transactions; each new trans-

action requires setup and negotiation overhead. Again, enabling FastStrings on the Pen-

tium Pro has little effect (less than 1%) because the extra coherency transaction is still

present.

With this understanding of bcopy, we move on to consider the application-level data-

manipulation primitives: cached file read, local TCP data transfer, and mmap’d file read.

From the decomposition presented earlier in Figure 3, we expect that a significant compo-

nent of the attainable bandwidths for each of these primitives is due to a dependence on

the memory system, and thus we expect that the architectural changes that have enhanced

memory system performance (such as faster, wider busses and pipelined caches) will

enhance the performance of these primitives as well. We now examine each of these three
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Figure 5: bcopy Bandwidth (2MB buffers). The memory systems determine performance on this bench-
mark: the predicted bcopy results (one-half of the harmonic mean of the read and write memory band-
widths) track closely with the measured numbers. When the 100 MHz Pentium is scaled to account for its
higher bus clock rate, all the Endeavor-based Pentium systems achieve identical bcopy bandwidths, inde-
pendent of processor speed. The Prem-100, with a slow memory system, attains only half the bandwidth of
the identical processor with a newer memory system (Endeav-100). The Pro-200’s dismal memory write
bandwidth leads to poor bcopy performance; the actual performance falls far short of the predicted perfor-
mance because of bus turnaround time not accounted for in the read bandwidth.
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bandwidth measurements in order to determine if this is the case, or if other factors

besides the memory system are involved.

The hbench-OS file reread benchmark measures the bandwidth attainable by an appli-

cation reading data from a file present in the kernel’s buffer cache; we used 64KB read

requests for this test. For each byte transferred in this test, NetBSD performs one memory

read from the kernel’s buffer cache, one memory write to the user buffer, and a final mem-

ory read as the benchmark touches the byte. This is one more memory read than the

bcopy test, so one might expect file reread to be significantly slower than bcopy. Similarly,

the TCP bandwidth test involves transferring 1MB in-memory buffers over the local

loopback interface. In this test, each byte transferred must be copied three times, so we

expect at least a 3-fold performance degradation relative to bcopy.

The results for these two benchmarks on several of our test machines are shown in

Figure 6 along with predicted results derived from the bcopy test and raw bandwidth tests.
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Figure 6: File Reread (64k buffers) and TCP Bandwidth (1MB buffers) Performance. File reread
requires three memory references for each word of data read: a two-reference copy from the buffer cache to
user space, and a final read as the user program touches the data transferred. The predicted file reread num-
bers were derived from this decomposition. The measured results fall short of the predictions due to cache
contention and system-call overhead, and (for the Pro-200) extra bus negotiation cycles. The TCP bench-
mark performs three copies with buffers greater than the size of the cache, so in all cases we see about the
predicted value, one-third times the bcopy bandwidth. The Pro-200 performs better than predicted due to
increased performance on the packet-checksumming component of the benchmark.
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The TCP bandwidths show the expected pattern: the relative performance is comparable

to that of bcopy, while the magnitude is approximately one-third that of bcopy. As

expected, there is a partial CPU dependency, since TCP’s checksumming and encapsula-

tion require more processing than bcopy; the Pentium Pro’s out-of-order execution allows

it to overlap some of the computation and memory references involved in the TCP pro-

cessing, giving it a slight performance edge. However, it is clear that the memory system

still dominates TCP transfer bandwidth.

The file reread results also show similar relative performance to the bcopy results, with

the exception of the Pentium Pro. Although the predicted bandwidth again far exceeds the

actual due to bus turnaround time that was not included in the raw read bandwidth, this

machine still far outclasses the Endeavor-based Pentiums on this test despite its slower

main memory system and poor bcopy performance. The reason for this is that the 64KB

transfer buffers all lie entirely in the fast write-back L2 cache for the duration of the

benchmark. If the read request size is increased to 1MB, larger than the 256KB L2 cache,

the performance drops by a factor of two, as the buffers fall out of the L2 cache. Alter-

nately, if the 64KB transfer buffer is randomly relocated after every transfer, a similar per-

formance drop is observed, as the buffer rarely gets reused at the same address, defeating

the L2 caching effect. The same effect can be seen in the TCP bandwidth test: using

64KB socket buffers instead of the default 1MB buffers increases performance 200% from

the value in Figure 6. These results suggest that a fast write-back L2 cache can provide a

significant advantage to an application that processes large amounts of data using a single

buffer that fits within the L2 cache; if the buffer is large or if the application does not reuse

the same buffer repeatedly, the overhead of faulting-in cache lines over a slow bus signifi-

cantly reduces the write-back advantage.

Our final benchmark in the category of application-visible bulk data transfer primi-

tives is the file read via mmap benchmark. This test examines how close user processes can

come to attaining the raw memory read bandwidth when reading files that have been

mapped into the process’s address space via the mmap() system call. The test maps a

4MB region of an already-cached file into the user process’s address space, then proceeds

to read every byte. Since the 4MB region is significantly larger than the L2 cache size in all

cases, it resides primarily in main memory, and thus we expect the available bandwidth to
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be dominated by the main memory read bandwidth. However, there is another significant

component that affects the attainable mmap’d-file read bandwidth: the overhead of the

virtual memory (VM) hardware and software. For each page of data that the benchmark

touches, the VM system takes a fault, even when the pages of the file are already cached in

physical memory. Handling such a fault involves a protection domain crossing, executing

some of the kernel’s VM translation code, and entering a mapping into the user process’s

page tables, which reside in physical memory; use of the Pentium counters revealed that a

TLB miss must also be serviced each time a new page is touched. Thus the time it takes to

read a page of a mapped file decomposes into two sub-components: the main memory

read bandwidth, which we have already seen in Figure 4, and the VM system’s overhead.

The measured results of the hbench-OS mmap-reread benchmark are presented in Figure 7

in terms of the time taken to read a (4KB) page; the component decomposition is indi-

cated by stacked bars, with the main memory read time taken from the results in Figure 4.
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Figure 7: Mmap’d File Read Performance. This benchmark measures the bandwidth attainable using a
memory-mapped interface to access files already resident in memory. The data is presented in terms of a
latency—the amount of time needed to read one entire 4KB page as part of a larger 4MB read, in microsec-
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sents the time imposed by the virtual memory system (handling a fault, looking up the page, and installing
TLB mappings). Both components of the total latency are heavily memory-system dependent, although
the VM overhead has a small architectural component, due to hardware trap handling support.
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As can be seen clearly from the figure, the main memory read time dominates the total

mmap’d-file read latency, and thus the attainable bandwidth; the total time tracks closely

with the memory read time. Interestingly, the VM overhead also tracks closely with the

memory bandwidth, most likely due to the need to search page table structures and to

write the hardware page tables. This is especially noticeable on the set of Pentium

machines: the ratio of VM overhead to total time is approximately constant across this set

of machines. There is a slight component of the VM overhead due to other architectural

factors, though: the percentage of total time consisting of VM overhead is greater on both

the 486-66 and Pro-200 than on the Pentiums. Although the benchmark provides no data

to support any additional conclusions, we hypothesize that the hardware support for the

VM fault path and for the memory management unit updates is slightly better on the

Pentium than on the 486-66, and, similarly, that it is less optimal on the Pro-200 than on

the Pentiums (perhaps due to the need to flush or stall the deep CPU pipeline on faults).

Thus, in the case of the bulk data transfer primitives that an OS-dependent applica-

tion might use, our decomposition is complete: the user-visible primitives of cached file

reread, TCP data transfer, and mmap’d file read are nearly entirely dependent on the

memory system, and therefore it is features of the memory system that will most affect the

performance of these primitives. The Endeavor-based Pentium results imply that for high-

bandwidth applications, a main memory system based on fast DRAM technology (such as

EDO memory) is essential. The Pro-200’s performance suggests again that eliminating

unnecessary cache-coherency and bus transaction overhead will increase its performance

greatly. It also suggests that intelligent, non-blocking, write-back caches are a net perfor-

mance win both when reading large amounts of data and when handling data in units

small enough to be cached, despite the delays that can be incurred in fetching lines upon

write. In fact, analysis of these benchmarks with the Pentium Pro hardware counters

shows that, while transferring large amounts of data, the Pentium Pro rarely needs to read

entire lines before writing into them, as the cache is intelligent enough to accumulate line-

sized writes. Thus we conclude that large improvements to the CPU’s execution unit (as

in the Pro-200) may have a much less visible effect on high-bandwidth applications than

small improvements in the memory subsystem (i.e., the use of a non-blocking write-back

or pipeline-burst cache). Since multimedia applications and even the X Windows server
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transfer large quantities of data via the application primitives we have considered here,

making these simple memory-system optimizations is crucial to attaining high perfor-

mance.

2.3.2 Process Creation

With the bulk data transfer primitives as an example of how hbench-OS can perform a full

performance decomposition from the bottom up, we now move on to consider the case of

an OS primitive for which we can create a top-down decomposition with hbench-OS. The

primitive that we will consider is process creation, because UNIX users and applications

treat processes as the fundamental unit of work on the system. Similarly, many server

applications fork a new process for each request that they receive. Process creation consists

of two components. A fork duplicates the currently running process and an exec overwrites

the current process with the newly created process. Executables may be statically linked or

dynamically linked; dynamically linked executables must resolve their library references at

exec time. hbench-OS measures three methods of process invocation: a simple fork, a fork

and exec, and process invocation via the shell. We run each of the two latter tests twice,

measuring both static and dynamic linking of the target program (“hello-world”).

In order to isolate each component of process creation, we decompose the more com-

plex operations (e.g., process creation via /bin/sh) into the fundamental operations that

we can measure. By subtracting fork latency from the combined fork and exec, we derive

exec latency. The /bin/sh case is somewhat more complicated in that it consists of:

• fork current process,

• exec /bin/sh,

• fork /bin/sh, and

• exec hello.

If the shell and our target program were of comparable size, we would expect the /bin/sh

case to be twice as slow as fork and exec. However, /bin/sh is significantly larger than our

target program, so its fork and exec latencies are greater than those of the target program,

causing the total /bin/sh latency to be somewhat greater than twice the combined simple

fork and exec times.

We begin our analysis of these results with the one process creation metric that

hbench-OS directly exposes: the cost of a fork, represented by the lowest sections of the
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bars in Figure 8. Comparing the fork cost across the suite of test machines reveals that the

fork cost is primarily dependent on the memory system, although it does have a small

clock-speed or CPU dependent component. Both the 486-33 and the 486-66 (which

share the same memory system) demonstrate approximately the same fork latency; the

486-66 is slightly faster, highlighting the small CPU component. Similarly, the Prem-100,

with its slower memory system, exhibits larger fork latency than its Endeavor-based coun-

terpart. The Pentium Pro outperforms the Pentium due to both the CPU component of

the test and the small-write-biased nature of the test: a fork on NetBSD/x86 involves

building and zeroing a page table structure that fits in the Pentium Pro’s write-back L2

cache.

Next we consider the exec latency, which we decomposed from the high-level hbench-

OS tests by subtracting the fork latency from the fork+exec latency. The same compari-

sons as above reveal primarily a memory-system dependence for the static case: the OS
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must demand-copy the executable from the in-memory file system buffer cache. In this

case, the CPU dependent component is minimal, and most likely results from the actual

execution of the hello-world program. The exec latency in the dynamically-linked case has

quite a different pattern. First, the latency is exceptionally large due to the cost of loading

and mapping the shared libraries. We still observe a significant memory-system depen-

dency, but the CPU dependent component has grown due to the need to build and ini-

tialize jump tables for the libraries. This is again evident in comparisons between the 486-

33 and 486-66, and between the Prem-100  and the Endeav-100: in the first case, the 486-

66 outperforms the 486-33, but not as much as pure CPU scaling would suggest; in the

second, the 100 MHz Pentium on the Endeavor motherboard outperforms the same chip

on the Premiere motherboard. Again, since the benchmark fits in its L2 cache, the Pro-

200 performs well on this test, but still not significantly better than the Endeavor Pen-

tiums.

Finally, having used the high-level hbench-OS tests to extract the fork and exec laten-

cies, we use these results to complete our decomposition by analyzing the overhead

imposed by using the shell to invoke the hello-world process via the system() routine. If

we consider the decomposition in Figure 8, we see that the /bin/sh overhead includes only

the time involved in exec’ing /bin/sh and forking /bin/sh; the original fork to start the

shell and the exec of hello-world are already accounted for. Comparing the /bin/sh over-

head across the various test machines, we again see a heavy memory system dependency,

just as we saw for the statically-linked fork and exec latencies. This is because the fork and

exec components of the /bin/sh overhead are directly related to these fork and static-exec

latencies, since under NetBSD, /bin/sh is statically linked. However, the magnitude of the

/bin/sh overhead is significantly greater than the magnitude of the static hello-world fork

and exec; this is because the shell binary is almost seven times larger than the statically-

linked hello-world binary, so the memory component involved in paging in the execut-

able and initializing its mappings is proportionally larger. When “hello-world” is dynami-

cally linked, the shell overhead is only slightly larger due to the extra overhead of

managing the shared library mappings when starting the shell.

Thus, in process creation, we have an example of an alternate method of performance

decomposition via hbench-OS: in this case, we began with the measured performance of
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high-level operations (process creations) and massaged these data to extract the perfor-

mance of the primitive operations upon which the high-level operations are based (such as

fork and exec latencies). We then applied our cross-platform comparison technique to

understand the hardware basis for the performance of the low-level primitives. The ines-

capable conclusion is that, yet again, the memory system dominates performance: all of

the primitive latencies, and the high-level process creation latencies, depend primarily on

the memory system, and include only a small CPU-dependent component. Thus the Pen-

tium Pro’s performance margin over the Pentium systems is due not to its advanced out-

of-order core, but rather to its speedy on-chip cache system.

2.3.3 Signal Handler Installation

Finally, we present an example case in which hbench-OS fails to offer the tools for any

multilayer performance decomposition: this is the case of signal handler installation, again

a frequently-used function in modern applications (the Apache web server executes this

system call, on average, four times per accepted connection, according to our tracing

results in Chapter 3). We show how, in this case, our alternate methodology of cross-

architecture comparison allows us to obtain useful results even where the hbench-OS tests

are lacking. Figure 9 plots the results from this benchmark on some of our test machines.

The results indicate that, with the exception of the Pro-200, signal handler installation

latency is entirely dependent upon CPU clock rate within each CPU class. The Endeav-

100 and Prem-100 both perform almost the same number of installations per second

despite their disparate memory systems; the 486-66 doubles the 486-33’s performance,

and the Endeav-120 performs about 120/90 more installations per second than the

Endeav-90. Comparisons between CPU classes suggest that there is a subtle performance

dependence on more than the raw instruction execution rate: the 386 achieves less than

half the performance of the 486 at the same clock speed, and the 486s obtain only about

half the performance that a Pentium would at the same clock rate. This suggests that the

performance of signal handler installation, in fact, depends on the L1 cache speed: the

386 has no L1 cache, so its performance is halved compared to the 486; the 486 requires

two stall cycles to access data in its L1 cache compared to the Pentium’s one cycle,

accounting for the factor of two performance gain in the Pentium class. This hypothesis is



40

confirmed by source code analysis, profiling, and analysis with the Pentium hardware

counters: the signal handler installation system call spends the bulk of its time copying

small, easily-cacheable data structures to and from user space. The only mystery that

remains, then, is the Pro-200 result, which is 27% worse than would be expected based on

cycle time alone, and 42% worse than would be predicted based on the Pro-200’s L1

cache bandwidth. Without the underlying low-level tests that a full decomposition might

offer, we have no way to understand this anomalous result, and can only speculate that for

some reason, perhaps when the OS switches from user to kernel mode, some internal

CPU state (such as the branch target buffers) is being flushed, or else the CPU is incurring

more unnecessary cache-coherency overhead. Even the Pentium Pro hardware perfor-

mance-monitoring counters do not shed light on this bizarre result.

Thus, in the case of signal handler installation, we see that we can obtain generally

useful results even when hbench-OS does not include the capability to decompose the per-

formance of the interesting high-level functionality into lower-level primitives. Here, we
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can conclude that lower-latency L1 caches are the hardware feature that most influence

signal handler installation performance. However, we are left at a loss when anomalous

results (such as the Pro-200’s) appear, since we have no lower-level tests to use as a basis for

understanding the unexpected results.

2.4 Conclusions

The case study just presented demonstrates the success of our hbench-OS tools and accom-

panying decomposition methodology in constructing the detailed connections of the bot-

tom half of the system performance hierarchy. In our sample cases of bulk data transfer

and process creation latency, hbench-OS provided enough detailed tests to build a hierar-

chical decomposition of performance from the complex, application-visible primitives at

the top to the hardware and architecture at the bottom. Where hbench-OS failed to pro-

vide the tools for such a decomposition, as in the case of signal handler installation, our

alternate methodology of cross-machine comparison was able to uncover the general

architectural features upon which the OS primitive in question depended. However, in

these cases the tools provided by hbench-OS are still inadequate: to fully understand

anomalous results requires more information than the high-level benchmarks can provide.

We feel that it will be possible to apply profiling techniques to such high-level OS abstrac-

tions in order to determine their performance decomposition; from these profiling results

a benchmark could then be constructed to isolate, and characterize in terms of hardware

performance, each of the individual dependencies.

Finally, the results obtained in the case study themselves are of interest, and again

highlight the effectiveness of the methodology used to obtain them. For example, we were

surprised to find that, for nearly all high-level OS primitives upon which modern applica-

tions depend, it is the memory system, and especially the access path to the off-chip mem-

ory system, that dominates performance. Particularly intriguing were the results from the

Pro-200, the Pentium Pro-based machine. Despite major improvements to the processor’s

execution pipeline and cache subsystem compared to the Pentium, the Pentium Pro did

not significantly outperform the Endeavor-based Pentiums on many of the tests. In fact,

the addition of multiprocessor coherency support and transaction-based bus protocols

into the CPU, and the resulting poor external memory system bandwidth, seem to have
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essentially negated any performance advantage that the CPU’s advanced execution core

provides. Essentially, Intel’s multiprocessor optimizations have crippled the performance

in single-CPU systems.

Also illuminating was the comparison between the Endeavor- and Premiere-based

Pentiums; the Endeavor, with pipeline-burst cache and EDO support, outperformed the

Premiere system by nearly a factor of two in many cases, MHz for MHz. While research-

ers have known for several years that a high-performance memory subsystem is important

to OS performance [1][17][19], it seems that, at least for the x86 architecture, the indus-

try’s focus on the processor’s pipeline and cache subsystem has been misdirected. For

example, Intel’s high-end Pentium server motherboard, the Xxpress, eschews the advan-

tages of EDO or synchronous DRAM for a large 1MB L2 cache since the larger cache

produces higher SPECmark ratings [9]; our results suggest that to improve the perfor-

mance of server applications that depend on OS-arbitrated bulk data transfer, Intel would

have done better by engineering a higher-performance EDO DRAM-based system than

by focusing on the caches.

However, despite the interesting conclusions we are able to draw about the effect of

hardware design choices on the OS, we cannot use these conclusions as the sole basis for

OS or hardware optimization, for we are still lacking the critical information relating

operating system performance to patterns of application load. Without this data, most of

the conclusions drawn here cannot be confirmed, for, without knowing which abstrac-

tions a given application exercises in the OS, we can only guess at which abstractions are

important. For example, our conclusion that the Pentium Pro’s cache coherency model is

suboptimal on uniprocessors would not be very relevant if it turned out that the particular

applications being run on the machine did not perform bulk data transfer. The following

chapters will present techniques that reintroduce the application into the performance

hierarchy and therefore allow verification of the types of conclusions drawn here.
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Chapter 3

Extending the Performance Decomposition
to User Applications

The previous chapter described tools and techniques that allowed us to characterize the

bottom half of the system performance hierarchy described in Chapter 1. However, our

ultimate goal is to understand OS performance in the context of performance paths that

include the apex of the hierarchy (application performance). Thus, we need to extend the

techniques of the last chapter to the user application level in order to construct the upper

layers of the performance hierarchy. In doing so, we no longer have the luxury of the rela-

tively-standard abstraction structuring that defined the lower half of the system perfor-

mance hierarchy, for application designers are free to develop whatever abstractions they

like on top of the standard6 OS system call interface. Thus the methodologies that we

describe are necessarily inexact, and provide only general guidelines for extending the per-

formance decomposition through user-level applications. However, as the case study of

the Apache web server in Section 3.3 will show, the methodology can produce surprisingly

useful results.

6. Although the operating system designer has the flexibility to design his or her own abstractions as well, most modern
operating systems must, by necessity, support the functionality of a POSIX-like system call interface, and therefore will
be built upon an abstraction hierarchy similar in shape to that described in Chapter 2.
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3.1 Methodology

From the point of view of the operating system, the only part of the application that mat-

ters is the layer that sits directly above the OS-exported abstractions in the performance

hierarchy. This layer (along with its connections to the OS layer) includes the details of

how the application exercises the operating system abstractions; from an operating sys-

tems perspective, any structure in the abstraction and performance hierarchies above that

point is irrelevant. However, from a user’s perspective, it is the overall application perfor-

mance that is most important; if the application under consideration spends only a few

percent of its time executing in the operating system, it is probably not an OS-dependent

application, and any efforts spent tuning the operating system in response to it will not be

worthwhile from the point-of-view of a user interacting with that application.

The first step in building the upper layers of the system performance hierarchy is thus

to understand how (if at all) the application relies upon the operating system. To accom-

plish this, we again adopt the performance decomposition approach. Any application that

relies on the operating system can be viewed in terms of the hierarchical structure of

abstractions used by the performance decomposition technique. At the top of the abstrac-

tion hierarchy are the abstractions with which the user interacts—user interface elements,

command-line functionality, or services provided. The performance of these abstractions

is what the user sees directly, so they also correspond to the top of the application perfor-

mance hierarchy. At the bottom of the application’s performance hierarchy are the connec-

tions to the low-level resources of the system, including the computing hardware (for

CPU-intensive applications) and the OS (for I/O-intensive applications). To determine

how OS-dependent a given application is, we must understand the relationship between

these two pieces of the hierarchy: how the user-visible abstractions decompose into OS

and non-OS functionality.

This task of connecting high-level abstractions with low-level resources requires at

least a rough knowledge of the internal structure of the application and its abstractions. If

detailed knowledge of the application’s control and data flow is available, this structure

can be derived directly; we can just look at the type of work done by each user-visible

abstraction in order to classify it as OS-dependent or non-OS-dependent. However, this is

not a practical approach in general, for modern applications tend to be large, complex,
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and proprietary, lacking source code and internal documentation. Thus we need a more

general approach, one that can recover the operating system dependencies of user-visible

primitives experimentally.

For this task, we turn to the type of experimental techniques developed in Chapter 2

in order to develop a more empirical approach. In Chapter 2, we isolated the relationship

between the high-level OS primitives and the low-level hardware resources by varying the

low-level resource to gauge the response in high-level performance. Although we could

use a similar technique to discover the extent to which the application’s user-visible

abstractions depend on the operating system, there is a much more convenient methodol-

ogy that is unique to the application domain. The key to this technique is the existence

(in most modern systems) of tools that intercept and log the interactions between the

application and the operating system, for example BSD’s ktrace, Solaris’s truss, or

the Microsoft DDK’s tracing DLLs for Windows NT. By tracing the application’s use of

the OS as each major user interface component, command-line option, or other func-

tional unit of the application is exercised in turn, it is possible to directly isolate the

dependence of each such user-visible primitive on the operating system. With this infor-

mation, we bypass the need to construct a full application performance or abstraction

hierarchy, for we already have the dependency detail that we need. Note, however, that

this technique could be extended (by an interested application designer using similar per-

formance decomposition techniques) to provide information about the performance and

appropriateness of the internal abstraction structure of the application. We will not con-

sider such an extension any further, since the level of detail it would provide, though

potentially useful to the application designer, is not needed to study operating system per-

formance.

Once a decomposition of the application’s internal structure has been obtained by one

of the techniques described above, the upper layers of the system performance hierarchy

are complete. Assuming that the application decomposition indicates that at least part of

the application’s user-visible functionality (and thus performance) is OS-dependent, the

next step is to tie together the application’s part of the performance hierarchy with the

operating system/hardware portion obtained via the techniques of Chapter 2. This is the
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key step, for it is only when we assemble the complete performance hierarchy that we can

understand and interpret OS performance in the context of realistic application load.

In carrying out this step, our goal is to be able to determine which OS primitives and

abstractions are exercised by the application and to what degree. To do this, we use a more

accurate version of the tracing technique described above: instead of merely recording the

interactions between OS and application, we also record, for each system call handler or

API function, how often it is called, the time spent in each invocation, and the parameters

associated with each invocation. From this data, we can easily construct the pattern of

load that the application imposes upon the operating system by using the call frequencies

of and the parameters to each system/API call. For example, by looking at the calls to

read(), we can determine how much data was transferred from the file system buffer

cache or from network sockets (these two cases can be distinguished via the file descriptor

used and previous calls to open() and socket()); this information additionally pro-

vides a connection with the OS-primitive performance measurements of Chapter 2, such

as file reread bandwidth or TCP bandwidth. A more detailed discussion of how to use the

performance hierarchy to connect the OS primitive measurements with application per-

formance is the focus of Chapter 4.

Finally, the detailed traces of OS-application interaction can be used to identify oper-

ating system functionality that reduces application performance. In order to do this, the

timing information gathered in the trace is used: the total time spent in each system call

handler or API routine can be computed, and those routines that consume the most time

(and thus affect performance the most) can be quickly identified. The information that

comes from this timing data is invaluable for performance-tuning the operating system

and the application, and can also indicate when certain OS abstractions are not appropri-

ate for a given application.

3.2 Case Study: Developing Tools

We now shift our focus from general methodology to a specific example of its use. In this

and following sections, we demonstrate how we applied the methodology described above

to analyze the performance of NetBSD/i386 in the context of running the Apache web

server [2]. Before plunging into a full discussion of the results that we obtained, we first
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describe the tools that we constructed to simplify the process of gathering and obtaining

the needed trace of interaction between the application and the operating system.

Since NetBSD is a BSD-derived system, it includes the ktrace program for moni-

toring system call activity (as described above). In its default incarnation, ktrace cap-

tures a wealth of detail about the interactions between the OS and traced application,

including system call parameters and return values, I/O buffer contents, and pathname

translations. However, we found NetBSD’s ktrace facility lacking in two respects, and

thus decided to augment it to make it more useful for our purposes, much like we did

with the lmbench benchmarks in Chapter 2. The first deficiency that we needed to remedy

in ktrace was in the way it handles system call trace records. An unmodified ktrace

gathers two log records for each system call, one for the invocation and one for the return.

Although both are timestamped, the elapsed time is not stored in either record, and thus,

since the system calls are not sequence-numbered, there is no way to automatically corre-

late system call return records with their corresponding invocation records. This type of

correlation is essential when tracing multiple processes simultaneously (e.g., the set of

worker processes for a web server), for otherwise the records of each process arrive in an

irregular interleave, making it very difficult to reconstruct the sequence and timing of the

system call trace. Our solution to this problem involved a simple modification to the in-

kernel ktrace facility: we added an “elapsed time” field to the system call return record,

thus making it possible to match return records with invocation records. We also modified

the ktrace facility to use cycle-accurate timestamps from the Pentium and Pentium Pro

hardware timestamp counters rather than from the relatively low-precision in-kernel soft-

ware clock.

These simple modifications were the only changes that we needed to make in the Net-

BSD kernel; the more significant problem with NetBSD’s ktrace facility lay in the

user-level data presentation engine, kdump. An unmodified kdump merely prints out the

ktrace log records in the order they appear, making no attempt to correlate system call

return records with their corresponding invocation records; the output format is not con-

ducive to automated statistical analysis or abstracting. The second part of the methodol-

ogy described in Section 3.1 requires summary statistics on a per-system-call handler
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basis, and thus the uncorrelated time-sequence information produced by kdump is not

useful.

Thus we implemented a new tool, ktranal, for processing ktrace log records. It

operates directly on the raw ktrace records and can therefore bypass the unwieldy data pre-

sentation of kdump. Unlike kdump, ktranal uses the timestamps in the trace log to

correlate system call invocations and returns, and internally maintains a per-process queue

of unprocessed calls (to separate calls from multiple simultaneous processes). It supports

several different “views” of the system call data. The first is a traditional kdump-like

sequence of system calls, delivered to the user in time-sequence order, sorted by process, or

for just one process of interest. Each displayed record contains the process name and PID,

the call number and name, the start time of the call, the total time of the call, the argu-

ments, and the return value. This view is useful for the first stage of the decomposition

methodology described in Section 3.1, for it can give some idea of the traced application’s

operating system interaction, correlated in time-sequence with user actions.

The second view, a statistical summary mode, is most useful for the second stage of

the application decomposition methodology. In this view, ktranal calculates and dis-

plays general statistics for each system call handler: how many times it was called, the total

time spent in the OS while servicing that system call type, the average time spent per

invocation, the minimum and maximum times spent, and the standard deviation of time

spent. When sorted by the total time spent, this summary output highlights those system

calls that dominate the OS component of the traced application’s performance. This view

can also be useful for gathering a “system call fingerprint” of a given application, for it

concisely summarizes the application’s interactions with the operating system.

The final view is useful when the summary output does not provide enough detail

about a single system call, when the statistics indicate a non-normal distribution for a

given system call, or when the user is only interested in one specific type of system call.

This mode merely extracts the timing information for one system call number from the

trace file and outputs it in time-sequence order. It can do this either for all traced processes

or just one in particular, and additionally can output the call arguments along with the

times. We found this output mode particularly useful when trying to differentiate

between, for example, socket reads and file reads: by looking at the value of the file
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descriptor argument along with the timings, we could easily distinguish the two sets of

calls to the read() system call.

3.3 Case Study: The Apache Web Server

With our application performance decomposition and reworked ktrace tools in hand,

we next turned to a real application in order to evaluate the effectiveness of the methodol-

ogy and to illustrate what it can discover about operating system performance in the con-

text of a real system running a real server application. For our testbed application and

operating system platform, we chose the Apache web server (version 1.2b6) [2] running

on NetBSD/i386 on the same Intel Pentium Pro-based machine referred to in Chapter 2

as Pro-200. We selected a web server as our example application because it is the canonical

example of a widely-popular OS-dependent application; web servers are undoubtedly

today’s hottest server application, and as Table 1 on page 2 shows, can spend over 85% of

their execution time running operating systems code. We chose the Apache web server in

particular because it is a widely-used, high-performance, and non-proprietary web server.

We also initially selected it because it includes source code, under the assumption that this

would make the application decomposition easier; however, we did not ever have to resort

to reading or understanding the Apache code while performing the decomposition.

Finally, we selected the combination of NetBSD/i386 and the Pro-200 as the target oper-

ating system/hardware platform so that we could build upon the OS performance decom-

position detailed in Chapter 2.

3.3.1 Step 1: Decomposing Apache’s Internal Structure

Recall that, despite the fact that our eventual goal is to draw conclusions about operating

system performance, the first step in incorporating a realistic application load into the

performance hierarchy analysis is to gather a rough characterization of the application’s

internal abstraction structure. We now describe how we applied the techniques for per-

forming this characterization (described above) to Apache.

We began our decomposition with a two-layer structure derived from a general under-

standing of the tasks that a web server must perform during normal operation. We then

refined this decomposition using data obtained via the empirical tracing techniques

described in Section 3.1. We formed the rough decomposition from the top down: the
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top-level abstraction of any server application is the service it provides to users, and for a

web server like Apache, this uppermost abstraction is the action of serving a web page. In

serving a typical file via the http protocol, Apache must do several things: it must accept

the TCP connection from the client, read the client request over the TCP connection,

read the requested page from the disk or buffer cache, send the page contents over the

TCP connection, log the client request, and prepare for a new connection. These tasks,

then, form the lower layer of abstraction in our rough internal decomposition of Apache.

Note that each of the tasks is heavily dependent on I/O functionality provided by the

operating system.

Before we proceeded to tie this set of lower-level abstractions to a notion of applica-

tion load on the operating system, we first used our new ktranal tool to refine the

rough characterization of abstractions and to determine exactly what operating system

functionality is executed in tasks such as “log the client request”. To do this, we gathered a

trace of Apache as it responded to a single request for one HTML file (we chose the con-

tents of Netscape’s homepage (http://www.netscape.com) as it appeared on 22 March

1997). We ensured that the page’s data was already present in the server’s file system buffer

cache, as that is the expected behavior for most servers that serve reasonably small (at most

a few megabytes) file sets. Although the trace is too lengthy to reproduce here, it clearly

showed the different phases of the server’s operation once key system calls were isolated.

For example, a call to accept() clearly indicates the phase of setting up the TCP con-

nection; calls to read() and write() using the file descriptor returned by

accept() represent reading the request from and writing the response to the TCP con-

nection; calls to stat() and open(), and associated read()’s represent the retrieval

of the page from the buffer cache. The trace was particularly illuminating during the log-

ging stage of handling the connection (which was identified as the activity that occurred

after the page had been sent over the TCP connection). The trace revealed that the log-

ging stage can be decomposed into several lower-level tasks that are closer to the operating

system interface (and thus easier to connect to operating system primitives): a DNS

reverse-lookup request (involving sending and receiving UDP data), a write to the on-disk

logfile, and several reads and writes to a temporary file apparently used for synchroniza-
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tion. The final decomposition that we constructed from the combination of the original

two-level abstraction hierarchy and the refinements from tracing is presented in Figure 10.

3.3.2 Step 2: Connecting the Application and Operating System Hierarchies

The decomposition that we obtained of Apache’s internal structure confirmed our intu-

ition that Apache’s abstractions (and therefore its performance) are heavily dependent

upon the operating system. Thus we next proceeded to the second stage of the methodol-

ogy described in Section 3.1 and attempted to characterize in detail both how Apache

exercises the operating system and how the operating system affects Apache’s perfor-

mance. We began by using the summary mode of ktranal to gather timing statistics on

the system calls present in a similar trace to that used in the earlier structure-characteriza-

tion step; the trace used here was taken as Apache served the same Netscape HTML file

from the OS buffer cache across the loopback interface. Thus the trace used here omits

both the Ethernet transmission latency and DNS activity present in the earlier logs, for

these are latencies introduced by factors that are both irrelevant to our investigation and

Figure 10: Abstraction-hierarchy Decomposition of the Apache Web Server. Apache’s highest user-visi-
ble abstraction is the action of serving a request for a web page. This abstraction in turn relies on the entire
hierarchy of abstractions depicted here. The structure of the hierarchy was obtained in rough form via an
intuitive analysis, and was refined to the level of detail seen here via tracing techniques. Note that the lowest
layer of abstractions (those contained in the gray box) are the OS primitives upon which Apache relies.
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beyond our control, namely network congestion and the performance of a remote

machine.7 The ktranal output is presented in Figure 11, and clearly illustrates those

operating system features upon which Apache relies.

The first feature to notice is that the read() and write() system calls dominate

the time spent in the kernel, accounting for 60% and 20% of the total 15 millisecond

latency, respectively. However, the data indicates a large variance in per-call latency for

both of these system calls. To examine why this was the case, we turned to ktranal’s

ability to extract the parameters, including file descriptor and transfer size, for each invo-

cation of write() and read(). write() turned out to be relatively straightforward:

88% of the write latency was due to socket writes, with one particularly slow transfer

(probably due to full socket buffers necessitating a context switch to the client to read out

the data); the remaining 12% was from writing very small amounts of data (less than 100

bytes) to various logs and status files. However, read() produced a much more interest-

7. In a production web-server environment, the DNS latency is an important factor in overall performance, as the last
few bytes of the requested web page are not delivered to the client until after the lookup has been completed (this was
revealed by the trace analysis). However, since we are primarily concerned with operating system performance and how
the operating system affects server performance, any DNS latency (like random network congestion) is spurious to our
considerations.

Figure 11: Summary Statistics on System Calls made by Apache while Serving One Request. This fig-
ure depicts the summary output of the ktranal tool on a trace of Apache gathered while Apache served
one copy of the Netscape home page to a client via the loopback interface. For each system call, the output
includes the number of calls, total time (in seconds) spent in the call, the minimum, maximum, and average
times spent in the call, and the standard deviation of the amount of time spent in the call. Notice in this
particular example that calls to read and write dominate Apache’s total execution time, accounting for 80%
of the total in-kernel execution time.

NUM NAME           NCALLS   TOTALTIME     MINTIME     MAXTIME     AVGTIME      STDDEV
  3 read               19   0.0089698   0.0000195   0.0035422   0.0004721   0.0007929
4 write              15   0.0029512   0.0000272   0.0014437   0.0001967   0.0003683

93 select              1   0.0007875   0.0007875   0.0007875   0.0007875   0.0000000
5 open                6   0.0004613   0.0000586   0.0001067   0.0000769   0.0000191

199 lseek              18   0.0003132   0.0000147   0.0000340   0.0000174   0.0000044
 46 sigaction           4   0.0003033   0.0000221   0.0002175   0.0000758   0.0000946
 83 setitimer          12   0.0002992   0.0000178   0.0000339   0.0000249   0.0000047
116 gettimeofd         11   0.0002510   0.0000185   0.0000404   0.0000228   0.0000064
188 stat                1   0.0001546   0.0001546   0.0001546   0.0001546   0.0000000
  6 close               4   0.0001277   0.0000161   0.0000512   0.0000319   0.0000146
 20 getpid              7   0.0001124   0.0000143   0.0000174   0.0000161   0.0000011
 30 accept              1   0.0000798   0.0000798   0.0000798   0.0000798   0.0000000
189 fstat               2   0.0000541   0.0000255   0.0000286   0.0000271   0.0000022
117 getrusage           2   0.0000517   0.0000165   0.0000352   0.0000259   0.0000132
134 shutdown            1   0.0000269   0.0000269   0.0000269   0.0000269   0.0000000
 32 getsocknam          1   0.0000267   0.0000267   0.0000267   0.0000267   0.0000000
105 setsockopt          1   0.0000227   0.0000227   0.0000227   0.0000227   0.0000000

TOTAL 106 0.0149931
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ing profile. We discovered that the largest single latency (accounting for about 40% of the

total read() latency) was due to reading the request from the client over the TCP con-

nection. More surprising, though, was that 49% of the total read() latency, nearly 4

milliseconds, resulted from 10 relatively-slow 50KB reads to a so-called “scoreboard” file,

used for internal synchronization, coordination, and logging between the various worker

processes that Apache uses to respond to requests. The remaining 11% of the latency was

due to retrieving the page to be served from the buffer cache; although this was done in 7

separate requests, each was serviced quickly.

Thus, without even considering any of the other system calls made, we can already see

the effectiveness of this analysis methodology. The results discussed above provide clear

guidance on where the operating system affects application performance, and where tun-

ing might be in order for both the operating system and application designers. From the

application designer’s viewpoint, the place to tune is in the manipulation of the “score-

board”: while the TCP transmissions and their associated latencies cannot be avoided by

Apache, the server latency could be reduced by nearly one-third if Apache did not per-

form the frequent, large, and expensive “scoreboard” reads. The reason that Apache per-

forms these reads, however, is because NetBSD does not export the abstraction that

Apache expects (an mmap() interface that maintains coherency with ordinary file I/O),

and as a result Apache is forced to revert to the less-efficient multiple-read technique. Our

analysis methodology has thus also highlighted a deficiency in NetBSD’s abstraction layer,

the territory of NetBSD’s OS designers. If the architects of NetBSD are concerned about

web server performance, a good place to direct their tuning efforts would be toward mod-

ifying their mmap abstraction to support file system coherency. Alternatively, if the

Apache designers are concerned with performance atop NetBSD, they might consider

using an alternate method of synchronizing and controlling the slave processes that has

less overhead than the large scoreboard reads.

Of course, there are many other areas where, according to the data in Figure 11, tun-

ing of the operating system would be useful, for example in reducing TCP transmission

latency by removing copies from the network stack, or improving the latency of opening a

file by optimizing some of the VFS file-system abstraction-layer overhead. The key to the

performance hierarchy methodology, however, is that it immediately pinpoints the critical
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OS interactions that dominate application performance, preventing arbitrary and ineffec-

tive tuning. In the case of Apache, the methodology quickly revealed that the critical

interaction revolves around the scoreboard file, and therefore we can conclude that it

would be far less productive for either the application or operating system designer to

optimize other interactions (such as opening files) until this critical interaction has been

addressed.

3.4 Related Work: Understanding Application Performance

Because application performance is so critical to the end user’s perception of overall sys-

tem performance, much research has gone into understanding and optimizing for user

application performance. However, a large percentage of this research, especially in the

architecture community, has completely ignored the operating system, and has focused

only on non-OS-dependent applications. The development of the SPECint and SPECfp

benchmarks [24], for example, highlights the compute-intensive-workload focus of this

community.

The small amount of research that has looked into understanding OS-dependent

application performance divides into three different types. The first type of work uses

tracing techniques to gather data on application performance; this type of work is the

closest to the tracing methodology that we have proposed in Section 3.1, above. The most

prominent example of this type of work is the Harvard/University of Washington Etch

system [6], which uses binary rewriting to dynamically add instrumentation code to Win-

dows applications. This instrumentation code can then gather performance details during

the application’s regular execution. Although Etch appears to be mainly used for architec-

ture-based analysis (such as cache organization evaluation), it appears general enough that

it could be used as a replacement for the type of tracing tool that we describe above. Thus

Etch and similar projects do not replace the performance decomposition methodology

that we have developed, although they could be useful as a replacement for the ktrace

tool in commodity systems.

The second group of research focuses on trying to understand the interaction of appli-

cation and OS performance by experimentally measuring the application as it runs or by

experimentally studying how the running operating system reacts to the patterns of appli-
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cation load. The primary method by which this is achieved is through some sort of profil-

ing. At the most basic level, tools such as gprof [8] allow user-level profiling of

applications. At most, these tools can indicate what application abstractions are bottle-

necks or especially slow; they cannot determine how much that slowness depends on the

operating system’s performance, and thus are not useful in the type of decompositional

analysis that we are performing. More useful profiling results can be obtained by moving

the profiling from application level to kernel level: tools such as the BSD kgmon kernel

profiling system [13] record the time spent in each kernel function as well as the kernel

call graph traversed during execution of a given application. Kernel profiling data makes it

easy to determine the overall OS dependency of a given application: if the amount of time

spent in kernel functions in total is a significant fraction of the application’s execution

time, then the application is most likely OS-dependent. However, kernel profiling has sev-

eral disadvantages. First, it does not charge idle time to user processes: if the process must

wait on disk or network I/O, or is responding to an interrupt, this time does not show up

as being spent inside a specific kernel function, and thus cannot be associated with the

user application’s actions. Additionally, kernel profiling provides only aggregate perfor-

mance data (a snapshot of total kernel use while the profiler was running): it cannot dis-

tinguish kernel time spent servicing processes other than the desired application process.

More seriously, it cannot provide the time series information that is essential for correlat-

ing different user application functionality with kernel usage; with a trace-based method-

ology such as the one presented in Section 3.1, it is possible to correlate each of a sequence

of user actions with the application’s corresponding kernel usage. Some of these problems

are solved by using process-tagged kernel profilers such as pkprof [16]; however, even these

profilers still provide only aggregate data and cannot supply profiling data over time.

Yet another profiling approach is to avoid any special kernel profiling tools at all and

to instead use such hardware features as the Pentium’s performance monitoring counters

to gather information on a running system executing a particular application/OS combi-

nation. This was the technique used by Chen et al. in their study of commodity operating

system performance [4]; unfortunately, such techniques provide even less information

than traditional kernel profiling, and thus also cannot be used for the decompositional

performance analysis approach.
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The third group of research into OS-dependent application performance eschews

experimentation entirely, and moves into a simulated domain. The prime example of this

work is in the Stanford SimOS project [20], in which a detailed machine simulator is used

to boot a real copy of the operating system and application under test. The simulator sup-

ports tools for gathering general performance statistics as well as recording and tracking

events and performance characteristics of interest. This simulation approach probably

provides the best way to determine the operating system dependencies of an application,

for it is possible to observe in complete detail each interaction between the application

and operating system. However, simulation is not a feasible approach in general, for it

requires that a complete, correct simulated environment be built for each hardware plat-

form of interest; it also requires some modification to the operating system under test.

The biggest drawback is that the simulator does not run in real time, and thus cannot be

used to understand applications that interact with non-simulated entities (such as net-

work servers); with the trace-based analysis that we propose, it is possible to gather perfor-

mance data even from running applications that perform all of their normal functions

unchanged.

3.5 Conclusions

The case study of the Apache web server presented in this chapter has yet again under-

scored the critical need to consider both the operating system and application when

attempting to analyze the performance of either. The goal of performance measurement is

to either evaluate the user-visible performance of a system or to indicate where the perfor-

mance bottlenecks in a system can be found. Since real systems include both applications

and operating systems acting in concert, neither fixed application workloads (like SPEC)

nor simple operating system profiles (like those created by the hbench-OS microbench-

marks in Chapter 2) are sufficient to satisfy the goals of performance measurement. In the

case of Apache, neither alternate method would have indicated the problem with the

mmap abstraction that was revealed by our combined analysis methodology; without this

information, neither would have produced an accurate evaluation of the overall system

performance; and thus neither would have been able to direct the OS or application archi-

tect to the spot where tuning will be most useful.
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Chapter 4

Distilling the Detail: Performance at the OS-
Application Abstraction Boundary

In the previous two chapters, we have focused on the intricacies of building detailed per-

formance hierarchies and interpreting their structure in order to analyze the performance

of operating systems under application load. In this chapter, we take a step back and con-

sider how to distill some of the complexity and detail contained in the performance hier-

archy into simpler characterizations and metrics. This may seem counter-intuitive at first,

since we have just devoted many pages to describing techniques designed to extract and

preserve the maximum amount of detail possible out of system interactions and perfor-

mance. However, the amount of detail contained in a full system performance hierarchy

that includes everything from the hardware up through the application is overwhelming,

and is probably of interest only to the most sophisticated operating system designers.

Most less-sophisticated consumers of benchmarks, such as system administrators, applica-

tion developers, and end users are not interested in performance-tuning the operating sys-

tem and thus would probably prefer simple, small, and meaningful metrics to represent

operating system performance. Thus our goal now is to try to preserve some of the power

of the decompositional method of performance evaluation while reducing the complexity

of its results to a level useful to such less-sophisticated consumers.

This is not a simple task. We have already seen the inherent flaws in OS measurement

methodologies that deliver only a single inflexible metric, for they do not take into
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account the fact that the operating system is, for the most part, a reactive entity whose

performance depends almost entirely on the pattern of application load imposed on it.

Since it is these patterns of application load that define OS performance, any simple met-

ric that we develop must either retain enough detail to be adaptable to different applica-

tion loads, or else must irrevocably incorporate a specific application’s workload into the

metric. The latter option is not very desirable, since there already exists an (uninteresting)

way of measuring the performance of a fixed combination of a specific application and

OS: one can just run the application atop the OS and measure its user-visible perfor-

mance directly. Thus we adopt the former option, and focus on the development of a

methodology that permits independent characterization of the operating system and

application in a way that allows the independently-derived characterizations (obtained via

the hbench-OS benchmarks of Chapter 2 and the tracing techniques of Chapter 3) to be

recombined into a single performance-predicting metric.

4.1 Methodology

The approach that we have taken to accomplish this goal is based on one that revolution-

ized the reporting of performance in the architecture community several years ago. Before

the RISC revolution, the architecture community faced a set of problems similar to those

we are considering here: hardware performance at that time was measured via ad hoc

benchmarks that produced results that did not reflect true application demands on the

hardware. The prime example of such benchmarks is the peak MIPS rating, which merely

measures the theoretical maximum number of instructions that can be executed by a pro-

cessor in a second. The problems with MIPS are twofold: first, MIPS can be measured by

timing simple compute instructions only, and thus it is possible to obtain higher MIPS

values than would be seen with real application code that interleaved compute instruc-

tions with memory accesses; second, the amount of work done by an instruction can vary

greatly between architectures (e.g. CISC vs. RISC), and therefore it is usually impossible

to compare architectures based on MIPS ratings. With the coming of the RISC revolution

in 1980, these flaws of MIPS were highlighted, and the community began to search for

more useful metrics.
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The solution formalized by Hennessy and Patterson revolves around CPI (Cycles Per

Instruction), an application-driven performance metric that is independent of the com-

plexity of the instruction set [18]. CPI is computed by measuring, for each type of

instruction executed by a specific application, the average number of cycles spent execut-

ing that particular instruction (thus, for example, instructions that access memory might

accrue more cycles than ALU-manipulating instructions; similarly, CISC instructions

would accumulate more cycles than RISC instructions). The numbers of cycles for each

instruction are then weighted by the frequencies with which those instructions are exe-

cuted by the application and summed, producing a single number (“CPI”) that represents

the average time spent per instruction for the application used. Thus, in the process of cal-

culating CPI, the detailed interactions between the hardware and the test workload are

revealed (via the instruction timings and frequencies), yet this detail can be distilled into

the single number (CPI) that the end-user seeks.

The essential methodology behind the calculation of CPI consists of three stages. The

first is to identify and measure the performance of the primitives exported by the hard-

ware (for CPI, the cycle times of each instruction supported by the hardware). In effect,

this stage produces a detailed characterization of the hardware’s performance as a vector of

instruction cycle timings. By itself, however, this characterization is not very useful, for it

does not reflect the relative importance of each of the instructions. To see this, consider

the oft-cited VAX instruction that evaluates a polynomial function: this instruction has a

very high CPI since it must do so much work. If it is never used by an application,

though, it will not contribute to the overall CPI value for the application/hardware pair-

ing. The second stage of the CPI methodology addresses this problem by producing a

characterization of the application’s use of the hardware primitives measured in the first

stage. For CPI, this is relatively trivial, for the characterization consists of just the frequen-

cies at which the application executes each instruction. Finally, the last stage of the CPI

methodology combines the two characterizations obtained in the earlier stages into a sin-

gle performance metric that represents the profiled application’s performance on the char-

acterized hardware platform. Again, in the case of CPI, this not very difficult, since the

instruction frequencies from the application characterization can simply be used as the
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weights in a weighted average of the cycle counts obtained in the hardware characteriza-

tion.

The goals of the methodology used to compute CPI are very similar to the goals that

we wanted to achieve in OS measurement, most notably in the way that CPI allows inde-

pendent performance characterization of the hardware and application in such a way that

the independent characterizations can later be synthesized and recombined to produce a

useful metric that can be compared across applications and architectures in turn. Thus we

applied the same techniques to the operating system domain, but with the focus on inter-

actions at the OS-application boundary rather than on the application-hardware bound-

ary. Note that, although its methodology provides a useful blueprint, the specific metric of

CPI by itself does not provide a solution to the problems of OS measurement, since it is

designed to measure the performance of non-OS dependent applications. In fact, CPI

either ignores the OS entirely, or else treats the OS as part of the application.

Thus, in implementing an OS-domain equivalent of CPI, we had to accomplish three

tasks: identifying a set of general operating system primitives that characterized the space

of OS performance, developing a means of decomposing application performance into its

use of such primitives, and creating a technique for combining the OS and application

characterizations into a single, useful metric. In the process of developing the performance

decomposition methodology, however, we had already done much of the work needed to

accomplish the first two of these three goals: hbench-OS, described in Chapter 2, already

provided us with a set of tests designed to characterize the OS primitive abstractions

exported to user applications, and the application profiling techniques of Chapter 3 pro-

vided a way of profiling an application’s use of such abstractions. We were thus left with

taking the detailed performance hierarchy produced by the techniques in these earlier

chapters and transforming it into simple characterization vectors for the OS and the appli-

cation.

In order to do this, our first task was to identify a basis for the space from which the

characterization vectors could be drawn. With CPI, meeting this goal was trivial, as the

target machine’s instruction set itself provided an easily-identified and exhaustive set of

basis elements. With the operating system, however, the task becomes much more diffi-

cult, for the OS primitives used by applications are not as well-defined and are thus harder
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to distill into discrete components. To solve this distillation problem, we appealed to the

system performance hierarchy model. By taking a detailed performance hierarchy con-

structed using the techniques of the previous two chapters, then slicing it horizontally at

the boundary between the application and the operating system, we found it easy to iden-

tify the basis elements for our characterization vectors: they comprised the layer of OS

abstractions that lay just below this slice (i.e., those at the top of the OS part of the perfor-

mance hierarchy), as all interactions between the operating system and the application

pass through this layer of abstraction. Thus each high-level OS primitive becomes a com-

ponent of the characterization basis; the OS characterization vector is then made up of

coefficients representing the performance of each such primitive, while the application

characterization vector is composed of coefficients that specify how the application uses

each primitive. Note that the mapping of basis elements to OS primitives need not be

one-to-one, as a given primitive may have several associated coefficients corresponding to

different cache behavior or data set size (i.e., the file and TCP bandwidth primitives per-

form differently depending on the size and location of the transfer buffer, so separate coef-

ficients are needed for the cases when the buffer is in the L1 cache, the L2 cache, or in

main memory, and for various typical buffer sizes as 4KB, 8KB, and 64KB).

With the basis for our characterization vectors established, the next task was to define

the precise meaning of the coefficients of the characterization vectors. The OS character-

ization vector represents the performance of each of a set of varied OS primitives and

high-level abstractions, so the natural choice for the values of these coefficients was the set

of results obtained by using hbench-OS to profile the operating system being character-

ized; since the hbench-OS tests expose the structure of the system performance hierarchy

at the OS-application boundary, their results correspond directly to the performance of

the elements of the characterization basis. However, the hbench-OS results include a mix-

ture of bandwidths and latencies, and thus we found it necessary to develop one more

normalization step to make the coefficients self-consistent. To do this, we chose a simple

approach: all results were converted into latency metrics, either of the form milliseconds

per byte (for data-transfer primitives) or milliseconds per invocation (for discrete primi-

tives like process creation), before being used as the coefficients for the OS characteriza-

tion vector.
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Before we proceed to discuss the form of the coefficients of the application character-

ization vector, note that in creating the OS vector we have achieved one of our most

important goals in creating an operating system performance metric: we have not tied the

vector down to any specific application load. In fact, the vector is essentially meaningless

without a corresponding application characterization, for it merely reports the perfor-

mance of a spectrum of OS functionality without distinguishing any particular function-

ality as most important. This is similar to what we saw in the CPI example: although

certain elements of the hardware characterization vector may have had high individual

CPIs (e.g., the VAX polynomial-evaluation instruction), it was impossible to tell how they

would impact the overall CPI without first seeing if the application characterization vector

indicated a reliance on those elements.

The application characterization vector is thus the key to unlocking the performance

secrets hidden within the OS characterization, for it contains the crucial ranking of the

importance of each OS abstraction to the application’s performance. The coefficients of

the application vector have the task of encoding this ranking, and thus must be represen-

tative of the application’s performance demands. As a result, the method that we chose to

create these coefficients is heavily based on the tools and techniques for accurate tracing of

realistic, live workloads described in Chapter 3. Since the coefficients of the OS character-

ization vector are in units of time per byte or per invocation, a natural corresponding form

for the application characterization vector’s coefficients exists: for each data-movement

primitive in the basis, the coefficient is the number of bytes transferred by the application,

and for each remaining discrete primitive, the coefficient is the number of times the prim-

itive is invoked. This information can be easily obtained from the output of the ktra-

nal tool described in Chapter 3. The application vector is then just a compilation of this

information, consisting of a string of coefficients representing the application’s use of each

OS primitive.

With the application and OS characterization vectors created as described above, pro-

ducing the single performance metric involves simply taking the dot product of the two

vectors. The units of the coefficients were carefully selected to multiply into an absolute

unit of time, and so as the coefficients are multiplied and added, the relative importance

of each OS primitive to the application is automatically incorporated with the perfor-
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mance of that primitive into a share of the resultant metric that is proportional to how

much of a role that primitive plays in the application’s performance. Thus the resultant

single metric, represented as a latency in milliseconds, is inversely proportional to the true

performance (throughput) of the application on the system characterized in the OS vec-

tor.

4.2 Analysis of Methodology and Potential Future Research Directions

Although the methodology described above succeeds as an apparatus for distilling the

detail of the application performance hierarchy while still preserving the interplay

between operating system and application, our experience with it is still too limited for us

to conclude that it captures the entire set of performance characteristics of either the

application or the operating system. In fact, there are several obvious areas in which the

methodology is still incomplete. Probably the largest gap in its coverage of OS perfor-

mance is that it does not take into account contention between multiple applications: if a

given application is characterized on a system where it is the only thing running, it is not

clear that anything useful can be said about the application running on another system

that is already heavily loaded by other applications. One possible solution to this problem

would be to add the two application characterization vectors before taking the dot prod-

uct with the OS characterization vector; since the coefficients in the application vector are

additive, this should produce a meaningful result. However, this technique ignores issues

like cache contention and context switching overhead that occur when multiple applica-

tions are being run. Since these overheads are hard to encode in the vector format we

describe above, it is difficult to incorporate them into our analysis framework, and more

research will be needed in order to do so. In a similar vein, the characterization technique

described herein does not scale well to machines with multiple processors: since hbench-

OS characterizes the system as seen by one process, it does not capture potential perfor-

mance improvements that come from per-processor caches and page tables. A promising

solution to this problem involves running multiple copies of the hbench-OS tests in paral-

lel (one for each CPU) to gauge the effective total performance of the system; we have

obtained promising results by using this technique on a 2-CPU SPARCstation 20, but

more research is still needed to confirm the efficacy of the technique.
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The remaining gap in Section 4.1’s distillation methodology concerns the application

characterization. Although the hbench-OS primitives cover the major abstractions

exported by the operating system, there are some application-OS interactions that do not

correspond to any hbench-OS tests. For example, such system calls as getrusage() or

setsockopt() do not have equivalent hbench-OS primitive measurements. It is possi-

ble, however, to use hbench-OS’s null system call benchmark to provide a lower bound on

the latency of such calls. More detailed analysis of the actions performed by such calls is

needed in order to expand hbench-OS to include these types of application-operating sys-

tem interactions.

4.3 Case Study: Predicting the Performance of the Apache Web Server

Despite all of its gaps, the characterization methodology of Section 4.1 is powerful

enough that even a first-order approximation is sufficient in some cases to capture the

important performance characteristics of an application/OS pairing. In this section, we

demonstrate such a case by presenting the results of using the techniques of Section 4.1 to

characterize the Apache web server and to predict its performance across a range of differ-

ent hardware/OS platforms.

The first task in performing this analysis was to produce the characterization vector

corresponding to Apache’s resource demands. For clarity in this example, we will work

with a set of basis elements that includes just those OS abstractions used by Apache; the

full basis space is too large to represent conveniently here. In order to determine the con-

tents of this reduced basis set, we first needed to relate the abstractions that are important

to Apache’s performance to the operating system primitives measured by hbench-OS. We

used the data from the trace in Chapter 3 (from serving a cached copy of the Netscape

home page) to support this analysis. As we saw in Chapter 3, Apache’s performance is

dominated by reads and writes (together they account for 80% of Apache’s execution time

on the Pro-200). We also saw that these reads and writes decomposed into subcategories:

TCP socket reads and writes, and file reads and writes. Under the assumption that every

byte transferred via the TCP socket must have passed entirely through the TCP stack, we

associated the socket reads and writes with the TCP loopback bandwidth primitive of

hbench-OS; in particular, since all the data transfers used buffers of a size between 4K and
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8K, we chose the version of hbench-OS’s bw_tcp benchmark that used 4K buffers. The

application characterization coefficient for this element thus became the number of bytes

transferred in total, specifically 34,947 in the case of serving the Netscape home page.

We followed a similar procedure for the file reads. In serving just one copy of the

Netscape home page, Apache generates 518,184 bytes of file read traffic, the bulk of

which consists of reading the scoreboard file (about 32K of that traffic is due to reading

the actual HTML page from the buffer cache). All of these reads can reasonably be

assumed to be serviced from the file system buffer cache, and are performed in transfer

sizes that average a bit more than 32KB. We thus selected hbench-OS’s cached file reread

test (bw_file_rd2) with 32KB transfer buffers as the next basis element for Apache’s

characterization; the associated coefficient of the application characterization vector was

the number of bytes transferred, or 518,184.

Connecting file writes to an hbench-OS primitive illustrated one of the gaps in hbench-

OS’s coverage of OS primitives; there is no component of hbench-OS that measures cached

file writes directly. However, we were able to improvise a still-useful metric by using a sim-

ilar method to that used to generate the predicted file read measurements in Section 2.3.1:

since a file write involves a memory write (to fill the buffer) plus a copy (to put the buffer

in the buffer cache), we approximated file write with the level-two-cached memory band-

width primitives of hbench-OS; we used the number of bytes written (1533) as the coeffi-

cient of both the L2-write and L2-copy bandwidth basis elements.

We proceeded in a similar manner to transform the other interactions revealed by the

ktranal output displayed in Figure 11 in Chapter 3, where possible. Since we were pri-

marily interested in seeing how just a rough first-order approximation to a characteriza-

tion of Apache would perform, we did not go to great pains to resolve all of the less-

important interactions into hbench-OS primitives. Some we could not resolve at all, for

example the sole call to select(): the latency introduced by this call is dependent on

the scheduling of the driver program that generated the trace and not on any OS abstrac-

tion. Thus, other than the call to accept(), which we resolved to TCP connection

latency, and the calls to sigaction(), which were resolved to signal handler installa-

tion latency, we merely mapped the remaining system calls to the null system call bench-

mark to provide a lower bound on their performance impact. The final set of basis
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elements that we used and the resultant Apache characterization vector are listed in Figure

12.

With this approximation to Apache’s true performance characterization vector in

hand, we next turned to gathering characterization vectors for several operating system

and hardware platforms. For the set of OS/hardware combinations, we chose the Prem-

100, the Endeav-120, and the Pro-200 from the results in Chapter 2, and additionally, as a

challenge to the methodology, added what we will refer to as the SS20-75, a Sun SPARC-

station-20 with a 75 MHz SuperSPARC-II processor, 1MB second-level cache, and

128MB of DRAM running Sun’s Solaris 2.4 UNIX operating system; we characterized

this machine with the same set of hbench-OS benchmarks that were used to measure the

Intel machines under NetBSD.8 The reason for including the SS20-75 was to see if the

characterization methodology scaled well across major hardware architecture and OS dif-

ferences (the SPARC and Intel architectures differ greatly, as do Solaris and NetBSD).

Building the characterization vectors for the OS/hardware support platforms was rela-

tively trivial given the work already done in selecting the basis elements for the application

8. Note that we compiled Apache for Solaris using the same options as for NetBSD; in particular, we did not alter the
scoreboard synchronization policy.

Vector Basis:

<file read (32KB bufs), file write (32KB bufs),
 TCP transfer (4KB bufs), TCP connections established,
 signal handler installs, other system calls>

Apache’s characterization vector:

<518184, 1533, 34947, 1, 4, 91>

Test platform characterization vectors (all times in milliseconds):

Prem-100: <4.81E-5, 5.69E-5, 1.58E-4, 6.19E-1, 5.00E-3, 7.86E-3>
Endeav-120: <3.26E-5, 2.96E-5, 9.81E-5, 4.16E-1, 4.12E-3, 6.81E-3>
Pro-200: <1.44E-5, 6.45E-6, 5.17E-5, 2.49E-1, 3.36E-3, 4.08E-3>
SS20-75: <2.33E-5, 1.80E-5, 5.38E-5, 1.71E-0, 6.00E-3, 6.00E-3>
SS20-75x2: <1.33E-5, 9.25E-6, 3.77E-5, 8.02E-1, 3.50E-3, 3.50E-3>

Figure 12: Characterization Vectors for Apache and for the Test Platforms. The basis declared at the top
of this figure defines the components of each of the subsequently-listed characterization vectors. The coeffi-
cients of the Apache characterization vector represent Apache’s use of each OS primitive in the basis, either
in bytes transferred via the primitive or in the number of invocations of the primitive. The coefficients of
each platform’s characterization vector represent the performance of each primitive on that platform as a
latency metric, in either milliseconds per byte (for data-transfer primitives) or milliseconds per invocation
(for discrete primitives).
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performance vector. As specified by the methodology, we merely took the hbench-OS

results for each platform, normalized them as described in Section 4.1 to units of millisec-

onds per byte or milliseconds per iteration, and arranged them in the proper order to form

the desired characterization vectors. The characterization vectors for each of the systems

considered are also given in Figure 12.

At this point, with both the Apache characterization vector and those for the underly-

ing OS/hardware platforms in hand, only the last step of the methodology, taking the vec-

tor dot-product to obtain the desired single performance metric, remained. However,

before discussing the actual results obtained, let us take a step back and consider what the

calculated metrics actually mean in the context of this example. Taking the dot product of

an application vector and an OS vector produces a number representing a latency in milli-

seconds. With a completely OS-dependent application and a perfect mapping from appli-

cation usage patterns to hbench-OS primitives, this latency has an absolute meaning: it

should precisely predict the application’s absolute, user-measurable performance. In our

case, however, with a heavily (but not completely) OS-dependent application and only an

approximate mapping from the application’s resource demands (as visible in the trace

results) to hbench-OS primitives, we cannot expect the latency result to measure any real,

absolute time; in particular, it is not the time spent by Apache in servicing a request for the

Netscape home page, although it should be of the same order of magnitude. The reason

why this is the case is that, in establishing the vectors, the exact detail of the true latencies

and timings was lost in shifting from real traces to abstractions. As an example, consider

the transfer of data over the TCP connection. We used the amount of data transferred by

the server as the coefficient for a basis element that measured total TCP throughput.

Thus, the contribution of this basis element to the final latency produced by the dot prod-

uct is the amount of time it should take to transfer a specified amount of data over the

TCP loopback interface. This is not the same amount of time it takes the server to

enqueue the data for transmission, which is the time being measured by the tracing meth-

odology of Chapter 3. However, it is time that contributes to the latency that the client

sees in making a server request, and so it does impact user-visible performance. Thus the

time is still meaningful; it just pushes the calculated latency metric away from a direct cor-

respondence to the true request latency.
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However, the calculated metric still provides a good means for relative comparison: it

captures the important performance dependencies of the application and thus can provide

a way of gauging or ranking the relative performance of several systems, even if it cannot

predict the absolute performance. This is one of the critical goals of performance evalua-

tion, and if our methodology successfully produces relative rankings of different systems,

it has met this goal. Thus it is the ability to predict relative performance that we use in

evaluating the success of predictions based on the calculated metrics.

In order to perform this evaluation, we needed a standard by which to judge the pre-

dictions of the characterization-derived metrics. Thus we had to both find some directly-

measurable metric of Apache’s performance, and subsequently use it to establish a stan-

dard rank order of the different OS and hardware platforms that was correct from the

point-of-view of user-perceived performance. We chose to use a simple throughput metric

for this task: we measured the average number of requests per second that Apache was able

to service in processing two different client loads. The first was a simple workload that

consisted of retrieving the Netscape home page 5,000 times in sequence; this was our

“control” workload, as it precisely duplicated the type of request used when gathering the

application trace in Chapter 3. The second was a more complex workload that consisted

of replaying a subset of server logs from an NCSA server; this workload generated over

15,000 requests covering a mixed fileset of approximately 962KB (which is large enough

to be realistic, but still small enough to fit in the buffer cache of all our test systems).

We measured Apache serving these workloads on all of our testbed platforms with all

data transfer done via the loopback interface; the measured performance results are pre-

sented in Table 4 along with the calculated latency metrics obtained by taking the dot

product of the Apache characterization vector with each of the testbed platforms’s

OS/hardware characterization vector. As can be plainly seen, the calculated metrics rank

the machines in exactly the same order of relative performance as do the experimental

measurements, for both workloads (recall that the calculated metric represents a latency,

the inverse unit of the measured throughputs). In fact, when scaled by a factor chosen to

best approximate the average measured performance, the calculated metrics predict the

absolute measured performance on the Netscape trace (in requests served per second) to

within about ±16%. This is an encouraging result since, due to our crude application of
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the characterization methodology, we did not even expect the calculated metrics to

approximate the absolute performance. Additionally, this prediction holds (with a slightly

greater margin of error) on the mixed NCSA workload, despite the fact that the original

characterization was based on the Netscape trace. Even more promising is the fact that the

SPARC/Solaris machine (SS20-75) is placed correctly amongst its Intel/NetBSD brethren

on both workloads; this is a particularly interesting result, as it shows that the character-

ization methodology used is powerful enough to allow for meaningful cross-platform

comparisons, something that is almost entirely unattainable when measurements are per-

formed only via microbenchmark suites such as lmbench.

As a final experiment, we attempted to extend our methodology to the multi-CPU

case to see if its cross-platform predicting power held there as well: we installed a second

75 MHz SuperSPARC-II CPU in the SPARCstation-20, and ran two copies of the

hbench-OS tests in parallel, adding bandwidths and taking half the harmonic mean of the

latencies to obtain a characterization vector representing the aggregate performance of the

system. The calculated performance metric for Apache on this configuration (which we

denote SS20-75x2) came out to be 9.33 ms; the measured user-visible performance on the

two workloads was 63.82 requests/second (Netscape) and 66.72 requests/second (NCSA).

Although this result is less successful at predicting absolute performance, it still correctly

predicts the relative position of the dual-CPU machine amongst its single-CPU compan-

ions, even though the machine’s characterization was relatively crude.

Test Platform
Calculated

Latency (ms)

Measured Throughput (requests/sec)

Netscape Workload NCSA Workload

Prem-100 31.88 22.71 25.93

Endeav-120 21.43 38.35 44.03

SS20-75 16.26 44.78 47.59

Pro-200 10.14 62.90 64.11

SS20-75x2 9.33 63.82 66.72

Table 4: Comparison of Measured and Predicted Apache Performance Rankings. The
measured throughput numbers represent the average number of requests serviced per second by
the Apache web server on each test platform; they are averages over several thousand requests.
The calculated latency figures were obtained by taking the dot product of each platform’s
characterization vector with Apache’s characterization vector, and represent predictions of each
platform’s performance. Notice that the calculated latency figures rank the systems in the same
performance order as the measured throughput figures (recall that latency is inversely
proportional to throughput, so lower latency implies higher throughput).
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Thus, in the case of Apache, our characterization methodology was successful, as it

met one of the primary goals of system performance evaluation: it provided a way to

gauge the relative performance of different operating system/hardware platforms on a

given application. Although we varied the underlying platform by changing the OS and

the hardware, our technique is equally applicable for changes within the OS on the same

platform, and therefore it also provides a way for the operating system designer to evaluate

changes to the OS (or for the hardware designer to evaluate hardware changes) to see if

they help real applications. Additionally, the success of the methodology here despite its

rather inexact application implies that the technique of characterization and the resultant

computed metrics are capable of capturing the important performance characteristics of

an application/operating system pairing. The fact that we could take a characterization of

Apache obtained on a single-CPU Pentium Pro running BSD and subsequently use it to

correctly predict Apache’s relative performance on both the single- and dual-CPU

SPARC/Solaris machines highlights the resiliency and power of our methodology. In addi-

tion, the technique’s success in meeting the critical goal of performance evaluation

described above again underscores the fact that even a rough gauge of operating system

performance in the context of real application load is more useful than just a set of measure-

ments of OS primitive performance, for example as obtained via lmbench.

4.4 Related Work: Application Performance Characterization and Prediction

The methodology that we have developed for producing application-specific metrics for

system performance evaluation and prediction is not unique. As we have already seen, it

closely follows the standard methodological guidelines laid down by CPI. Although this is

the first time that such a methodology has been applied to the abstraction boundary

between the operating system and the application, other researchers have used the charac-

terization methodology at other abstraction boundaries in the computer system. The pri-

mary example of this is in the work of Saavedra and Smith, who have applied the

characterization methodology to the boundary between CPU-dependent scientific appli-

cations and the low-level machine hardware (essentially ignoring or bypassing the OS)

[21] [22]. They developed a characterization model based on Fortran primitives: the low-

level hardware is characterized by measuring each primitive’s performance, and the result-
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ant measurements are combined into a characterization vector in much the same manner

as we do for the operating system primitive measurements. Similarly, the (Fortran-based)

application is characterized by a vector indicating its use of each primitive, and the end

performance metric is obtained via a dot product of an application vector with a machine

vector. Saavedra’s work is thus quite similar in principle to what we have done, although in

practice it is more complimentary, as it serves an entirely different class of applications

than the OS-dependent applications we are considering.
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Chapter 5

Conclusion

Throughout this thesis, we have presented methodologies and techniques designed to

deliver accurate, detailed performance characterizations that reflect and distill real-world

workloads and conditions. The only question that remains is whether we have succeeded

in achieving the goals laid out in Chapter 1; from the results obtained in the case studies

throughout, the answer is clearly yes.

The performance decomposition approach and the performance hierarchy model

upon which it is based produce a system performance characterization with enough detail

to satisfy even the most demanding performance analysis needs of a sophisticated operat-

ing system architect. The constructed performance hierarchy incorporates performance

dependencies at all levels of the system, allowing the architect to compare, evaluate, or

tune the system at any level of abstraction, from the physical hardware to the OS imple-

mentation to the OS abstraction layer to the application itself.

At the same time, the distillation techniques of Chapter 4 allow all of this detail to be

reduced to a set of simple application and operating system characterization vectors that,

when combined via a basic dot-product operation, produce a single, application-specific

metric for evaluating operating system performance. This metric satisfies the requirements

we set out in Chapter 1 as well. It is simple enough to be easily constructed and under-

stood by less-sophisticated consumers of benchmarks, yet incorporates enough knowledge

about the application workload and the operating system’s abstractions to provide a mean-
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ingful measurement of performance. Like the full, detailed hierarchy, the characterization

vectors and resultant single metric satisfy all of the potential demands for performance

analysis: system evaluation, comparison, and optimization. Finally, although the single

metric produced is workload-specific, the fact that it can be trivially constructed from the

application and operating system characterization vectors means that it is easily adaptable

to any workload of interest, unlike such static metrics as SPEC or the lmbench micro-

benchmark results.

The case studies of NetBSD/i386 and the Apache web server further illustrate the

practical usefulness of the decompositional performance analysis approach. In construct-

ing the performance hierarchy for the x86-NetBSD-Apache system, we discovered a great

deal about the inner performance dependencies of the system, while simultaneously

revealing performance bottlenecks and poor design decisions (from a performance per-

spective); our conclusions about the Pentium Pro’s memory system and Apache’s subopti-

mal synchronization policy highlight the types of conclusions that can be garnered from

the detail of a typical performance hierarchy.

Finally, despite its obvious success in the cases we examined, the performance decom-

position approach is not yet developed to its full potential. For example, the distillation

methodology described in Chapter 4 is still quite rough; with more careful analysis of the

correlation between OS abstractions and hbench-OS primitives, the accuracy and absolute

predictive power of the generated metrics could certainly be enhanced. Similarly, a further

broadening of the hbench-OS tests could improve the accuracy of the characterization and

thus also enhance the predictive power of the generated metrics.

Even in its current form, however, the performance decomposition methodology pre-

sented in this thesis is a powerful tool for understanding the performance of modern com-

puter systems; with further refinement, it promises to be even more effective in stripping

away complexity to reveal the true nature of modern system performance.
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