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Abstract

This article presents a new method to compute matrices from numerical simula-

tions based on the ideas of sparse sampling and compressed sensing. The method is

useful for problems where the determination of the entries of a matrix constitutes the

computational bottleneck. We apply this new method to an important problem in

computational chemistry: the determination of molecular vibrations from electronic

structure calculations, where our results show that the overall scaling of the procedure

can be improved in some cases. Moreover, our method provides a general framework

for bootstrapping cheap low-accuracy calculations in order to reduce the required num-

ber of expensive high-accuracy calculations, resulting in a significant 3⇥ speed-up in

actual calculations.
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Introduction

Matrices are one of the most fundamental objects in the mathematical description of nature,

and as such they are ubiquitous in every area of science. For example, they arise naturally

in linear response theory as the first term in a multidimensional Taylor series, encoding the

response of each component of the system to each component of the stimulus. Hence, in

many scientific applications, matrices contain the essential information about the system

being studied.

Despite their ubiquity, the calculation of matrices often requires considerable computa-

tional e↵ort. Returning to the linear response theory example, it might be necessary to

individually calculate the response of every component of the system to every component of

the stimulus and, depending on the area of application, each individual computation may

itself be quite expensive. The overall expense stems from the fact that evaluating a matrix

of dimension N ⇥ M requires, in principle, the individual evaluation of N ⇥ M elements.

But this does not always have to be the case.

For example, if we know a priori the eigenvectors of a N ⇥ N diagonalizable matrix,

then we can obtain the full matrix by only calculating the N diagonal elements. Similarly, a

sparse matrix, which contains many zero elements, can be evaluated by calculating only the

non-zero elements, if we know in advance where such elements are located. In this article,

we present a general approach that can produce a considerable reduction in the cost of

constructing a matrix in many scientific applications by substantially reducing the number

of elements that need to be calculated.

The key numerical procedure of our approach is a method to cheaply recover sparse

matrices with a cost that is essentially proportional to the number of non-zero elements.

The matrix reconstruction procedure is based on the increasingly popular compressed sensing

approach,1–4 a state-of-the-art signal processing technique developed to minimize the amount

of data that needs to be measured to reconstruct a sparse signal.

Although the theory of compressed sensing is extensive and well-developed, the use
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of compressed sensing and sparse sampling methods in scientific development have been

dominated by experimental applications, including multidimensional nuclear magnetic res-

onance,5,6 super-resolution microscopy,7 and other applications in spectroscopy and be-

yond.8–15 However compressed sensing is also becoming a tool for computational applica-

tions.16–22 In particular, in previous work we have shown that compressed sensing can also

be used to reduce the amount of computation in numerical simulations.16

In this article, we apply compressed sensing to the problem of computing matrices. This

method has two key properties. First, the cost of the procedure is quasi-linear with the size of

the number of non-zero elements in the matrix, without the need to know a priori the location

of the non-zero elements. Second, the reconstruction is exact. Furthermore, the utility of

the method extends beyond the computation of a priori sparse matrices. In particular, the

method suggests a new computing paradigm in which one develops methods to find a basis

in which the matrix is known or suspected to be sparse, based on the characteristics and

prior knowledge of the matrix, and then afterwards attempts to recover the matrix at lower

cost.

To demonstrate the power of our approach, we apply these ideas to an important prob-

lem in quantum chemistry: the determination of the vibrational modes of molecules from

electronic structure methods. These methods require the calculation of the matrix of the

second derivatives of the energy with respect to the nuclear displacements, known as the

force-constant or Hessian matrix. This matrix is routinely obtained in numerical simulations

by chemists and physicists, but it is relatively expensive to compute when accurate quantum

mechanical methods are used.

The search for more e�cient methods of computing Hessian matrices has a long history.

One of the earliest advances was the development of theoretical methods to compute the

derivatives of the matrix analytically, rather than numerically, first in one of the simplest

quantum mechanical methods known as Hartree-Fock theory,23,24 then in more sophisticated

higher-accuracy correlated methods,25–27 and later in modern density functional theory.28
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These analytical derivative techniques have been further optimized by systematically ex-

ploiting molecular symmetries29 and by organizing calculations more e�ciently by working

directly in the so-called atomic orbital basis.30,31 More recent developments have applied

Davidson methods to compute only those vibrational modes relevant to searching for the

transition state in a chemical reaction while sidestepping the computation of a full Hessian

matrix.32,33 Finally, another research frontier involves developing methods that scale favor-

ably with system size for computing energies34 and response properties such as molecular

vibrations,35,36 with the ultimate goal of achieving practical techniques that exhibit linear

scaling.

Our approach exploits the sparsity of the Hessian matrix and and cheap auxiliary cal-

culations to further improve the e�ciency of computing the vibrational modes of molecules;

moreover, our approach is compatible with and complementary to some of the aforementioned

techniques. At the same time, our method provides a general framework for bootstrapping

cheap low-accuracy calculations to reduce the required number of expensive high-accuracy

calculations, something which previously was not possible to do in general.

We begin by discussing how compressed sensing makes it practical to take a new approach

for the calculation of matrices based on finding strategies to make the matrix sparse. Next,

we introduce the mathematical foundations of the method of compressed sensing and apply

them to the problem of sparse matrix reconstruction. This is the numerical tool that forms

the foundation of our approach. Finally, we illustrate these new ideas by applying them to

the problem of obtaining molecular vibrations from quantum mechanical simulations.

Finding a sparse description of the problem

The first step in our approach is to find a representation for the problem where the matrix

to be calculated is expected to be sparse. In general, finding this sparsifying basis is specific

to each problem and ranges from trivial to quite complex; it has to do with the knowledge
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we have about the problem or what we expect about its solution.

Leveraging additional information about a problem is an essential concept in compressed

sensing, but it is also a concept that is routinely exploited in numerical simulations. For

example, in quantum chemistry it is customary to represent the orbitals of a molecule in

a basis formed by the orbitals of the atoms in the molecule,37 which allows for an e�cient

and compact representation and a controlled discretization error. This choice comes from

the notion that the electronic structure of the molecule is roughly described by “patching

together” the electronic structure of the constituent atoms.

An ideal basis in which to reconstruct a matrix is the basis of its eigenvectors, or eigen-

basis, as this basis only requires the evaluation of the diagonal elements to obtain the entire

matrix. Of course, finding the eigenbasis requires knowing the matrix in the first place, so

reconstructing a matrix in its eigenbasis is not practically useful. However, in many cases

it is possible to obtain reasonable approximations to the eigenvectors (an idea which also

forms the basis of perturbation theory in quantum mechanics). The approximate eigenbasis

probably constitutes a good sparsifying basis for many problems, as we expect the matrix

to be diagonally dominant, with a large fraction of the o↵-diagonal elements equal to zero

or at least small.

Since the determination of an approximate eigenbasis depends on the specific problem

at hand, a general prescription is di�cult to give. Nevertheless, a few general ideas could

work in many situations. For example, in iterative or propagative simulations, results from

previous iterations or steps could be used to generate a guess for the next step. Alternatively,

cheap low-accuracy methods can be used to generate a guess for an approximate eigenbasis.

In this case, the procedure we propose provides a framework for bootstrapping the results

of a low-cost calculation in order to reduce the required number of costly high-accuracy

calculations. This last strategy is the one we apply to the case of molecular vibrations.

What makes looking for sparsifying basis attractive, even at some computational cost

and code-complexity overhead, are the properties of the recovery method. First, the cost of
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recovering the matrix is roughly proportional to its sparsity. Second, the reconstruction of

the matrix is always exact up to a desired precision; even if the sparsifying basis is not a

good one, we eventually converge to the correct result. The penalty for a bad sparsifying

basis is additional computation, which in the worst case makes the calculation as costly as

if compressed sensing were not used at all. This feature implies that the method will almost

certainly o↵er some performance gain.

There is one important qualification to this gain. For some matrices, there is a preferred

basis in which the matrix is cheaper to compute, and the extra cost of computing its elements

in a di↵erent basis might o↵set the reduction in cost o↵ered by compressed sensing.

Compressed sensing for sparse matrices

Once a sparse representation for the matrix is known, the numerical core of our method

for the fast computation of matrices is the application of compressed sensing to calculate

sparse matrices without knowing a priori where the non-zero elements are located. Related

work has been presented in the field of compressive principal component pursuit,38–41 which

focuses on reconstructing matrices that are the sum of a low-rank component and a sparse

component. Our work instead outlines a general procedure for reconstructing any sparse

matrix by measuring it in a di↵erent basis.

Suppose we wish to recover a N ⇥ N matrix A known to be sparse in a particular or-

thonormal basis { i} (for simplicity we restrict ourselves to square matrices and orthonormal

bases). Without any prior knowledge of where the S non-zero elements of A are located, it

might appear that we need to calculate all N2 elements, but this is not the case.

In a di↵erent orthonormal basis {�i}, the matrix A has a second representation B given

by

B = PAP T , (1)

where P is the orthogonal change-of-basis matrix from the basis { i} to the basis {�i}. Note
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that in general B is not sparse.

If we regard A and B as N2-element vectors, it is easy to see that the change-of-basis

transformation from A to B given by eq. 1 is linear. This fact enables us to use the machinery

of compressed sensing to reconstruct the full matrix A by measuring only some of the entries

of B.

For a fully general matrix A, we would indeed need to measure all the entries of B so that

A could be recovered by inverting the linear system in eq. 1. However, because the matrix

A is sparse, compressed sensing lets us to do better. The idea is to measure only some of

the entries of B, which means that eq. 1 is now underdetermined and admits many possible

solutions for A. From these many solutions for A, we simply select the sparsest one; it has

been proven in general1–4 that this can be done in a highly computationally e�cient way by

minimizing the sum of the absolute values of the entries of A. The key insight of compressed

sensing is that, as more entries of B are measured, the sparsest matrix A which satisfies the

underdetermined system converges to the true solution of the full system. Moreover, this

convergence typically happens long before the matrix B has been fully sampled, particularly

if the true matrix A is quite sparse.

The compressed sensing reconstruction is done by solving the so-called basis pursuit (BP)

problem,4,42

min
A

||A||1 subject to (PAP T )ij = Bij 8 i, j 2 W , (2)

where the 1-norm is considered as a vector norm (||A||1 =
P

i,j |Aij|), the change-of-basis

matrix P is known, and W is a set of randomly measured entries in matrix B which are

known. We assume that we have some method of computing the entries of B, but that the

method is expensive, and we would therefore like recover A while computing as few of them

as possible.

The size of the set W , a number that we call M , is the number of matrix elements of B

that are sampled. M determines the quality of the reconstruction of A. From compressed

sensing theory we can find a lower bound for M as a function of the sparsity of A and the
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Sparse matrix A to recover Undersample matrix B

Incoherent basis
B = PAPT

Apply
compressed

sensing

Figure 1: General scheme for the recovery of a sparse matrix A via compressed sensing.
Rather than sampling A directly, the key is to sample the matrix B which corresponds to A
expressed in an di↵erent (known) basis. Recovery of A from the undersampled entries of B
proceeds via compressed sensing by solving eq. 2.

change-of-basis transformation.

One important requirement for compressed sensing is that the sparse basis { i} for A

and the measurement basis {�i} for B should be incoherent, meaning that the maximum

overlap between any vector in { i} and any vector in {�i}

µ =
p
N max

i,j
h i|�ji (3)

should be as small as possible (in general µ ranges from 1 to
p
N). Intuitively, this inco-

herence condition means that the change-of-basis matrix P should thoroughly scramble the

entries of A to generate B.

It can be proven3 that the number of entries of B which must be measured in order to

fully recover A by solving the BP problem in eq. 2 scales as

M / µ2S logN2 . (4)

This scaling equation encapsulates the important aspect of compressed sensing: if a proper

measurement basis is chosen, the number of entries which must be measured scales linearly
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with the sparsity of the matrix and only depends weakly on the full size of the matrix.

For the remainder of this paper, we always choose our measurement basis vectors to be the

discrete cosine transform (DCT) of the sparse basis vectors, for which the parameter µ is

equal to
p
2. The DCT is a common transformation chosen for compressed sensing because

it is easy to implement, with fast and readily-available algorithms for its computation, and

because it guarantees that the sparse basis and the measurement basis are highly incoherent.

Intuitively, this ensures that each element from the measurement matrix B contains as much

information as possible about the elements of the sparse matrix A. A small value of µ such

as
p
2 cuts down on the number of entries of B which must be measured in order to fully

recover the sparse matrix A. Of course, our method is independent of this choice and could

work with other basis transformations as well.

In order to study the numerical properties of the reconstruction method we performed

a series of numerical experiments. We generate 100⇥ 100 matrices of varying sparsity with

random values drawn uniformly from the interval [�1, 1] and placed in random locations in

the matrix. Matrix elements were then sampled in the DCT measurement basis, and an

attempt was made to recover the original sparse matrix by solving the basis pursuit problem

in eq. 2.

Fig. 2 illustrates the percent of matrix elements had to be sampled for accurate recovery

of the sparse matrix compared with other recovery approaches. If no prior knowledge of

a matrix is used for its recovery, then one simply measures each entry; this is the current

paradigm in many scientific applications. If one knows exactly where the non-zeros in a sparse

matrix are located, one can simply measure those elements. Compressed sensing interpolates

between these two extremes: it provides a method for recovering a sparse matrix when the

locations of the non-zeros are not known in advance. Although this lack of knowledge comes

with a cost, the recovery is still considerably cheaper than measuring the entire matrix.
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Figure 2: Percent of entries that must be sampled for accurate recovery of a matrix as a
function of sparsity. Comparison between compressed sensing and two limiting cases: “no
prior knowledge” of sparsity and the “perfect oracle” who reveals where all non-zero entries
are located. Each point on the compressed sensing curve is an average of ten di↵erent
randomizations. The accuracy criterion is a relative error in the Frobenius norm smaller
than 10�7.

Application: molecular vibrations

Calculating the vibrations of a molecule, both the frequencies and normal modes, is one of

the most ubiquitous tasks in computational chemistry.43 Integrated into nearly all compu-

tational chemistry packages, including the Q-Chem package used for this study,44 molecular

vibrations are computed by theoretical and experimental chemists alike. Chemists routinely

optimize molecular geometries to find minimal energy conformations; computing and con-

firming the positivity of all vibrational frequencies is the standard method of assuring that

a local minimum has been found. Another common task is to find the transition state for

a proposed reaction: here it is also necessary to compute the vibrations to find one mode

with an imaginary frequency, confirming the existence of a local maximum along the reaction

coordinate.45 Despite the centrality of molecular vibrations in computational chemistry, it

remains one of the most expensive computations routinely performed by chemists.

The core of the technique lies in calculating the matrix of the mass-weighted second
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derivatives of the energy with respect to the atomic positions

HAi,Bj =
1p

MAMB

@2E(~R1, . . . , ~RN)

@RA
i @R

B
j

(5)

where E(~R1, . . . , ~RN) is the ground-state energy of the molecule, RA
i is coordinate i of atom

A, and MA is its mass. Hence, the Hessian is a real 3N ⇥ 3N matrix where N is the number

of atoms in the molecule. When the molecule is in a minimum energy conformation, the

eigenvectors of the Hessian correspond to the vibrational modes of the molecule, and the

square root of the eigenvalues correspond to the vibrational frequencies.45

Our goal, therefore, is to understand how our approach can reduce the cost of computing

the Hessian matrix of a molecule. We achieve this understanding in two complementary ways.

First, for a moderately-sized molecule, we outline and perform the entire numerical procedure

to show in practice what kinds of speed-ups may be obtained. Second, for large systems,

we investigate the ability of compressed sensing to improve how the cost of computing the

Hessian scales with the number of atoms.

Calculating the Hessian requires a method for obtaining the energy of a given nuclear

configuration. There exist many methods to chose from, which o↵er a trade-o↵ between

accuracy and computational cost. Molecular mechanics approaches, which model the in-

teractions between atoms via empirical potentials,45 are computationally cheap for systems

of hundreds or thousands of atoms, while more accurate and expensive methods explicitly

model the electronic degrees of freedom at some level of approximated quantum mechanics,

such as methods based on density functional theory (DFT)46–48 or wavefunction methods.37

We focus on these quantum mechanical approaches, since there the computation time is

dominated by the calculation of the elements of the Hessian matrix, making it an ideal

application for our matrix-recovery method.

To recover a quantum mechanical Hessian e�ciently with compressed sensing, we need

to find a basis in which the matrix is sparse. While we might expect to the Hessian to have
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some degree of sparsity in the space of atomic Cartesian coordinates, especially for large

molecules, we have found that it is possible to find a better basis. The approach we take is to

use a basis of approximated eigenvectors generated by a molecular mechanics computation,

employing the common MM3 force field,49 which provides a cheap approximation to the

eigenvectors of the quantum mechanical Hessian.50 This is illustrated in Fig. 3 for the benzene

molecule (C6H6). The figure compares the quantum mechanical Hessian in the basis of atomic

Cartesian coordinates with the same matrix in the approximate eigenbasis obtained via an

auxiliary molecular mechanics computation. The matrix in the molecular mechanics basis is

much sparser, and is therefore better suited to recovery via compressed sensing.

−106
−104
−102

0

102
104
106

Hessian in basis of
atomic Cartesian coordinates

Hessian in basis of
molecular mechanics normal modes

Molecular
mechanics

computation

Figure 3: The quantum mechanical Hessian of benzene in the basis of atomic Cartesian
coordinates (on the left) and in the basis of molecular mechanics normal modes (on the
right). Since the molecular mechanics normal modes form approximate eigenvectors to the
true quantum mechanical Hessian, the matrix on the right is sparse (close to diagonal) and
therefore well-suited to recovery via compressed sensing.

The second derivatives of the energy required for the Hessian, eq. 5, can be calculated

either via finite di↵erences, generating what are known as numerical derivatives, or us-

ing perturbation theory, generating so-called analytical derivatives.51–54 A property of the

calculations of the energy derivatives is that the numerical cost does not depend on the

direction they are calculated. This can be readily seen in the case of finite di↵erences, as

the cost of calculating E(~R1, . . . , ~Rj + �j, . . . , ~RN) is essentially the same as computing

E(~R1 + �1, . . . , ~Rj + �j, . . . , ~RN + �N). As discussed previously, this ability to compute
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matrix elements at a comparable cost in any desired basis is an essential requirement of our

method.

A second property of both numerical and analytical derivatives that appears in variational

quantum chemistry formalisms like DFT or Hartree-Fock is that each calculation yields a

full column of the Hessian, rather than a single matrix element. Again, this is easy to see

in finite di↵erence computations. We can write the second derivative of the energy as a first

derivative of the force

@2E(~R1, . . . , ~RN)

@RA
i @R

B
j

= �
@FB

j (~R1, . . . , ~RN)

@RA
i

. (6)

By the Hellman-Feynman theorem,55,56 and the appropriate correction for the Pulay forces,51

a single energy calculation yields the forces acting over all atoms, so the evaluation of eq. 6

by finite di↵erences for fixed A and i yields the derivatives for all values of B and j, a

whole column of the Hessian. An equivalent result holds for analytic derivatives obtained

via perturbation theory.53,54 Thus, our compressed sensing procedure for this particular

application focuses on measuring random columns of the quantum mechanical Hessian rather

than individual random entries.

The full compressed sensing procedure applied to the calculation of a quantum mechanical

Hessian is implemented as follows:

1. Calculate approximate vibrational modes using molecular mechanics.

2. Transform the approximate modes using the DCT matrix.

3. Randomly select a few of the transformed modes.

4. Calculate energy second derivatives along these randommodes to yield random columns

of the quantum mechanical Hessian.

5. Apply compressed sensing to rebuild the full quantum mechanical Hessian in the basis

of approximate vibrational modes.
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6. Transform the full quantum mechanical Hessian back into the atomic coordinate basis.

7. Diagonalize the quantum mechanical Hessian to obtain the vibrational modes and

frequencies.

The optimal number of random modes can be selected iteratively, repeating steps 3–7 adding

more random modes each time until convergence is reached. See the Supporting Information

for details.

Fig. 4 illustrates the results of applying our Hessian recovery procedure to anthracene

(C14H10), a moderately-sized polyacene consisting of three linearly fused benzene rings. The

top panel illustrates the vibrational frequencies obtained by the compressed sensing proce-

dure outlined above for di↵erent extents of undersampling of the true quantum mechanical

Hessian. Even sampling only 25% of the columns yields vibrational frequencies that are close

to the true quantum mechanical frequencies, and much closer than the molecular mechanics

frequencies. The middle panel illustrates the error in the vibrational frequencies from the

true quantum mechanical frequencies. Sampling only 30% of the columns gives a maximum

frequency error of less than 3 cm�1, and sampling 35% of the columns yields nearly exact

recovery. The bottom panel illustrates the error in the normal modes. Once again, sampling

only 30% of the columns gives accurate recovery of all vibrational normal modes to within

1%. In short, our compressed sensing procedure applied to anthracene reduces the number

of expensive quantum mechanical computations by a factor of three. The additional cost

of the molecular mechanics computation and the compressed sensing procedure, which take

a few seconds, is negligible compared to the reduction in cost for the computation of the

Hessian which for anthracene takes on the order of hours.

Having shown that our compressed sensing procedure gives a 3⇥ speed-up for a moderately-

sized organic molecule, we now move to larger systems and investigate how the cost of com-

puting the Hessian scales with the number of atoms. In the absence of compressed sensing,

if the entries of the Hessian must be calculated independently, the cost of calculating the

Hessian would scale as O(N2) ⇥ OE, where OE is the cost of computing the energy of a
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Figure 4: Results of applying our compressed sensing procedure to the vibrational modes
and frequencies of anthracene. (Top) Even by sampling only 25% of the quantum mechanical
Hessian, the vibrational frequencies obtained via compressed sensing converge to those of
the true quantum mechanical Hessian. (Middle) Error in vibrational frequencies for di↵erent
extents of undersampling. When only 30% of the columns are sampled, the maximum error
in frequency is within 3 cm�1, and with 35% sampling, the recovery is essentially exact.
(Bottom) Error in vibrational normal modes for di↵erent extents of undersampling on a
logarithmic scale; the error is calculated as one minus the overlap (dot product) between
the exact quantum mechanical normal mode and the normal mode obtained via compressed
sensing. Once 30% of the columns are sampled, the normal modes are recovered to within
1% accuracy. 15



given nuclear configuration (the cost of analytical and numerical derivatives usually have the

same scaling). For example, for a DFT-based calculation, OE is typically O(N3). However,

since many quantum mechanical methods obtain the Hessian one column at a time, only

O(N) calculations are required, so the scaling is improved to O(N)⇥OE.

How does compressed sensing alter this scaling? From eq. 4, the number of matrix

elements needed to recover the Hessian via compressed sensing scales as O(S logN), where

S is number of non-zero elements in the Hessian, so the net scaling is O(S logN) ⇥ OE.

By obtaining the Hessian one column at a time, we expect the net scaling to improve to

O(S/N logN) ⇥ OE. However, we should note that eq. 4 is only valid in principle for the

random sampling of elements, and it is not necessarily valid for a random column sampling.

This scaling result illustrates the critical importance of recovering the Hessian in a sparse

basis, with S as small as possible. So what is the smallest S that can reasonably be achieved?

For many large systems, the Hessian is already sparse in the basis of atomic Cartesian

coordinates. Since the elements of the Hessian are partial second derivatives of the energy

with respect to the positions of two atoms, only direct interactions between the two atoms,

with the positions of all other atoms held fixed, must be taken into account. For most

systems we expect that this direct interaction has a finite range or decays strongly with

distance. Note that this does not preclude collective vibrational modes, which can emerge

as a result of “chaining together” direct interactions between nearby atoms.

If we assume that a system has a finite range interaction between atoms, and since each

atom has an approximately constant number of neighbors, irrespective of the total number

of atoms in the molecule, the number of non-zero elements in a single column of the Hessian

should be constant. Hence, for large molecules, the sparsity S of the Hessian would scale

linearly with the number of atoms N . Putting this result into O(S/N logN) ⇥ OE yields

a best-case scaling of O (logN) ⇥ OE, which is a significant improvement over the original

O(N)⇥OE in the absence of compressed sensing.

To study the validity of our scaling results we have performed numerical calculations
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on a series of polyacene molecules, which are aromatic compounds made of linearly fused

benzene rings. For polyacenes ranging from 1 to 15 rings, Fig. 5 illustrates the average

number of non-zeros per column in the Hessian matrices obtained via molecular mechanics

and quantum mechanical calculations in the basis of atomic coordinates. In the molecular

mechanics Hessians, the average sparsity per column approaches a constant value as the

size of the polyacene increases, consistent with each atom having direct interaction with a

constant number of other atoms.

Figure 5: Average sparsity per column (S/3N) of molecular mechanics and quantum me-
chanical Hessians in the basis of atomic coordinates for the series of polyacenes. (An entry
in the Hessian is considered nonzero if it is greater than 10 (cm�1)2, six orders of magnitude
smaller than the largest entry.) In the molecular mechanics Hessians, the average sparsity per
column is roughly constant with the size of the molecule, because each atom has a roughly
constant number of neighbors regardless of the size of the entire molecule.

Since the molecular mechanics Hessians illustrate the best-case scenario in which the

sparsity S scales linearly with the number of atomsN , we attempted to recover these Hessians

directly in the basis of atomic coordinates via the compressed sensing procedure we have

outlined by sampling columns in the DCT basis. Fig. 6 illustrates the number of columns

which must be sampled to recover the Hessians to within a relative error of 10�3 as a

function of the size of the polyacene. Far fewer than the total number of columns in the

entire matrix need to be sampled. Even more attractive is the fact that the number of
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columns grows quite slowly with the size of the polyacene, consistent with the best-case

O (logN) ⇥ OE scaling result obtained above. This result indicates that our compressed

sensing approach is especially promising for the calculation of Hessian matrices for large

systems. For comparison, we also recovered the Hessians in their sparsest possible basis,

which is their own eigenbasis. This procedure is not practical for actual calculation since

it requires knowing the entire Hessian beforehand, but it shows the best-case scenario and

illustrates how the compressed sensing procedure can be improved further if an appropriate

sparsifying transformation is known.

Figure 6: Number of columns which must be sampled as a function of the number of rings
in the polyacene to achieve a relative Frobenius norm error less than 10�3 in the recov-
ered molecular mechanics Hessian. Legend entries indicate the (sparse) recovery basis, and
columns are always sampled in the DCT basis with respect to the recovery basis. (Relative
error is measured by averaging over ten di↵erent trials which sample di↵erent sets of random
columns.)

While the recovery of molecular mechanics Hessians provides a clear illustration of the

scaling of our compressed sensing procedure, molecular mechanics matrix elements are not

expensive to compute in comparison with rest of the linear algebra operations required to

diagonalize the Hessian. Hence, from a computational standpoint, the real challenge is to

apply our procedure to the computation of quantum mechanical Hessians.

As Fig. 5 shows the sparsity S of a quantum mechanical Hessian does not necessarily
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scale linearly with the number of atoms N in the molecule. Fig. 7 illustrates the cost

of recovering the quantum mechanical Hessians of polyacenes using compressed sensing in

a variety of sparse bases. Recovering the Hessian in the atomic coordinate basis already

provides a considerable computational advantage over directly computing the entire Hessian.

In fact, this curve mirrors the sparsity per column curve for quantum mechanical Hessians

in Fig. 5, consistent with our prediction that the number of sampled columns scales as

O(S/N logN) ⇥ OE. More significantly, recovering the quantum mechanical Hessian in

the molecular mechanics basis provides a substantial advantage over recovery in the atomic

coordinates basis, reducing the number of columns which must be sampled approximately

by a factor of two. This is consistent with the quantum mechanical Hessian being sparser in

the approximate eigenbasis of molecular mechanics normal modes. Of course, nothing beats

recovery in the exact eigenbasis, which is as sparse as possible, but requires knowing the

exact Hessian in the first place.

In short, the take-home message of Fig. 7 is that using compressed sensing to recover a

quantum mechanical Hessian in its basis of molecular mechanics normal modes is a practical

procedure which substantially reduces the computational cost of the procedure.

Conclusions

We have presented a new approach for calculating matrices. This method is suitable for

applications where the cost of computing each matrix element is high in comparison to

the cost of linear algebra operations. Our approach leverages the power of compressed

sensing to avoid individually computing every matrix element, thereby achieving substantial

computational savings.

When applied to molecular vibrations of organic molecules, our method results in accu-

rate frequencies and normal modes with about 30% of the expensive quantum mechanical

computations usually required, which represents a quite significant 3⇥ speed-up. Depending
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Figure 7: Number of columns which must be sampled as a function of the number of rings
in the polyacene to achieve a relative Frobenius norm error less than 10�3 in the recov-
ered quantum mechanical Hessian. Legend entries indicate the (sparse) recovery basis, and
columns are always sampled in the DCT basis with respect to the recovery basis. (Relative
error is measured by averaging over ten di↵erent trials which sample di↵erent sets of random
columns.)

on the sparsity of the Hessian, our method can also improve the overall scaling of the compu-

tation. These computational savings could be further improved by using more sophisticated

compressed sensing approaches, such as recovery algorithms based on belief propagation57,58

which o↵er a recovery cost directly proportional to the sparsity of the signal, and which

could be easily integrated into our approach.

Our method could also be applied to other common calculations in computational chem-

istry, including the Fock matrix in electronic structure or the Casida matrix in linear-response

time-dependent DFT.59 Nevertheless, our method is not restricted to quantum chemistry and

is applicable to many problems throughout the physical sciences and beyond. The main re-

quirement is an a priori guess of a basis in which the matrix to be computed is sparse. The

optimal way to achieve this requirement is problem-dependent, but as research into sparsi-

fying transformations continues to develop, we believe our method will enable considerable

computational savings in a wide array of scientific fields.

The power of compressed sensing comes from the fact that it optimizes the amount of
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information obtained per measurement, and hence the required number of measurements

scales with the information content being measured, or in this case calculated.60 We believe

compressed sensing can change computational chemistry for the better by focusing attention

on how to avoid redundant computations and ensure that each computation delivers as much

new information about a system as possible. In broad terms, the key insight of compressed

sensing for computational chemistry is to calculate only what should be calculated.

In fact, a recent area of interest in compressed sensing is the development of dictionary

learning methods that do not directly require knowledge of a sparsifying basis, but instead

generate it on-the-fly based on the problem.61,62 We believe that combining our matrix

recovery protocol with state-of-the-art dictionary learning methods may eventually result

in further progress towards the calculation of scientific matrices. Beyond the problem of

computing matrices, our work demonstrates that compressed sensing can be integrated into

the core of computational simulations as a workhorse to reduce costs by optimizing the

information obtained from each computation.

Finally, we introduced an e↵ective method of bootstrapping low-accuracy calculations to

reduce the number of high-accuracy calculations that need to be done, something which is not

simple to do in quantum chemical calculations. In this new paradigm, the role of expensive

high-accuracy methods is to correct the low-accuracy results, with a cost proportional to the

magnitude of the required correction, rather than recalculating the results from scratch.

Computational methods

The main computational task required to implement our approach is the solution of the `1

optimization problem in eq. 2. From the many algorithms available for this purpose, we rely

on the spectral projected gradient `1 (SPGL1) algorithm developed by van den Berg and

Friedlander42 and their freely-available implementation.

For all compressed sensing calculations in this paper, the change-of-basis matrix between
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the sparse basis and the measurement basis is given by the DCT matrix whose elements are

given by

Pij =

r
2

N
cos


⇡

N
(i� 1)

✓
j � 1

2

◆�
, (7)

with the first row multiplied by an extra factor of 1/
p
2 to guarantee orthogonality.

For the numerical calculations we avoid explicitly constructing the Kronecker product of

P with itself and instead perform all matrix multiplications in the SPGL1 algorithm directly

in terms of P . This latter approach has much smaller memory requirements and numerical

costs, ensuring that the compressed sensing process itself is rapid and not a bottleneck in

our procedure. The condition PAP T = B is satisfied up to a relative error of 10�7 in the

Frobenius norm (vectorial 2-norm).

In order to perform the undersampling required for our compressed sensing calculations,

first the complete Hessians were calculated, then they were converted to the measurement

basis, and finally they were randomly sampled by column. Quantum mechanical Hessians

were obtained with the QChem 4.244 software package, using density functional theory with

the B3LYP exchange-correlation functional48 and the 6-31G* basis set. Molecular mechanics

Hessians were calculated using the the MM3 force field49 and the open-source package Tinker

6.2.
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Based Reconstruction in Compressed Sensing. Phys. Rev. X 2012, 2, 021005.
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Synopsis: We present a method for e�ciently computing matrices in nu-

merical simulations based on the ideas of compressed sensing, and apply it

to the determination of molecular vibrations from quantum calculations.
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