
Generalized Shuffle Permutations on Boolean
Cubes

Citation
Johnsson, S. Lennart and Ching-Tien Ho. 1991. Generalized Shuffle Permutations on Boolean
Cubes. Harvard Computer Science Group Technical Report TR-04-91.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23597699

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23597699
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Generalized%20Shuffle%20Permutations%20on%20Boolean%20Cubes&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Generalized Shu�e Permutations on

Boolean Cubes

S. Lennart Johnsson

Ching-Tien Ho

TR-04-91

February 1991

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

Air Force O�ce of Scienti�c Research grant: 44-752-9000-2.

National Science Foundation grant: 44-752-9705-2.

Generalized Shu�e Permutations on Boolean Cubes

S. Lennart Johnsson Ching-Tien Ho

Division of Applied Sciences IBM Almaden Research Center

Harvard University 650 Harry Road

Cambridge, MA 02138 San Jose, CA 95120-6099

and Ho@ibm.com

Thinking Machines Corp.

Johnsson@harvard.edu

Abstract. In a generalized shu�e permutation an address (a

q�1

a

q�2

: : : a

0

) receives its

content from an address obtained through a cyclic shift on a subset of the q dimensions used

for the encoding of the addresses. Bit-complementation may be combined with the shift. We

give an algorithm that requires

K

2

+ 2 exchanges for K elements per processor, when storage

dimensions are part of the permutation, and concurrent communication on all ports of every

processor is possible. The number of element exchanges in sequence is independent of the number

of processor dimensions �

r

in the permutation. With no storage dimensions in the permutation

our best algorithm requires (�

r

+ 1)d

K

2�

r

e element exchanges. We also give an algorithm for

�

r

= 2, or the real shu�e consists of a number of cycles of length two, that requires

K

2

+1 element

exchanges in sequence when there is no bit complement. The lower bound is

K

2

for both real and

mixed shu�es with no bit complementation. The minimum number of communication start-ups

is �

r

for both cases, which is also the lower bound. The data transfer time for communication

restricted to one port per processor is �

r

K

2

, and the minimum number of start-ups is �

r

. The

analysis is veri�ed by experimental results on the Intel iPSC/1, and for one case also on the

Connection Machine.

1 Introduction

The main contributions of this paper are optimal algorithms for dimension permutations on

Boolean cube con�gured distributed memory multi-processors, and lower bounds for such per-

mutations with concurrent communication on all channels. Communication systems (packet or

circuit switched) only allowing communication on one channel at a time per processor are treated

briey. The Connection Machine is an example of a computer allowing concurrent communica-

tion on all channels. Some computers allow concurrent communication on several, but not all

channels of every processor. The techniques for concurrent communication on all channels may

be adapted to such architectures.

A dimension permutation is de�ned by permuting and/or complementing the bits of the logic

address �eld. There are M(log

2

M)! possible dimension permutations where M is the number of

elements in the address �eld. We consider stable permutations [2], i.e., permutations for which

the data occupy the same machine address space before and after the data rearrangement.

The machine address space consists of two parts: a processor address �eld and a local storage

1

address �eld. Real dimension permutations are restricted to the processor address �eld, whereas

mixed dimension permutations include parts of both the local storage and processor address

�elds. Virtual dimension permutations that only include local storage addresses require no

communication, and are not considered here.

The reason for distinguishing between processor and local storage dimensions is that access

times to local storage usually is considerably faster than communication between processors.

The width of the data paths to local memory are often equal to the word width of the ar-

chitecture (32 or 64 bits), while the width of network channels typically are in the range 1 {

16 bits. Furthermore, the contention for network channels is often a more serious issue than

the contention for local memory, and the techniques for reducing network contention are quite

di�erent from the techniques for handling contention for local memory.

The di�erence in the width of the data paths to local memory and inter-processor commu-

nication channels, and the di�erent protocols used for interprocessor communication and local

memory references often allow many local memory references to be performed in the time re-

quired for an inter-processor communication. For instance, in a Connection Machine model

CM-2 each processor has a single 32-bit wide data path to memory, while inter-processor com-

munication channels are 1-bit wide. The width of the communication channels is determined

by a trade o� between many demands for o�-chip communication. Pins on chips is a highly

critical resource in many technologies. A memory read of 32 bits is a one-cycle operation, while

a store is slightly longer. An exchange of 32-bits between a pair of processors requires about 185

cycles. On a fully con�gured Connection Machine model CM-2 22 exchanges can be performed

concurrently. In the n-port communication model local memory references on a Connection

Machine account for at most about 25% of the total time.

Examples of dimension permutations are k-shu�e/unshu�e permutations, matrix transposi-

tion, bit-reversal, vector-reversal, and conversion between various data allocation schemes, such

as consecutive and cyclic storage [3, 4], reshaping of arrays [7], and multi-sectioning. A vector

reversal expressed in binary code is the operation (b

n�1

b

n�2

: : : b

0

)! (b

n�1

b

n�2

: : : b

0

) where b

i

is the complement of b

i

, i.e., V (i) V (2

n

� 1� i) with elements numbered consecutively from

zero. Bit-reversal is the operation (b

n�1

b

n�2

: : : b

0

)! (b

0

b

1

: : : b

n�1

), and shu�e is the operation

(b

n�1

b

n�2

: : : b

0

)! (b

n�2

b

n�3

: : : b

0

b

n�1

). The transposition of a matrix with axis lengths being

powers of two is the operation (r

p�1

r

p�2

: : :r

0

c

q�1

c

q�2

: : : c

0

) ! (c

q�1

c

q�2

: : : c

0

r

p�1

r

p�2

: : : r

0

),

which is a shu�e repeated p times, or an unshu�e performed q times. In the consecutive alloca-

tion scheme successive elements are allocated to the same processor, whereas in cyclic allocation

successive elements are assigned to successive processors in a wraparound fashion. From the

illustration below, it is clear that conversion between the two is a dimension permutation, which

can be de�ned as an n-shu�e, or n-unshu�e.

Consecutive Cyclic

(b

p�1

b

p�2

: : : b

p�n

| {z }

paddr

j b

p�n�1

b

p�n�2

: : : b

0

| {z }

maddr

) (b

p�1

b

p�2

: : : b

n

| {z }

maddr

j b

n�1

b

n�2

: : : b

0

| {z }

paddr

)

Nassimi and Sahni [10, 11] consider stable, real dimension permutations on multi-processors

con�gured as meshes and hypercubes, while Flanders [1] focuses on stable, both real and mixed,

dimension permutations on two-dimensional mesh-connected multi-processors. Swarztrauber

[15] considers dimension permutations on Boolean cubes. Swarztrauber does not consider bit

2

complementation, which is not required for the FFT, the main focus of [15]. In all of the previous

work only one communication channel per processor is used in any step of the algorithms, or for

lower bounds. We consider concurrent communication on all channels of all processors. Such

communication is possible on the Connection Machine. The emphasis is on mixed, stable per-

mutations. Real, stable permutations are treated briey. Algorithms for real, stable dimension

permutations with one-port communication can be found in [10, 11, 15].

The notation and de�nitions used throughout the paper are introduced in Section 2. In

Section 3 we discuss lower bounds. Algorithms are described in Section 4, and results from

implementations on the Intel iPSC/1 and the Connection Machine are described in Section 5.

We conclude with a few remarks in Section 6.

2 Preliminaries

In one-port communication the communication is restricted to one exchange operation per pro-

cessor. In n-port communication exchange operations can be performed concurrently on all ports

of every processor. With the processors con�gured as a Boolean n-cube each processor has n

channels (edges) to n distinct processors (nodes). With a binary encoding there is an adjacent

processor for every bit of the address, or dimension. The number of node-disjoint minimum

length paths between any pair of nodes at real distance d is d. There are n � d node-disjoint

paths of length d + 2 between any pair of nodes at real distance d [12]. The machine address

space is A = f(

paddr

z }| {

a

q�1

a

q�2

: : : a

q�n

j

maddr

z }| {

a

q�n�1

a

q�n�2

: : :a

0

)g, where a

i

2 f0; 1g. The symbol \j"

denotes concatenation. The rightmost dimension is dimension zero, the least signi�cant one.

We arbitrarily let the processor address �eld form the high order part of the global address,

and the local storage address �eld form the low order part. The real distance between two lo-

cations in the address space is Hamming

r

(a; a

0

) =

P

q�1

i=q�n

(a

i

� a

0

i

) and the virtual distance is

Hamming

v

(a; a

0

) =

P

q�n�1

i=0

(a

i

� a

0

i

). Hamming(a; a

0

) = Hamming

r

(a; a

0

) + Hamming

v

(a; a

0

).

The set of machine dimensions is D

A

= fq � 1; q � 2; : : : ; 0g. The processor dimensions are

D

A

p

= fq�1; q�2; : : : ; q�ng, and the local storage dimensions areD

A

s

= fq�n�1; q�n�2; : : : ; 0g.

The logic address space L = f(b

m�1

b

m�2

: : : b

0

)g has the dimensions D

L

= fm�1; m�2; : : : ; 0g,

m � q. A dimension allocation is a mapping: D

L

! D

A

. The set of machine dimensions used

for the data allocation is D

U

� D

A

. D

U

p

= D

U

\D

A

p

and D

U

s

= D

U

\D

A

s

. K = 2

k

is the number

of elements per processor, where k is the cardinality of the set D

U

s

, or k = jD

U

s

j.

De�nition 1 A Stable Dimension Permutation (SDP), �, is a one-to-one mapping D

U

! D

U

such that �

i

�

�

j

�

j

, where �

i

; �

i

2 D

U

, i 2 fq � 1; q � 2; : : : ; 0g, and �

i

6= �

j

; �

i

6= �

j

, for any

i 6= j. The index set J of the permutation is the set f�

i

j�

i

6= �

i

g. The SDP is real if J � D

U

p

,

virtual if J � D

U

s

, and mixed otherwise. The order � of the permutation is jJ j, the real order

�

r

is jJ \ D

U

p

j, and the virtual order �

s

is jJ \ D

U

s

j.

De�nition 2 Let J = f�

��1

; �

��2

; : : : ; �

0

g � D

A

, where � > 1 and �

i

6= �

j

, i 6= j. A

stable generalized shu�e permutation (GSH) is an SDP such that �

i

�

�

(i�1)mod�

�

(i�1)mod�

, i 2

3

paddr paddr

00 01 10 11 00 01 10 11

(00j00) (01j00) (10j00) (11j00) (00j00) (01j00) (00j10) (01j10)

(00j01) (01j01) (10j01) (11j01) =) (00j01) (01j01) (00j11) (01j11)

(00j10) (01j10) (10j10) (11j10) (10j00) (11j00) (10j10) (11j10)

(00j11) (01j11) (10j11) (11j11) (10j01) (11j01) (10j11) (11j11)

Figure 1: Shu�e permutation of order two.

f0; 1; : : : ; � � 1g.

In a dimension permutation the content of address a is assigned to address �(a) (i.e., �(a)

a). A GSH corresponds to a single cycle on the bits of the address �eld. We let the GSH

correspond to a left cyclic shift on the address �eld. For example, the shu�e (a

4

a

3

a

2

a

1

a

0

)

(a

3

a

2

a

1

a

0

a

4

) has the index set f4; 3; 2; 1; 0g. For a 2-shu�e on the same dimensions J =

f4; 2; 0; 3; 1g. In general, an SDP de�nes several cycles on the set J . There are 2

m��

identical

SDP of order � in an address space of size 2

m

.

A real GSH preserves the local address map. Data is moved between processors in subcubes

de�ned by the set of dimensions J . A real GSH is a generalization of the collinear planar

exchanges described in [1]. A virtual GSH (called vertical exchanges in [1]) implies the same local

data movement in all processors. A mixed GSH (called planar-vertical exchanges in [1]) implies

interprocessor communication and a di�erent placement in local memory of communicated data.

For instance, the GSH of order two de�ned by (a

3

a

2

ja

1

a

0

) (a

1

a

2

ja

3

a

0

) results in the data

motion in Figure 1. An i{cycle as de�ned in [15] does not include local memory reordering, and

is further restricted to include only the most signi�cant storage dimension.

De�nition 3 A sub-cube permutation (SCP) is an algorithm for dimension permutation in

which the routing is con�ned to the set of processors to which the data set is allocated. An

extended-cube permutation (ECP) is an algorithm for dimension permutation in which the rout-

ing is extended to an n

e

-cube in which the n-cube holding data is embedded.

3 Time complexity

The transmission time for each element is t

c

, and the start-up time, or overhead, for each packet

of B elements is � . In a circuit-switched system � corresponds to the time to set one switch

in a path. In the time complexity T (ports; �

r

; n;K) for a lower bound, or an algorithm, the

�rst argument is the number of ports per processor used concurrently, the second argument the

real order of the GSH, the third argument the number of processor dimensions used for data

allocation, and the last argument the size of the local data set.

Lemma 1 The time complexity of an SDP of real order �

r

< n cannot be improved by com-

munication in the n � �

r

processor dimensions not included in the index set, if a dimension

4

permutation is required within all �

r

-cubes, and the SDP algorithm uses full bandwidth within

each �

r

-cube.

Proof: We prove the theorem by contradiction. Let the lower bound for the SDP of real order

�

r

< n on an n-cube be T =

W

L

, where W is the total bandwidth required and L the available

bandwidth per unit time. Now, map 2

n��

r

nodes of the n-cube to a single node of a �

r

-cube

by identifying all nodes with the same values of the address bits for dimensions in the set J

of the SDP. Furthermore, increase the communications bandwidth of each channel in the �

r

-

cube by a factor of 2

n��

r

. Then, every algorithm for the SDP performed on the n-cube can

be converted to an algorithm on the �

r

-cube with a running time T

00

that is at most the same.

Hence, T � T

00

=

2

n��

r

W

2

n��

r

L

= T .

Lemma 2 Lower bounds for a sub-cube GSH of real order �

r

> 0 are

T

l b

gsh

(1; �

r

; n;K) =

8

>

<

>

:

max(�

r

K

2

t

c

; (�

r

� 1)�); if (number of dimensions that are moved

and not complemented) is odd

max(�

r

K

2

t

c

; �

r

�); otherwise

T

l b

gsh

(�

r

; �

r

; n;K) =

8

>

<

>

:

max(

K

2

t

c

; (�

r

� 1)�); if (number of dimensions that are moved

and not complemented) is odd

max(

K

2

t

c

; �

r

�); otherwise,

Proof: The minimum number of start-ups, or switch settings in a path, is equal to the maximum

number of channels that must be traversed, which is max

a2A

Hamming

r

(a; �(a)).

The minimum data transfer time is bounded from below by the required bandwidth divided

by the available bandwidth. By Lemma 1 it su�ces to consider a �

r

-cube. For each dimension

j 2 J \ D

U

p

such that j i, where i 2 J \ D

U

p

, only nodes for which (a

i

6= a

j

) need to send

elements across dimensions j. If instead i 2 J \ D

U

s

then all nodes send half of their data.

Therefore, the bandwidth requirement for each �

r

-cube is �

r

2

�

r

K

2

. The available bandwidth per

routing cycle is 2

�

r

for one-port and �

r

2

�

r

for n-port communication.

The lower bounds are not tight when some dimensions in the permutation are complemented.

For instance, consider the case (�

0

�

1

) (�

1

�

0

). In this case the permutation is a cyclic shift

in a loop of length four. All non-minimum length paths are of length three. There is only one

minimum length path between any pair of processors, and only one non-minimum length path

as well. For a routing time of

K

2

element transfers in sequence at most

K

2

elements can be

routed along minimum length paths. The total routing requirement for elements routed along

non-minimum length paths is at least 4� 3�

K

2

. With four available links a total routing time

of at most

K

2

is impossible.

Corollary 1 The data transfer time for a sub-cube, real GSH, performed by any �xed packet

size algorithm requiring c routing cycles per packet is at least

cK

2(c�1)

t

c

for n-port communication,

5

and at least

c�

r

K

2(c�1)

t

c

for one-port communication in which all processors use the same dimension

during the same routing cycle.

Proof: For the lower bound data transfer time in Lemma 2, all channels are used evenly in

every routing cycle, and all elements are routed through a shortest path. But, during the �rst

and last routing cycles, at least half of the channels are not used for a real GSH. For one-port

communication, the same argument applies to the �rst and last routing cycles for any cube

dimension used by all processors.

A dimension permutation on a data set allocated to an n-dimensional subcube of an n

e

-cube

can be realized by subcube expansion from the n-cube to the n

e

-cube, full cube permutation, and

compression to the original n-cube. The permutation is performed with local data sets reduced

by a factor of 2

n

e

�n

. The subcube expansion (compression) is of type one-to-all (all-to-one)

personalized communication [6].

Corollary 2 Lower bounds for a GSH of order � extended from an n-cube to an n

e

-cube are

T

l b

gsh

(1; �

r

; n;K) =

8

>

>

>

>

<

>

>

>

>

:

max

�

(2(K �

K

2

n

e

�n

) + �

r

K

2

n

e

�n+1

)t

c

; (2(n

e

� n) + �

r

� 1)�

�

;

if (number of dimensions that are moved and not complemented) is odd;

max

�

(2(K �

K

2

n

e

�n

) + �

r

K

2

n

e

�n+1

)t

c

; (2(n

e

� n) + �

r

)�

�

;

otherwise,

T

l b

gsh

(n

e

; �

r

; n;K) =

8

>

>

>

<

>

>

>

:

max

�

(2

K

n

e

�n

+

K

2

n

e

�n+1

)t

c

; (2(n

e

� n) + �

r

� 1)�

�

;

if (number of dimensions that are moved and not complemented) is odd;

max

�

(2

K

n

e

�n

+

K

2

n

e

�n+1

)t

c

; (2(n

e

� n) + �

r

)�

�

;

otherwise.

The proof follows from Lemma 2 and the lower bounds for one-to-all personalized commu-

nication [6].

4 Algorithms

A left cyclic shift of the set J = f�

��1

; �

��2

; : : : ; �

0

g can be achieved in � � 1 exchanges by:

1) exchanging adjacent pairs of dimensions starting with any pair and progressing to the right

cyclicly, terminating with the pair immediately to the left of the starting pair, 2) exchanging an

arbitrary �xed dimension with successively higher dimensions modulo �. The left cyclic shift

can also be accomplished in �+1 exchanges by augmenting the index set with one dimension v,

and using it as a �xed exchange dimension: v $ �

i

; v$ �

(i+1)mod�

; : : : ; v$ �

(i+��1)mod�

; v$

�

(i+�)mod�

. The �rst sequence uses all dimensions twice except for the �rst and last dimension

in the sequence. The second sequence uses every dimension once, except the �xed exchange

dimension. The last sequence uses all dimensions once, except the starting dimension which

is used twice, and the �xed exchange dimension. These three exchange sequences are the ba-

sis for our Boolean cube algorithms. A shu�e permutation with bit-complementation can be

accomplished by complementing the appropriate bits in the exchange operation.

6

The essential ideas used to achieve concurrency in communication is: 1) pipelining, 2) start-

ing the cyclic shifts in several dimensions, 3) factoring of cycles into several cycles. Independent

concurrent exchange sequences are created by partitioning the local data set, and de�ning one

sequence per partition. By properly choosing the sequences a uniform load on the communi-

cation system is achieved. Dimension permutations can also be performed as recursive matrix

transpositions [4, 13, 14], or by performing all-to-all personalized communication twice [6, 14].

The main focus below is on algorithms for mixed, stable dimension permutations. We �rst

consider the case with a single mixed GSH, then consider shu�e permutations that can be

factored into several mixed GSH. We conclude by considering two algorithms for real GSH.

4.1 Mixed, generalized shu�e algorithms

4.1.1 A single GSH

A mixed GSH with an index set J consisting of a single block of processor dimensions fol-

lowed by one virtual dimension can be performed in �

r

exchanges by using �

0

as the �xed

exchange dimension, where the GSH is de�ned by (�

�

r

�

�

r

�1

: : :�

1

j�

0

). If the index set J

consists of one block of processor dimensions and several storage dimensions, then the GSH

is factored into two cycles: one on the block of processor dimensions and the memory dimen-

sion immediately to the right of it, one on all memory dimensions. For instance, a cyclic

shift on the set (�

��1

�

��2

: : :�

���

r

j�

���

r

�1

�

���

r

�2

: : :�

0

) is factored into a cyclic shift on

(�

��1

�

��2

: : :�

���

r

j�

���

r

�1

) followed by a cyclic shift on (�

���

r

�1

�

���

r

�2

: : :�

0

). The second

GSH is virtual. For n-port communication we will �rst describe a pipelined algorithm in which

all data items start their exchange sequence in the �rst processor dimension, then an algorithm

for which some of the exchange sequences are initiated in other processor dimensions than the

�rst.

Pipelining

The mixed GSH with a single local storage dimension and K � 2 elements per processor

requires that

K

2

elements be exchanged in each dimension. For n-port communication the data

transfers can be pipelined. The number of element transfers in sequence is

K

2

+�

r

� 1. Figure 2

shows the scheduling of local memory locations paired with respect to the exchange dimension.

The table entries indicate the processor dimension in which one element in a local pair is subject

to exchange. Figure 3 shows an example of memory locations exchanging data in the case of

eight processors. Two memory locations marked by the same symbol, for instance X0, are

exchanged with each other. For more than two local memory locations the exchange pattern is

repeated for all local pairs. The exchange algorithm for two local memory locations is as follows

for i := 1 to �

r

do

forall (�

�

r

�

�

r

�1

: : :�

1

j�

0

) do

if �

0

� �

i

= 1 then

(�

�

r

�

�

r

�1

: : :�

i+1

�

i

�

i�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

i+1

�

i

�

i�1

: : :�

1

j�

0

)

endif

endforall

endfor

7

Time step

M d

0

1 2 3

e d

1

1 2 3

m d

2

1 2 3

d

3

1 2 3

Figure 2: Exchange dimensions for a generalized shu�e permutation through pipelining.

P0 P1 P2 P3 P4 P5 P6 P7

Initial allocation

0 2 4 6 8 10 12 14

1 3 5 7 9 11 13 15

Step 1

X0 X1 X2 X3

X0 X1 X2 X3

Step 2

X0 X1 X2 X3

X0 X1 X2 X3

Step 3

X0 X1 X2 X3

X0 X1 X2 X3

Final allocation

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Figure 3: Data exchanges for a mixed generalized shu�e permutation of real order three.

A local memory reordering before and after the exchange sequence allows the sending and

receiving local addresses in an exchange to be the same. Indirect addressing can be avoided for

all data interchanges. Half of the processors use the lower address in a local pair, half of the

processors the upper address. The initial and �nal reordering, and the pairs of memory locations

involved in the exchanges are illustrated in Figure 4. The reordering and exchange algorithm is

de�ned by

Align

forall (�

�

r

�

�

r

�1

: : :�

1

j�

0

) do

if �

�

r

� �

�

r

�1

� : : :� �

1

= 1 then

(�

�

r

�

�

r

�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

1

j�

0

)

endif

endforall

Permute

for i := 1 to �

r

do

forall (�

�

r

�

�

r

�1

: : :�

1

j�

0

) do

if �

�

r

� �

�

r

�1

� : : :� �

i+1

� �

i�1

� : : :� �

1

� �

0

= 1 then

8

(�

�

r

�

�

r

�1

: : :�

i+1

�

i

�

i�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

i+1

�

i

�

i�1

: : :�

1

j�

0

)

endif

endforall

endfor

Realign

forall (�

�

r

�

�

r

�1

: : :�

1

j�

0

) do

if �

�

r

� �

�

r

�1

� : : :� �

1

= 1 then

(�

�

r

�

�

r

�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

1

j�

0

)

endif

endforall

The correctness follows from the following consideration.

Step 1:

(�

�

r

�

�

r

�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

1

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

).

Steps 2 � j � �

r

+ 1:

(�

�

r

�

�

r

�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

j

f�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

g�

j�2

: : :�

1

j�

0

).

Step �

r

+ 2:

(�

�

r

�

�

r

�1

: : :�

1

j�

0

)! (�

�

r

�

�

r

�1

: : :�

1

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

).

Tracing the steps yields

(�

�

r

�

�

r

�1

: : :�

1

j�

0

) ! (�

�

r

�

�

r

�1

: : :�

1

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

)

! (�

�

r

�

�

r

�1

: : :�

2

�

0

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

)

! (�

�

r

�

�

r

�1

: : :�

3

�

1

�

0

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

)

.

.

.

.

.

.

! (�

�

r

�

�

r

�2

: : :�

2

�

1

�

0

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

)

! (�

�

r�1

�

�

r

�2

: : :�

2

�

1

�

0

j�

�

r

� �

�

r

�1

� : : :� �

1

� �

0

)

! (�

�

r�1

�

�

r

�2

: : :�

2

�

1

�

0

j�

�

r

).

Note that precisely one local storage location in a pair de�ned by the exchange dimension is

subject to an exchange in any step. Moreover, after the �rst exchange even and odd data are

separated into two distinct subcubes identi�ed by the �rst exchange dimension.

Pipelining with arbitrary starting dimension

With multiple local elements it is possible to initiate exchange sequences in di�erent di-

mensions. All such sequences can be executed concurrently with n-port communication. For

an arbitrary real starting dimension �

r

+ 1 exchanges are required. The �xed local exchange

dimension, v, cannot be �

0

. The local memory is partitioned into sets of four elements identi�ed

by v and �

0

. The pairs in a set of four elements are denoted d

�

0

=0

j

and d

�

0

=1

j

, j � 0, where

d

�

0

=0

j

and d

�

0

=1

j

identi�es pairs. The set j starts the exchange in dimension �

�

r

�j

. A set that

starts the exchange with real dimension �

1

does not need to use dimension v for the exchange,

and grouping into four elements is unnecessary. The grouping into sets of four elements is due

9

P0 P1 P2 P3 P4 P5 P6 P7

Initial reordering

X0 X1 X2 X3

X0 X1 X2 X3

Step 1

X1 X1 X2 X2

X0 X0 X3 X3

Step 2

X1 X1 X2 X2

X0 X0 X3 X3

Step 3

X1 X2 X1 X2

X0 X3 X0 X3

Final reordering

X0 X1 X2 X3

X0 X1 X2 X3

Figure 4: Alignment/realignment and data exchanges for a mixed generalized shu�e permuta-

tion of real order three.

to the exchange between dimensions �

0

and v. This exchange need not be performed explicitly,

but enforces a synchronization between exchange sequences. Exchanges subsequent to the one in

which the exchange should have taken place can simply use �

0

instead of v as the �xed exchange

dimension. The maximum number of local elements that can be handled concurrently using sets

of four elements is 2(�

r

� 1) for �

r

odd, and 2(�

r

� 2) for �

r

even. For su�ciently many local

elements we combine the concurrent exchange scheme with pipelining, Figure 5.

In Figure 5 the �rst eight memory locations have been scheduled to start in a dimension

other than the �rst, while the following 10 locations start the exchange in the �rst dimension.

A bullet in the table illustrates a synchronization cycle for an exchange with the next row. A

synchronization cycle must succeed the exchange v $ �

�

r

and precede the exchange �

0

$ �

1

,

Time step

d

0

0

v; 5 v; 6 � 0;1 0; 2 0;3 0;4 0;5

M d

1

0

v; 5 v; 6 0; 1 0;2 0;3 0;4 0;5

e d

0

1

v; 3 v; 4 v; 5 v; 6 � 0;1 0;2 0;3

m d

1

1

v; 3 v; 4 v; 5 v; 6 0;1 0;2 0;3

o d

2

0; 1 0;2 0; 3 0;4 0; 5 0;6

r d

3

0;1 0; 2 0;3 0; 4 0;5 0; 6

y d

4

0; 1 0;2 0; 3 0;4 0; 5 0;6

d

5

0;1 0; 2 0;3 0; 4 0;5 0;6

d

6

0; 1 0;2 0; 3 0;4 0;5 0;6

0;1 0; 2 0;3 0;4 0;5 0;6

0; 1 0;2 0;3 0;4 0;5 0; 6

0;1 0;2 0;3 0;4 0; 5 0;6

0;1 0;2 0;3 0; 4 0;5 0;6

Figure 5: The exchange sequences for J = f�

6

�

5

�

4

�

3

�

2

�

1

j�

0

g and K = 18.

10

but can otherwise take place at an arbitrary time. Row d

2

through row d

6

are subject to pipelined

exchanges starting in the �rst processor dimension. The unlabeled rows in the table are included

to illustrate what the total time would have been if all exchanges had started in the �rst processor

dimension. Then, rows d

2

through the end of the table would apply. Conceptually, one can view

the schedule represented by rows d

0

0

through d

6

, as being constructed by removing the bottom

four unlabeled rows, and instead schedule these rows as de�ned by rows d

0

0

through d

1

1

. Moving

the bottom two rows above row d

2

saves two communications. Moving an additional two rows

again saves two exchanges in the bottom part. But, the net savings is only one exchange due to

the length of the exchange sequence in the top part.

The communication complexity for a single mixed GSH

The pipelined algorithm with all elements starting their exchange in the �rst processor

dimension requires

K

2

+�

r

�1 element exchanges in sequence for n-port communication. Starting

some sequences in other dimensions than the �rst yields �

r

+3 exchanges, if K � 2(�

r

+1). For

K � 2(�

r

+ 1) the number of element exchanges in sequence is

K

2

+ 2. The minimum number

of start-ups is �

r

+ 3 for the second type of algorithm. The block size B for this number of

start-ups is d

K

2(�

r

+1)

e.

Theorem 1 A mixed GSH of real order �

r

= � � 1 and K elements per processor requires at

most

T =

8

>

<

>

:

K

2

+ �

r

� 1 �

r

� 3; K � 8,

�

r

+ 3 8 � K � 2(�

r

+ 1),

K

2

+ 2; K � 2(�

r

+ 1); �

r

� 3.

element exchanges in sequence. The minimum number of start-ups is at least �

r

, and at most

�

r

+ 3.

For K � 8, or �

r

� 3 all elements should have their �rst exchange in the �rst processor

dimension of the GSH. If K > 8, but less than 2(�

r

+ 1), then some elements should start their

exchange sequence in a dimension other than the �rst processor dimension in the GSH. The

time complexity is determined by elements that start their exchange in a dimension other than

�

1

. The partitioning of the K=�

r

space with respect to scheduling algorithms is illustrated in

Figure 6. The communication complexities are summarized in Table 1. The expressions in the

table include the e�ects of �nite sizes of the communication packets (bu�ers) B, and a start-up

time � for each such packet. The overhead and the transmission times are assumed additive.

Remarks:

� The same local memory dimension can be used for di�erent concurrent exchange sequences,

but memory locations must be distinct. Four memory locations are needed per sequence,

if the starting dimension is di�erent from the �rst in the cycle.

� The alignment is made in the �xed exchange dimension, and is controlled by the parity of

all processor dimensions in the shu�e, except the �xed exchange dimension. Hence, the

alignment is made on the local memory dimension in the shu�e, if the exchange sequence

11

-

K

j j j j j j j j j j j j j

0 5 10 15 20 25 30 35 40 45 50 55 60

6

�

r

�

�

�

�

0

5

10

15

20

�

�

�

�

�

�

�

�

�

�

�

�

Concurrent exchange

Concurrent exch. with pipel.

Pipelining

P

i

p

e

l.

Figure 6: The partitioning of the K=�

r

space.

Comm. model Time

one-port

comm.

�

r

K

2

t

c

+ �

r

d

K

2B

e�

n-port

comm.

8

>

<

>

:

(

K

2

+ (�

r

� 1)B)t

c

+ (d

K

2B

e+ �

r

� 1)� pipelining

(�

r

+ 3)(Bt

c

+ �) concurrent exchange

(

K

2

+ 2B)t

c

+ (d

K

2B

e+ 2)� conc. exch. with pipel.

Table 1: The communication complexity for a single mixed GSH.

starts in the �rst real dimension in the shu�e. Otherwise, the alignment is made on the

extra memory dimension used for the exchanges.

� The alignment and exchanges are controlled entirely by the dimensions in the shu�e.

� The local storage is partitioned into two blocks with respect to exchange schedules: one

for exchange sequences starting in a dimension other than the �rst real dimension, and

consisting of 2(�

r

�1) locations for �

r

odd, or consisting of 2(�

r

�2) locations for �

r

even,

and one block for exchange sequences starting in the �rst real dimension and consisting

of the remainder of the local storage. The �rst block is aligned on dimension v, and the

second on dimension �

0

.

4.1.2 Multiple GSH

In general, the index set J for a GSH can be factored into a number of mixed GSH, each for a

block of unique processor dimensions and one unique storage dimension, and one virtual GSH, as

illustrated in Figure 7. We refer to the mixed GSH's in the factored GSH as constituting GSH.

The number of such GSH is �. All constituting, mixed GSH can be performed concurrently.

For each location in local storage the exchange dimensions for di�erent constituting GSH can be

interleaved in any order. Only the order within each GSH is �xed. The techniques for scheduling

of exchanges described for a single mixed GSH can be applied for each constituting GSH. The

scheduling algorithms presented below are optimal within two element exchanges.

The set of exchanges de�ned by one dimension exchange for all constituting GSH consists

12

-

�

6

?

-

�

6

?

-

�

6

?

���

6

?

-

: : : : : :

j j j j j j j j

�

��1

r

�

��1

s

�

��2

r

�

��2

s

�

0

r

�

0

s

-

�

6

?

: : : : : :

j j j j j j j j

�

��1

r

�

��1

s

�

��2

r

�

��2

s

�

0

r

�

0

s

Figure 7: Factoring of a cycle into independent cycles.

of a number of independent 2-cycles. This permutation is equivalent to matrix transposition,

or bit-reversal. We refer to it as all-to-all personalized communication [6]. Each processor

holds a unique piece of data for every other processor. Any algorithm for all-to-all personalized

communication (AAPC) can be used repeatedly to accomplish the required permutation. If all

constituting GSH are of the same order, then the use of any AAPC algorithm is straightforward.

In [8] AAPC algorithms are presented that allow for a pipeline delay of � cycles between each

new AAPC application for � mixed GSH.

The di�erence between the AAPC based algorithms and the concurrent/pipelined algorithms

is in the scheduling of exchanges for the local storage, or in the ordering of the loops. This

di�erence results in a di�erence in the pipeline �lling time, which is slightly longer for the AAPC

based schedules. The alignment and realignment is the same for both types of algorithms.

Alignment and realignment

Let the constituting GSH be (�

j

�

j

r

�

j

�

j

r

�1

: : :�

j

1

j�

j

0

) for 0 � j < �, where �

j

r

is the real

order of the jth constituting GSH. Furthermore, let p

j

= �

j

�

j

r

�

j

�

j

r

�1

: : :�

j

1

and x

j

= �

j

�

j

r

�

�

j

�

j

r

�1

� : : :� �

j

1

� �

j

0

. Then, the alignment operation is the local storage reordering de�ned by

(p

��1

p

��2

: : : p

0

j�

��1

0

�

��2

0

: : :�

0

0

) ! (p

��1

p

��2

: : : p

0

jx

��1

x

��2

: : : x

0

). The realignment is the

exact same operation.

If an extra storage dimension v is used for the jth constituting GSH, then x

j

v

= �

j

�

j

r

�

�

j

�

j

r

�1

� : : :��

j

1

�v. Moreover, if �

j

0

is used for exchanges for some of the storage locations, and

v for others, then the same alignment can be performed on both local dimensions, (p

j

j�

j

0

v) !

(p

j

jx

j

x

j

v

). This alignment guarantees that for both type of exchanges the sending and receiving

processors use the same local storage address.

Lemma 3 The alignment for di�erent constituting GSH can be made on the same exchange

dimension v preserving the property that exchanges are always made between locations with the

same local address.

The lemma follows from the fact that the exchanges for each constituting GSH take place

within subcubes for which all other processor address bits are the same. However, by performing

the alignment for di�erent GSH on the same storage dimension the local addresses are not the

13

Time step

d

0

0; 1 0; 2 0; 3 0; 4 0; 5 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

M d

1

0; 1 0; 2 0; 3 0; 4 0; 5 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

d

2

0; 1 0; 2 0; 3 0; 4 0; 5 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

e d

3

0; 1 0; 2 0; 3 0; 4 0; 5 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

d

4

0; 1 0; 2 0; 3 0; 4 0; 5 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

m d

5

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

d

6

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

o d

7

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

d

8

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

r d

9

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

d

10

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

y d

11

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0; 1 0; 2 0; 3 0; 4 0; 5

Figure 8: The exchange sequences for J = f�

5

�

4

�

3

�

2

�

1

j�

0

g, J

0

= f�

0

5

�

0

4

�

0

3

�

0

2

�

0

1

j�

0

0

g, and

K = 24 using pipelining.

same in all subcubes.

Pairing of local memory locations

In the exchanges in any dimension only half of the local data is exchanged. For a single

GSH one local memory bit (v or �

0

) is used to control the exchange, and either all the local

data with the bit set or not set is exchanged. It is convenient to view storage locations in pairs,

where one location or the other in a pair is exchanged. When more than one local storage

dimension is used to control the exchanges, then the pairing of locations shall be made with

respect to all such dimensions, i.e., the pairing shall be made on v, �

0

0

, �

1

0

, : : : , and �

��1

0

. For

locations with a �rst exchange for each constituting GSH in its �rst processor dimension v need

not be included in the alignment and the pairing. The values of the local storage dimensions in

a pair are complements of each other. For instance, for three control dimensions the pairs are

(000; 111), (001; 110), (010; 101), and (011; 100). If there are additional local storage dimensions

the pairing is simply repeated as many times as necessary.

Pipelined Algorithms

Concurrent pipelined single GSH algorithms

The algorithm for a single mixed GSH can be generalized to multiple GSH. With n-port

communication and su�ciently many local data elements, the di�erent constituting GSH can be

initiated and performed concurrently. Figure 8 illustrates the case where all exchange sequences

start in the �rst processor dimension of each GSH. The number of element exchanges in sequence

is

K

2

+

�

r

�

�1, if all constituting GSH are of the same real order, and K � 2�

r

. If the constituting

GSH are of di�erent order, then the number of exchanges are

K

2

+max

j

�

j

r

�1, where (

P

��1

j=0

�

j

r

=

�

r

). If K � 2�

r

then the number of exchanges in sequence is d

K

2�

e + �

r

� 1, whether or not all

constituting GSH are of the same order. The local storage is partitioned into blocks of b

K

2�

c and

d

K

2�

e locations. The data in partition j, 0 � j < � is permuted according to constituting GSH

j, (j + 1) mod �; � � � ; (j � 1) mod �.

Figure 9 illustrates the case in which some exchange sequences start in a dimension other

than the �rst of any constituting GSH. The number of element exchanges in sequence is

K

2

+ 2,

if K � 2(�

r

+1). For K � 2(�

r

+1) the number of exchanges is �

r

+3. The algorithm does not

14

Time step

d

0

0

v; 5 v; 6 � 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5

M d

1

0

v; 5 0; 6 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5

d

0

1

v; 3 v; 4 v; 5 v; 6 � 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3

e d

1

1

v; 3 v; 4 v; 5 v; 6 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3

d

2

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

m d

3

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

d

0

0

4

v; 5

0

v; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

o d

1

0

4

v; 5

0

v; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 � 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

d

0

0

5

v; 3

0

v; 4

0

v; 5

0

v; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

r d

1

0

5

v; 3

0

v; 4

0

v; 5

0

v; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 � 0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

d

6

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6

y d

7

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6

d

8

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6

d

9

0

0

; 1

0

0

0

; 2

0

0

0

; 3

0

0

0

; 4

0

0

0

; 5

0

0

0

; 6

0

0; 1 0; 2 0; 3 0; 4 0; 5 0; 6

Figure 9: The exchange sequences for J = f�

6

�

5

�

4

�

3

�

2

�

1

j�

0

g, J

0

= f�

0

6

�

0

5

�

0

4

�

0

3

�

0

2

�

0

1

j�

0

0

g, and

K = 28.

require that all constituting GSH are of the same order.

Theorem 2 Any generalized shu�e of real order �

r

> 0 can be realized in at most

T =

8

>

>

>

<

>

>

>

:

d

K

2�

e+ �

r

� 1 max

i

�

i

r

� 4; K � 8�, or max

i

�

i

r

� 3; K � 2�

r

,

K

2

+max

i

�

i

r

� 1 K � 2�

r

, max

i

�

i

r

� 3

�

r

+ 3 max

i

�

i

r

� 4, 8� < K � 2(�

r

+ 1),

K

2

+ 2; K � 2(�

r

+ 1);max

i

�

i

r

> 3.

element exchanges in sequence with n-port communication. The minimum number of commu-

nication start-ups is �

r

for a block size of d

K

2�

e and �

r

+ 3 for a block size of d

K

2(�

r

+1)

e.

All-to-all personalized communication algorithms

Employing an AAPC algorithm with a delay of � exchanges between successive AAPCs on

di�erent dimensions [8] yields

K

2

+ �

r

� � exchanges in sequence, if all constituting GSH are of

the same order,

�

r

�

. As in previous algorithms some storage locations can start their exchange

sequences in dimensions other than the �rst of any constituting GSH, thereby reducing the

pipeline delay [9]. For the AAPC algorithms blocks of storage locations are scheduled together.

The block sizes depend upon the AAPC algorithm chosen.

T =

8

>

<

>

:

K

2

+ �

r

� � �

r

� 3�, or � � 4�;K � 8� (pipelining)

�

r

+ 3� � � 4�; 8� � K � 2(�

r

+ �) (concurrent exchange)

K

2

+ 2� �

r

� 4�;K � 2(�

r

+ �) (concurrent exchange with pipelining)

The use of AAPC algorithms for a succesion of AAPC's of di�erent orders is not entirely

straightforward. If the orders are non-increasing and the number of dimensions in one AAPC

does not divide the number of dimensions in the preceding AAPC, then a delay of up to one less

than the number of dimensions in the AAPC to be performed is introduced for some algorithms,

while other algorithms may require an even greater delay [9].

15

Algorithm Constituting GSH

one-port communication

�

r

K

2

t

c

+ �

r

d

K

2B

e�

n-port communication

same order

pipelined

AAPC

(d

K

2B

e+ �

r

� �)(Bt

c

+ �)

pipelined

GSH

�

(d

K

2�

e+ (�

r

� 1)B)t

c

+ (d

K

2�B

+ �

r

� 1)�; K � 2B�

r

(d

K

2

e+ (

�

r

�

� 1)B)t

c

+ (d

K

2B

e+

�

r

�

� 1)�; K � 2B�

r

concurrent

pipelined

GSH

8

>

>

>

<

>

>

>

:

(d

K

2�

e+ (�

r

� 1)B)t

c

+ (d

K

2�B

e+ �

r

� 1)�; �

r

� 4�;K � 8�B,

or �

r

� 3�;K � 2B�

r

(d

K

2

e+ (

�

r

�

� 1)B)t

c

+ (d

K

2B

e+

�

r

�

� 1)�; �

r

� 3�;K � 2B�

r

(�

r

+ 3)(Bt

c

+ �); 8�B < K � 2B(�

r

+ 1)

(

K

2

+ 2B)t

c

+ (d

K

2B

e+ 2)�; K � 2B(�

r

+ 1); �

r

> 3�

di�erent order

pipelined

GSH

�

d

K

2�

e+ �

r

� 1; K � 2�

r

K

2

+max

i

�

i

r

� 1; K � 2�

r

concurrent

pipelined

GSH

8

>

<

>

:

d

K

2�

e+ �

r

� 1; max

i

�

i

r

� 4;K � 8� or max

i

�

i

r

� 3;K � 2�

r

K

2

+max

i

�

i

r

� 1; max

i

�

i

r

� 3;K � 2�

r

�

r

+ 3; max

i

�

i

r

� 4, 8� < K � 2(�

r

+ 1)

K

2

+ 2; K � 2(�

r

+ 1);max

i

�

i

r

> 3

Table 2: The number of element transfer in sequence for concurrent/pipelined algorithms for

multiple mixed GSH.

Comparison of algorithms

The pipelined GSH algorithm is always preferable over the pipelined AAPC algorithm. Sim-

ilarly, the strategy to combine concurrent exchange sequences with pipelining always yields a

better result for the algorithms completing each constituting GSH for each pair of data elements

before initiating another constituting GSH, than the same strategy applied to AAPC based al-

gorithms. The pipeline �lling time is longer for the latter algorithms. The complexity estimates

are summarized in Table 2. For all constituting GSH of the same order we have included the

e�ects of limited communication bu�ers and a start-up overhead for each communication action.

4.2 Real shu�e algorithms

A mixed GSH has at least one local storage dimension as part of the permutation. In a real GSH

no local storage dimension is part of the permutation. But, if there are at least two data elements

per processor, then using an algorithm with the storage dimension as a �xed exchange dimen-

sion allows each exchange to involve only one processor dimension, as in the algorithms above

for mixed GSH. The real shu�e (�

�

r

�1

�

�

r

�2

: : :�

0

jv)! (�

�

r

�2

�

�

r

�3

: : :�

0

�

�

r

�1

jv) performed

through a sequence of exchanges between v and a processor dimension requires a minimum of

�

r

+ 1 exchanges [15], Algorithm A1, Figure 10. The number of element exchanges in sequence

is (�

r

+ 1)

K

2

for one-port communication. For n-port communication pipelining or concurrent

exchange sequences can be used. Pipelining requires

K

2

+ max(

K

2

; �

r

) element exchanges in

sequence, whereas the use of up to �

r

concurrent exchange sequences leads to (�

r

+ 1)d

K

2�

r

e

16

maddr paddr

000 001 010 011 100 101 110 111

0 0j000 0j001 0j010 0j011 0j100 0j101 0j110 0j111

1 1j000 1j001 1j010 1j011 1j100 1j101 1j110 1j111

+

0 0j000 1j000 0j010 1j010 0j100 1j100 0j110 1j110

1 0j001 1j001 0j011 1j011 0j101 1j101 0j111 1j111

+

0 0j000 1j000 0j001 1j001 0j100 1j100 0j101 1j101

1 0j010 1j010 0j011 1j011 0j110 1j110 0j111 1j111

+

0 0j000 1j000 0j001 1j001 0j010 1j010 0j011 1j011

1 0j100 1j100 0j101 1j101 0j110 1j110 0j111 1j111

+

0 0j000 0j100 0j001 0j101 0j010 0j110 0j011 0j111

1 1j000 1j100 1j001 1j101 1j010 1j110 1j011 1j111

Figure 10: A shu�e permutation of order �

r

using �

r

+ 1 communications.

element exchanges in sequence. The pipelined algorithm always requires a larger number of

element transfers in sequence, and more communication start-ups, than the algorithm based on

concurrent exchange sequences.

The algorithm outlined above using an extra local memory dimension for all exchanges is

non-optimal by one exchange. For architectures with a high start-up time relative to the data

transfer time, it may be desirable to �nd an algorithm with the optimal number of start-ups. In

algorithm A1 half of the data is at its �nal destination after �

r

exchanges. If the initial content

in location zero in processors four through seven, and in location one in processors zero through

three did not matter, then the permutation would be completed in �

r

steps. In general, at the

expense of doubling the memory requirements, and the data transfer time, the minimal number

of communications start-ups can be achieved. The �rst step of the modi�ed algorithm can be

accomplished through the exchange

if �

�

r

�1

6= �

0

then (�

�

r

�1

�

�

r

�2

: : :�

0

j0)! (�

�

r

�1

�

�

r

�2

: : :�

0

j1)

The result is (�

�

r

�1

�

�

r

�2

: : :�

0

j�

0

); �

0

= �

�

r

�1

with the other processors being empty. During

the communication in dimensions �

1

through �

�

r

�2

subcubes (0�

�

r

�2

: : :�

1

1) and (1�

�

r

�2

: : :�

1

0)

are empty. In the last communication data is sent from subcube (0�

�

r

�2

: : :�

1

0) to subcube

(1�

�

r

�2

: : :�

1

0), and from subcube (1�

�

r

�2

: : :�

1

1) to subcube (0�

�

r

�2

: : :�

1

1). K elements

are sent in the �rst and last communication, and exchanged in the �

r

�2 other communications.

This is algorithm A2.

The case with �

r

= 2 represents a special case for algorithm A2. Each channel is only used

in one direction. Splitting the data set K into two parts allows both minimum length paths to

be used. For two equal parts the complexity is (

K

2

+B)t

c

+ (d

K

2B

e+1)� . This is algorithm A2

2

.

With an insigni�cant communication start-up, such as on the Connection Machine, the optimal

value of B is one, and only one element exchange in excess of the lower bound is required. The

result generalizes to the case where the real shu�e consists of a number of independent cycles

17

Comm. Alg. B

opt

Mem Communication complexity t

c

factor/l b � factor/l b

one-port A1

K

2

K (�

r

+ 1)

K

2

t

c

+ (�

r

+ 1)d

K

2B

e� (1, 1.5] (1, 1.5]

comm. A2 K 2K �

r

Kt

c

+ �

r

d

K

B

e� 2 1

n-port A1 d

K

2�

r

e K (�

r

+ 1)d

K

2�

r

et

c

+ (�

r

+ 1)d

K

2�

r

B

e� (1, 1.5] (1; 1:5]

comm. A2 d

K

�

r

e 2K Kt

c

+ �

r

d

K

�

r

B

e� 2 1

A2

2

q

K�

2t

c

K + B (

K

2

+B)t

c

+ (d

K

2B

e + 1)� 1 +

2B

K

1

Table 3: The memory requirements and communication complexities for a real GSH of order �

r

.

of length two.

The complexity expressions are summarized in Table 3. The break-even point between

algorithms A1 and A2 for unbounded bu�er sizes B and �

r

> 2 is � = (�

r

� 1)

K

2

t

c

for one-port

communication, and � = (1�

1

�

r

)

K

2

t

c

for n-port communication.

5 Experiments

We have implemented the one-port version of algorithm A1 for real GSH on the Intel iPSC/1,

and algorithm A2

2

on the Connection Machine (in the context of a bit-reversal routine). On

the Intel iPSC/1 we also performed shu�e permutations by using the routing logic, by using

all-to-all personalized communication twice, and by an algorithm that requires precisely �

r

start-

ups for a real shu�e of order �

r

(algorithm A1 in [5]). Algorithm A2 presented above should

behave similarly for small values of K, and be superior for large values of K, but was not known

at the time of the implementation. For a real, sub-cube, shu�e permutation with a message

size less than a few hundred bytes, algorithm A2 is the fastest, but for larger message sizes

algorithm A1 is preferable, Figure 11. The best time of either algorithm A1 or A2 is 5 { 10

times less than that of the router. All one-port algorithms have a complexity that is linear in

the number of dimensions for shu�e permutations with a real order equal to the number of cube

dimensions. The deviation from the linear dependence exhibited in Figure 11 is due to a hybrid

implementation, that optimizes the sum of start-up time and the time for local data movement

[4].

For the Connection Machine implementation of algorithm A2

2

the measured time complexity

is 270 + (3:2 + 3:9�)K �sec, where � is the number of 2-cycles in the real GSH.

6 Summary and conclusions

The algorithms for mixed shu�e permutations are optimal within two element exchanges for

concurrent communication on all channels of every processor. The number of communication

start-ups for an unlimited bu�er size is either exactly optimal, or requires three excess start-ups

18

-

K

Bytes

j j j j

10

1

10

2

10

3

10

4

6

Time

msec

�

�

�

10

1

10

2

10

3

� AAPC

� router

t

A1

d

A2

t t t t

t

t

t

t

t

t

t

d

d

d

d

d

d

d

d

d

d

d

d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 11: The measured shu�e times as a function of message lengths on an iPSC/1 5-cube.

depending upon the size of the local data set relative to the number of processor dimensions

in the generalized shu�e, and the number of blocks of contiguous processor dimensions. The

communication complexity for n-port communication is summarized in Table 2, page 16. For

one-port communication the minimum number of start-ups is �

r

, and the minimum number

of element transfers in sequence is �

r

K

2

. The mixed shu�e algorithms are also valid when

bit-complementation is required by appropriately modifying which data in a pair is exchanged.

We also show that by performing a local alignment before and after the data exchanges for

mixed GSH, all data exchanged have the same relative address.

The communication complexities of a real GSH of order �

r

are summarized in Table 3,

page 18. The second and last columns contain the values of the data transfer times and start-

up times relative to the respective lower bound. With an unbounded bu�er size the number

of start-ups is either exactly optimal, or suboptimal by one start-up. The number of element

transfers in sequence exceeds the lower bound by a factor of

1

�

r

for the best algorithm, except

if �

r

= 2, or there are a number of 2-cycles. Then, only one element transfer in excess of the

lower bound is required. This result is not valid if bit-complementation is required.

Performing a GSH through all-to-all personalized communication [6, 14] is always inferior to

the pipelined/concurrent algorithms presented here. Likewise, performing the permutation by

recursively applying an optimal matrix transposition algorithm [4] yields higher complexity.

Finally we note that the control is identical for all processors, and can easily be distributed.

Acknowledgement

The authors would like to thank the anonymous referees for several valuable suggestions that

helped improve the manuscript, and for bringing important references to our attention.

19

The research reported here was in part supported by the O�ce of Naval Research un-

der Contract No. N00014-86-K-0310, by the AFOSR under contract AFOSR-89-0382 and by

NSF/DARPA under contract CCR-8908285. The Connection Machine implementation was

made by Alan Edelman, Steve Heller and Mark Bromley, and is part of the CM System Soft-

ware.

References

[1] Peter M. Flanders. A uni�ed approach to a class of data movements on an array processor.

IEEE Trans. Computers, 31(9):809{819, September 1982.

[2] Ching-Tien Ho and S. Lennart Johnsson. Optimal algorithms for stable dimension permu-

tations on Boolean cubes. In The Third Conference on Hypercube Concurrent Computers

and Applications, pages 725{736. ACM, 1988.

[3] S. Lennart Johnsson. Communication e�cient basic linear algebra computations on hyper-

cube architectures. J. Parallel Distributed Computing, 4(2):133{172, April 1987.

[4] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n-cube con�g-

ured ensemble architectures. SIAM J. Matrix Anal. Appl., 9(3):419{454, July 1988.

[5] S. Lennart Johnsson and Ching-Tien Ho. Shu�e permutations on Boolean cubes. Technical

Report YALEU/DCS/RR-653, Department of Computer Science, Yale University, October

1988.

[6] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting and

personalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249{1268,

September 1989.

[7] S. Lennart Johnsson and Ching-Tien Ho. The complexity of reshaping arrays on Boolean

cubes. In The Fifth Distributed Memory Computing Conference, pages 370{377. IEEE

Computer Society, April 1990.

[8] S. Lennart Johnsson and Ching-Tien Ho. Maximizing channel utilization for all-to-all per-

sonalized communication on Boolean cubes. In The Sixth Distributed Memory Computing

Conference, pages 299{304. IEEE Computer Society Press, 1991.

[9] S. Lennart Johnsson and Ching-Tien Ho. Optimal communication channel utilization for

matrix transposition and related permutations on Boolean cubes. Discrete Applied Mathe-

matics, 1992.

[10] David Nassimi and Sartaj Sahni. An optimal routing algorithm for mesh-connected parallel

computers. JACM, 27(1):6{29, January 1980.

[11] David Nassimi and Sartaj Sahni. Optimal BPC permutations on a cube connected SIMD

computer. IEEE Trans. Computers, C-31(4):338{341, April 1982.

[12] Yousef Saad and Martin H. Schultz. Topological properties of hypercubes. Technical Report

YALEU/DCS/RR-389, Dept. of Computer Science, Yale Univ., New Haven, CT, June 1985.

20

[13] Quentin F. Stout and Bruce Wagar. Intensive hypercube communication I: prearranged

communication in link-bound machines. Technical Report CRL-TR-9-87, Computing Re-

search Lab., Univ. of Michigan, Ann Arbor, MI, 1987.

[14] Quentin F. Stout and Bruce Wagar. Passing messages in link-bound hypercubes. In

Michael T. Heath, editor, Hypercube Multiprocessors 1987. Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, 1987.

[15] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197{210, 1987.

21

