Lipoprotein Activators Stimulate Escherichia coli Penicillin-Binding Proteins by Different Mechanisms

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.1021/ja410813j

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23597723

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Lipoprotein activators stimulate *Escherichia coli* penicillin-binding proteins by different mechanisms

Tania J. Lupoli, Matthew D. Lebar, Monica Markovski, Thomas Bernhardt, Daniel Kahne and Suzanne Walker

Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Supporting Information Placeholder

ABSTRACT: In *Escherichia coli*, the bifunctional penicillin-binding proteins (PBPs), PBP1A and PBP1B, play critical roles in the final stage of peptidoglycan (PG) biosynthesis. These synthetic enzymes each possess a PG glycosyltransferase (PGT) domain and a transpeptidase (TP) domain. Recent genetic experiments have shown that PBP1A and PBP1B each require an outer membrane lipoprotein, LpoA and LpoB respectively, to function properly in *vivo*. Here, we use complementary assays to show that LpoA and LpoB each increase the PGT and TP activities of their cognate PBPs, albeit by different mechanisms. LpoA directly increases the rate of the PBP1A TP reaction, which also results in enhanced PGT activity; in contrast, LpoB directly affects PGT domain activity, resulting in enhanced TP activity. These studies demonstrate bidirectional coupling of PGT and TP domain function. Additionally, the transpeptidation assay described here can be applied to study other activators or inhibitors of the TP domain of PBPs, which are validated drug targets.

Peptidoglycan (PG) is an essential crosslinked polymer that surrounds bacterial cells and prevents lysis due to high internal osmotic pressures. Since PG is required for survival and is unique to bacteria, it is a target for antibiotics. Understanding PG biosynthesis is therefore crucial for developing strategies to overcome antibiotic resistance. PG is synthesized from a membrane-anchored disaccharide-peptide substrate, Lipid II, by bifunctional penicillin-binding proteins (PBPs) that contain two domains: a PG glycosyltransferase (PGT) domain that assembles the glycan polymer chains and a transpeptidase (TP) domain that forms peptide crosslinks between these chains (Figure 1). In *Escherichia coli*, two bifunctional PBPs, PBP1A and PBP1B, play important roles in PG synthesis. Genetic studies have established that each PBP requires an outer membrane lipoprotein to function in cells.

These lipoprotein cofactors, LpoA and LpoB, are essential for the *in vivo* function of the bifunctional PBPs, but their specific functions remain unclear. Here we characterize the effects of LpoA and LpoB on the TP and PGT activities of PBP1A and PBP1B. We show that LpoA and LpoB stimulate the activity of their cognate PBPs by affecting different domains. Surprisingly, activation of one domain leads to enhanced activity of the other domain, demonstrating that the activities of the domains are coupled. Disruption of domain coupling or activation provides a possible alternative strategy to disable essential cellular PG synthesis machinery.

Assays to quantify PGT activity have previously been established, but monitoring TP activity is more difficult. TP domains can catalyze several different reactions.
actions, which proceed through a common acyl-enzyme intermediate.

![Diagram](image)

Figure 2. Lpo proteins enhance the TP activities of their cognate PBPs. (a) Reaction scheme showing attack on a PG peptide side chain by a TP domain's catalytic serine to form an acyl enzyme intermediate followed by addition of D-amino acid, producing a modified peptide side chain. (b) Rate analysis of D-Ala incorporation into PG polymers produced by PBP1A in the presence and absence of Lpo proteins (200 nM each). (c) Rate analysis of D-Ala incorporation into PG polymers produced by PBP1B +/− LpoA or LpoB (50 nM each). For all experiments, 40 μM Lys(Ac)-Lipid II (1) and 40 μM [14C]-D-Ala were used. Error bars indicate the standard deviation for duplicate experiments.

Deacylation can occur via attack by water to release a tetrapeptide or through a reaction, hydrolysis product containing fragment A, the tetrapeptide-containing fragment B, and the crosslinked muropeptide fragment C (Figure 3b, trace i). When LpoA was added to the reaction, hydrolysis product B increased slightly and a small amount of hydrolyzed cross-linked product was also observed, consistent with increased TP activity (Figure 4c). In order to detect changes in amino acid incorporation as well as cross-linking, deuterated D-Ala was added to PBP1A reactions with and without LpoA (compare traces ii and iii). Upon addition of LpoA, we observed a dramatic increase in transpeptidation products, comprising crosslinked peak A', deuterated pentapeptide peak B', and crosslinked deuterated peak C' (Figure 3c). Consistent with previous work, the total cross-linked material increased from 19% to 29% of detected products. These studies show that LpoA substan-
tially increases the transpeptidation activity of PBP1A, whereas analogous experiments with PBP1B show that LpoB has a much smaller effect on TP activity (Figure S5).

Figure 3. LpoA increases transpeptidation during PG synthesis by PBP1A. (a) Schematic of method for analyzing PG synthesis by PBPs. (b) LC/MS extracted chromatograms of PBP1A (400 nM) and m-DAP Lipid II (20 µM) reactions (t = 15 min) produce A (representing unmodified peptide side chain), B (representing hydrolyzed peptide), and C (representing crosslinked peptides). Reactions containing D-Ala-Δ (60 µM) result in deuterated peaks, pentapeptide A' and crosslinked C' (ii). Upon addition of LpoA (400 nM), A' and C' increase in intensity (iii). (c) Quantification of percent transpeptidation and crosslinking. % transpeptidation = (A'+C+C')/(A+A'+C+C'); % cross-links = (C+C')/(A+A'+C+C').

We next examined PGT activity in the presence of the Lpo proteins under the same conditions used to monitor TP activity. PBP1A and PBP1B were incubated with a 1:1 mixture of [14C]-GlcNAc-labeled Lys(Ac) Lipid II, and unlabeled D-Ala in the presence and absence of their cognate lipoproteins, and the reactions were analyzed by paper chromatography to separate polymer from unreacted starting material. LpoA increased the rate of PBP1A-catalyzed glycan polymer synthesis approximately 1.5-fold compared to reactions lacking LpoA (Figure 4a). This effect was not due to the added D-Ala because reactions lacking D-Ala showed a similar increase in PGT activity in the presence of LpoA (Figure S6). To determine whether the enhanced PGT activity was dependent on TP activity, we monitored the reaction in the presence of penG, which covalently inactivates the TP domain. As shown in Figure 4b, addition of penG obliterated the rate enhancement due to LpoA. Similar experiments carried out with PBP1B showed that LpoB also increased the rate of glycan polymer synthesis by ~1.5 fold. However, inactivation of the TP domain with penG did not attenuate this rate enhancement (compare Figures 4c and 4d) and may even have increased it.

LpoA and LpoB were recently identified as essential cofactors that “activate” E. coli PBP1A and PBP1B so that these enzymes can perform the essential function of making crosslinked PG. It was proposed that each lipoprotein stimulates the transpeptidase activity of its cognate PBP, thereby facilitating attachment of new PG to the sacculus. In this paper we show that the lipoproteins have very different effects on their cognate PBPs. Both Lpo proteins increase the rate of glycan polymerization, but in the case of LpoA the rate enhancement depends on TP activity whereas in the case of LpoB it does not. Since LpoA enhances D-amino acid incorporation (Figure 2) as well as crosslinking (Figure 3), its likely function is to promote formation of the covalent intermediate, i.e.,...
substrate acylation (Figure 2a), rather than to bring substrates in close proximity. LpoB’s primary effect appears to be on PGT domain activity because its addition to PBP1B reactions not only increases the rate of polymerization, it also substantially reduces the average length of the glycan strands that are made.

Hence, each Lpo protein has a dominant effect on a different domain: LpoA on the TP domain and LpoB on the PGT domain. While these studies clearly show that each Lpo protein primarily affects a different domain of its cognate PBP, the kinetic effects are less than ten-fold in vitro, which amounts to less than 1 kcal/mole on the energetic profiles of the enzymes. Nevertheless, the phenotypic consequences are significant because each Lpo protein is essential for the biological function of its cognate PBP. In the case of LpoB, the dramatic effect on glycan length may affect resulting PG structure. We note that in E. coli, PBP1B is believed to be responsible for making septal PG whereas PBP1A is thought to make PG during cell elongation.

It would not be surprising if the differences in PBP activity caused by the differences in PBP activity in a manner that depends on having a functional TP domain. Therefore, we suggest that the active states of the PGT and TP domains of bifunctional PBPs are conformationally coupled in a bidirectional fashion. Efforts to elucidate the molecular basis for the cooperative functioning of the two enzymatic activities of bifunctional PBPs are underway.

ASSOCIATED CONTENT
Supporting Information. Experimental procedures, protein purification protocols, rate analysis of PBP reactions, and LC/MS and SDS-PAGE analysis of PG polymers. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
kahne@chemistry.harvard.edu

suzanne_walker@hms.harvard.edu

ACKNOWLEDGMENT

This research was supported by the National Institutes of Health (GM76710; GM066174; AI083365; GM103056) and NERCE (AI057159).

REFERENCES

(12) These observations are consistent with previous in vitro work with *E. coli* PBP1B (see ref. 5p), *E. coli* PBP1A (see ref. 5q), and *Streptococcus pneumonia* PBP1b (see ref. 5o), which suggest that cross-linking and glycosyltransfer reactions occur simultaneously.
(14) (M+2)/2 ions were extracted: A: 507.2; A’: 508.7; B: 471.7; C: 968.9; C’: 970.4. A and A’, as well as C and C’, elute at identical retention times and are offset for clarity.
(15) The effect of LpoA on the PGT activity of PBP1A is only observed at high Lipid II concentration, but not at low concentrations of Lipid II (see Figure S7 and ref. 4a).