Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation

Mauricio Cortes, 1 Sarah Y. Liu, 1 Wanda Kwan, 1 Kristen Alexa, 2 Wolfram Goessling, 2, 3 and Trista E. North 1, 3, *

1Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
2Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
3Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
*Correspondence: tnorth@bidmc.harvard.edu
http://dx.doi.org/10.1016/j.stemcr.2015.08.010
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

INTRODUCTION

Hematopoietic stem cells (HSCs) have the lifelong ability to self-renew and generate each of the blood lineages. In vertebrates, definitive hematopoiesis begins with de novo birth of HSCs from hemogenic endothelium along the ventral wall of the dorsal aorta in a conserved region known as the aorta-gonad-mesonephros (AGM) (Dzierzak and Medvinsky, 2008). Studies in zebrafish and mammals have demonstrated that formation of the hemato-vascular niche is dependent on a signaling cascade between the Hedgehog (Hh) and the Notch pathways. This signaling controls placement of the stem cell leukemia (SCL) transcription factor and induction of the first definitive HSC marker, Runx1 (Gering and Patient, 2005; Kim et al., 2013; Lawson et al., 2002). Based on the conserved role of runx1 in zebrafish (Burns et al., 2005; Kissa and Herbold, 2010; North et al., 2002), we previously performed a chemical screen to identify regulators of HSC production (North et al., 2007). We recently showed cholesterol-derived estrogens have a crucial role in establishing hemogenic endothelial boundaries (Carroll et al., 2014); the cholesterol derivative vitamin D was likewise identified as a candidate hematopoietic stem and progenitor cell (HSPC) regulator in the screen.

Vitamin D synthesis begins with the transformation of 7-dehydrocholesterol in the skin by UV radiation to generate the non-active vitamin D precursor cholecalciferol (D3). Some vertebrates, including teleosts (e.g., zebrafish), obtain D3 primarily from their diet (Lock et al., 2010). D3 is modified by the cytochrome P450 enzyme 2R1 (CYP2R1) to generate 25-hydroxy vitamin D (25(OH)D3), the circulating form of vitamin D, which is then further hydroxylated by CYP27B1 to generate the active vitamin D metabolite, 1,25-dihydroxy vitamin D3 (1,25(OH)D3). Active 1,25(OH)D3 functions as the ligand for the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, resulting in nuclear localization and transcriptional regulation (Plum and DeLuca, 2010). Ligand binding also induces non-genomic cellular responses, including calcium uptake (Norman, 2006). Zebrafish exhibit strong conservation of the vitamin D biosynthetic pathway and its downstream signaling cascade (Craig et al., 2008; Lin et al., 2012).

Beyond the established role of 1,25(OH)D3 in VDR signaling, the biological function of vitamin D precursors in mediating non-VDR dependent events remains controversial. Mutations in 7-dehydrocholesterol reductase are associated with Hh defects in mammals (Koide et al., 2006). Cell culture studies designed to isolate cholesterol derivatives affecting Hh signaling identified 3beta-hydroxysteroids, including D3, as negative Hh regulators in C3H/10T1/2 fibroblasts (Bijlsma et al., 2006). This study and others indicated exogenous addition of D3 may block Hh activity in a VDR-independent manner, potentially at the level of Smoothened (Bijlsma et al., 2006; Tang et al., 2011). Beyond these preliminary analyses, the mechanism of action of potential D3-mediated Hh regulation remains unclear and in vivo physiological relevance has not been elucidated.

Here, we demonstrate that exposure to elevated D3 (12–24 hours post fertilization [hpf]) negatively regulates hemato-vascular niche specification, decreasing HSPC numbers while sparing the gross development of the dorsal aorta. D3
inhibits the Hh signaling axis via binding in vivo to the recently described extracellular sterol-binding domain of Smoothened. Likewise, physiological accumulation of D3 mediated by inhibition of cyp2rl significantly reduced Hh activity and disrupted hemogenic niche specification, leading to low HSPCs. Together, these in vivo studies indicate inefficient vitamin D synthesis affects cellular specification and tissue maturation in the embryo, independent of reductions in 1,25(OH)D3 content, via negative regulation of the Hh signaling pathway.

RESULTS

Vitamin D Metabolites Differentially Regulate Definitive Hematopoiesis

Vitamin D was isolated in a prior chemical screen in zebrafish as a potential modulator of HSPC gene expression (North et al., 2007). To characterize the impact of vitamin D on definitive hematopoiesis, zebrafish embryos were exposed to the non-hydroxylated vitamin D precursor D3 and the active hydroxylated vitamin D metabolite, 1,25(OH)D3, between 12 and 36 hpf during the onset of HSPC formation. Treatment with D3 decreased expression of conserved HSPC markers runx1 and cmyb as determined by whole-mount in situ hybridization (WISH) at 36 hpf (Figures 1A and 1B) and reduced HSPC-reporter (Tg(runx1P2:eGFP)) activity in the AGM (Figure 1C). In contrast, 1,25(OH)D3 increased both runx1/cmyb expression and Runx1 reporter activity (Figures 1A–1C), suggesting distinct modes of action. To confirm and quantify these findings, fluorescence-activated cell sorting (FACS) analysis was performed using Tg(lmo2:dsRed);Tg(cmyb:gfp) embryos, highlighting a broad population of HSPCs: D3 caused a 25% (p < 0.01) decrease, while 1,25(OH)D3 elicited a 20% (p < 0.01) increase in HSPC numbers (Figure 1D). To elucidate the cause of the differential regulation, embryos were treated for select intervals during hemogenic vascular endothelium specification (12–24 hpf) or definitive HSPC production (24–36 hpf). Whereas 1,25(OH)D3 increased runx1/cmyb WISH expression during either treatment window, the negative effect of D3 was predominately observed with exposure between 12 and 24 hpf (Figures 1E and 1F). qPCR confirmed that statistically significant reductions in runx1 were seen only after early D3 treatment, indicative of an effect on the HSPC niche (Figure S1A). However, analysis of flt1 expression indicated vasculogenesis was not grossly altered (Figure S1B). Early D3 exposure also had a minimal effect on the expression of cyp24a1, a direct VDR transcriptional target, while 1,25(OH)D3 was a potent activator (Figure S1C). Together, these data suggest D3 affects HSPC production via VDR-independent alterations in vascular niche specification.

D3 Exposure Inhibits Hh-Notch-Mediated Hemogenic Niche Specification

In vertebrates, HSCs are born from hemogenic endothelium specified by highly orchestrated signaling events starting with the Hh pathway and ending with Notch activity (Carroll et al., 2014; Kim et al., 2013; Lawson et al., 2002). Based on this pivotal role in vascular niche specification and prior studies describing potential inhibitory effects of D3, we hypothesized that D3 accumulation affected HSPC formation via inhibition of the Hh-Notch signaling cascade. To determine whether D3 could act to antagonize Hh-regulated developmental processes in vivo, the Tg(gli-d:mcherry) reporter line was used (Schwend et al., 2010). D3-treated embryos showed reduced Gli-reporter activity in the trunk region as determined by WISH (Figures 2A and 2B), similar to that seen with the Hh inhibitor cyclopamine. Co-treatment caused more severe inhibition, suggesting synergistic Hh antagonism (Figures 2A and 2B). FACS analysis of whole embryo disaggregates revealed a 54% (p < 0.01) decrease in total Gli-reporter-positive cells by D3 treatment alone and a 91% (p < 0.001) loss in combination with cyclopamine (Figure 2C). In contrast, no reduction in Hh activity was observed following 1,25(OH)D3 treatment by Gli-reporter WISH or FACS (Figures S2A and S2B). To confirm the effect of D3 was independent of VDR signaling, a previously validated morpholino (MO) was employed (Lin et al., 2012). No significant changes in Gli-reporter expression were seen with vdra knockdown (Figures S2C and S2D); however, morphants exposed to D3 still had reduced Hh activity (Figure 2D), supporting an alternate mechanism of action.

Consistent with a role for Hh upstream of Notch in vascular specification, D3 also diminished Notch-reporter activity (Tg(EPV.Tp1CMmu.Hbb:EGFP)) in the trunk vessels by WISH (Figures 2E and 2F), which was exacerbated by cyclopamine. D3-treated embryos had an expanded region of venous identity marked by fli4 and concomitant decreases in arterial fate as indicated by ephrinb2a (Figure 2E), consistent with published reports (Lawson et al., 2002; Carroll et al., 2014). Reductions in arterial ephrinb2a and notch3 (Figure 2F), and the Hh target ptc1, with D3 exposure were confirmed by qRT-PCR. In contrast, neither addition of 1,25(OH)D3 nor vdra MO affected vascular niche and Hh target expression (Figures S2G and S2H). Finally, sch+ hemogenic endothelium was profoundly lost in D3-treated embryos (Figures 2G and 2H), confirming disruption of the most proximal specification event downstream of Hh-Notch signaling to HSPCs.

20(S)-OHC Rescues D3-Mediated Inhibition of Smoothened and Hh Activity

The G-coupled protein receptor Smoothened was previously identified as the target of cyclopamine-mediated
Hh pathway inhibition; prior in vitro data suggested D3 may antagonize the same target (Bijlsma et al., 2006). Oxy-sterols, which stimulate Hh signaling (Corcoran and Scott, 2006), were recently shown to bind in the extracellular cysteine-rich domain (CRD) of Smoothened, distinct from the heptahelical pocket cyclopamine targets (Nedelcu et al., 2013). To elucidate the mechanism of action of D3 on Hh activity in vivo, D3-treated embryos were exposed to Smoothened agonists SAG and 20(S)-hydroxycholesterol (20(S)-OHC) (Figure 3A). SAG binds to the heptahelical bundle, and can directly compete with cyclopamine (Chen et al., 2002), whereas 20(S)-OHC binds the N-terminal extracellular CRD (Nedelcu et al., 2013). Co-treatment with SAG failed to block D3-mediated Hh inhibition as seen by Gli-reporter FACS (Figure 3B). In contrast, exposure to 20(S)-OHC preserved Hh signaling in the presence of D3 (p < 0.05) (Figure 3B). Co-exposure to 20(S)-OHC also restored ptc2 and runx1 expression in D3-treated embryos by qRT-PCR (p < 0.005) (Figure 3C), as well as HSPC induction by WISH (Figures 3D and 3E). These data indicate D3 inhibits Hh-dependent hemogenic endothelium specification in vivo by interactions with the Smoothened CRD.

Figure 1. Vitamin D Metabolites Have Differential Effects on HSC Formation
(A) Exposure to D3 (50 μM) decreased runx1/cmyb expression by WISH at 36 hpf, and 1,25(OH)D3 (10 μM) increased expression. Scale bar, 100 μm.
(B) Qualitative phenotypic distribution of embryos from (A) scored with low, medium, or high runx1/cmyb expression in the AGM (n > 50 embryos/condition).
(C) Runx1:GFP embryos exhibited either diminished or enhanced expression with D3 or 1,25(OH)D3 exposure, respectively. Scale bar, 100 μm.
(D) FACS analysis of double-positive HSPCs in Lmo2:dsRed/cMyb:GFP embryos confirmed a 25% (*p = 0.014) decrease with D3 versus a 20% (**p = 0.029) increase with 1,25(OH)D3 compared to controls (5 embryos/sample × 4 replicates/condition). Error bars, mean ± SD.
(E) D3 treatment during hemogenic niche specification (12–24 hpf) or HSC induction (24–36 hpf) only decreased runx1/cmyb by WISH in the early exposure window, whereas 1,25(OH)D3 increased expression during either treatment period. Scale as in (A).
(F) Qualitative phenotypic distribution of embryos from (E) scored for runx1/cmyb as in (B) (n > 20 embryos/condition). See also Figure S1.
Loss of \textit{cyp2r1} Negatively Affects Hh Activity via D3/Smoothened Antagonism

Vitamin D synthesis begins concurrently with the onset of definitive hematopoiesis, as \textit{cyp2r1} (25-hydroxylase), \textit{cyp27b1} (1-hydroxylase), and \textit{cyp24a1} (24-hydroxylase) are actively transcribed in the embryo by 24 hpf (Figure S3A). Mutations in \textit{CYP2R1}, which catalyzes the first hydroxylation step in the enzymatic processing of D3 to 1,25(OH)\textsubscript{2}D3, are associated with human vitamin D deficiency. To determine the potential physiological relevance of \textit{cyp2r1} mutation-mediated D3 accumulation on Hh-dependent hematovascular specification, embryos deficient in \textit{cyp2r1} were created by the clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated 9 (Cas9) system (Jao et al., 2013). An allele with a 25-base pair deletion in exon 3, predicted to encode a truncated protein with a severely compromised active site, was produced (Figures S3B and S3C). Targeted deletion of \textit{cyp2r1} diminished \textit{nm23} expression (50% penetrance) compared to sibling controls (Figure 4A) while leaving \textit{flk1}+ vasculature grossly normal (Figure 4B). To confirm and quantify these observations, a \textit{cyp2r1} MO...
was employed (Figures S3D and S3E). Morphants had a
similar decrease in runx1/cmyb expression to that of
cyp2r1 mutants (Figures 4C and 4D), with FACS indicating
a 21% (p < 0.05) reduction in Flk1:dsRed+/cMyb:GFP+
HSCs (Figure 4E). Consistent with diminished Hh
signaling due to D3 accumulation, cyp2r1 mutants ex-
hibited substantially reduced ptc2 expression (77% pene-
trance) (Figure 4F). These effects were validated by Gli-
reporter WISH following cyp2r1-MO knockdown (Figures
4G and 4H) and quantified as a 33% (p < 0.01) decrease
in Hh activity by FACS (Figure 4I). The cyp2r1 morphants
also had reduced Notch-reporter activity (Figures S4A
and S4B) and artery or vein defects (Figures S4C and S4D),
as seen with D3 exposure. In contrast, no inhibitory effect
was seen in embryos injected with a MO to cyp27b1 (Fig-
ures S4E–S4G), further indicating that D3 accumulation,
rather than loss of 1,25(OH)2D3, caused the Hh phenotypes.

To confirm the specificity of Cyp2r1 function in
Hh regulation, morphants were co-injected with full-
length zebrafish cyp2r1 mRNA, mitigating the Gli-reporter
phenotype (Figure 4J). Finally, to corroborate Smoothened
antagonism, as found for D3, morphant embryos were
treated with 20(S)-OHC and Gli-reporter activity was
restored (Figure 4K). In sum, these data show that physio-
logically relevant reductions in vitamin D biosynthesis,
occurring at the level of D3 hydroxylation via
cyp2r1 mutation, negatively affect Hh-dependent processes
like hematovascular specification in vivo by accumulation of D3
and direct inhibition of the Smoothened CRD.

DISCUSSION

Beyond the role of vitamin D in calcium homeostasis, se-
vere vitamin D deficiency in humans is associated with a
variety of hematopoietic disorders, including anemia and

Figure 3. D3 Antagonizes Hh Signaling via Interaction with the Extracellular Domain of Smoothened
(A) Diagram depicts the sites of action of Hh pathway modifiers cyclopamine, SAG, and 20-OHC on the Smoothened receptor. The pre-
sumptive site of D3 action (red) is shown.
(B) FACS of Gli-reporter embryos showed D3 decreased Hh activity (*p = 0.002). SAG co-treatment (5 μM) did not alter the effect of
D3, while 20(S)-OHC (10 μM) partially blocked Hh inhibition (**p = 0.040) (5 embryos/sample × 4 replicates/condition). Error bars,
mean ± SD.
(C) Co-treatment with 20(S)-OHC corrected D3-mediated reductions in ptc2 (*p = 0.019) and runx1 (**p = 0.003) by qPCR (40 pooled
embryos/condition × 3 replicates). Error bars, mean ± SD.
(D) 20(S)-OHC restored runx1 expression in D3-treated embryos. Scale bar, 100 μm.
(E) Qualitative phenotypic distribution of embryos from (D) scored for runx1 (n > 20 embryos/condition).
extramedullary hematopoiesis (Yetgin et al., 1989), due to alterations in the bone marrow microenvironment. VDR-deficient mice likewise display extramedullary hematopoiesis (Jeanson and Scadden, 2010). Vitamin D is also important in the immune system, specifically affecting T cell development and function (Kongsbak et al., 2013). Despite these findings, there is minimal investigation into the role of vitamin D regulation in the earliest stages of hematopoiesis. In this study, we demonstrate that vitamin D precursor D3 affects hemogenic vascular niche specification, affecting HSPC numbers during embryogenesis. Excess D3 derived from exogenous exposure or insufficient Cyp2r1 function diminished Hh signaling and disrupted Hh-regulated mesodermal cell fate. Significantly, these effects were not phenocopied by 1,25(OH)2D3 or dependent on VDR activity. Rather, our data indicate that D3 acts directly on Smoothened at the recently defined extracellular sterol-binding domain (Figure 3A). The strong synergy observed between D3 and cyclopamine toward Hh inhibition in vivo is consistent with prior mechanistic studies in which 20(S)-OHC and SAG mediated allosteric interactions between the CRD and the heptahelical binding domains of Smoothened to result in maximum pathway activation (Nachtergaele et al., 2012). Finally, the cyp2r1 loss-of-function studies demonstrate a physiological role for D3 in Hh pathway inhibition. These findings are intriguing in the context of human disease, because CYP2R1 mutations result in vitamin D-deficient rickets marked by skeletal abnormalities, with low levels of 25(OH)D3 but relatively normal
levels of 1,25(OH)D3 (Al Mutair et al., 2012). While it has been postulated that maintenance of 1,25(OH)D3 sufficiency is due to increased parathyroid hormone activity and alterations in CYP27B1 and CYP24A1 function, it will be important to re-evaluate whether developmental abnormalities in these patients are partially due to reductions in Hh signaling caused by D3 accumulation. It will also be interesting to examine interplay between abnormal vitamin D biosynthesis and Hh signaling in cancer, specifically in tissues where both pathways intersect. In summary, we elucidated the physiological consequences of abnormal vitamin D biosynthesis at the level of D3 hydroxylation on hematovascular specification and characterized the mechanism of action in vivo as an antagonistic interaction of D3 with Smoothened and the Hh signaling pathway.

EXPERIMENTAL PROCEDURES

Zebrafish Husbandry

Zebrafish were maintained in accordance with the Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee. The following lines were used: AB, Tuebingen, cyp2R1 mutant, Tg(lmo2:dsred) (Zhu et al., 2005), Tg(cmyb:ecGFP) (North et al., 2007), Tg(flk1:dsRed2ex) (Kikuchi et al., 2011), Tg(nuxl1P2eGFP) (Lam et al., 2009), Tg(Gli-1mCherry) (Schwend et al., 2010), and Tg(EPV.Tp1CMmu.Hbb:EGFP) (Parsons et al., 2009).

Chemical Treatments

Zebrafish embryos were exposed to chemical modulators in E3 fish medium from 12 to 36 hpf in multi-well plates. The following compounds were used: D3 (50 μM, Enzo), 1,25(OH)D3 (10 μM, Cayman Chemical), cyclopamine (50 μM, LC Laboratories), 20(S)-OH-C (10 μM, Tocris), and SAG (10 μM, Tocris). Treated embryos were analyzed by WISH using previously published probes mined by qRT-PCR using the following primer set: Cyp2r1Fwd-5'-CAGAAATCCTCACAAACATCCTCCGCTGGC-3' and Cyp2r1Rev-5'-CAGGGGAAATCCTCACAAACATCCTCCCGCTGCC-3'. Specificity was tested by injection of in vitro transcribed full-length cyp2r1 mRNA (100 ng/μl). Synthesis was performed using mMMachine T7 and the Poly(A) Tailing Kit (Life Technologies).

Embryo Dissociation and FACS Analysis

Fluorescent embryos (5 embryos/sample × 4 replicates/condition) were incubated in 0.5 mg/ml of Liberase (Roche) with gentle agitation at 37°C for 2 hr and then manually dissociated by pipetting, filtered, washed, and resuspended in 1× PBS. Samples were treated with SYTOX Red dead cell stain (5 nM, Life Technologies) and analyzed using a BD Biosciences FACS Canto II and LSRII SORP. Data were processed on Flojo X software (Tree Star), and statistics (two-tailed Student's t test) were performed using Prism 6 (GraphPad).

qRT-PCR Performance

Total RNA (40 pooled embryos/condition) was purified using the RNeasy Total RNA isolation kit, followed by DNase-I treatment, and used to generate cDNA using the SuperScript III First Strand Synthesis Supermix (Life Technologies). qRT-PCR was performed using SYBR Green PCR Master Mix (Life Technologies) on a Bio-Rad CFX384. Samples were run in triplicate with >2 biological replicates/condition using primer sequences in Table S1. RT-PCR Miner (http://ewindup.info/miner/) was used for analysis, with statistics as explained earlier.

Cyp2r1 Mutation Generation and Validation

Guide RNA (gRNA) targeting cyp2r1 was designed using Zifit Targeter (http://zifit.partners.org). Oligos to the cyp2r1 gRNA sequence 5'-GGACTTCTGAACTGCAAATA-3' were annealed, cloned into pT7-gRNA (Addgene #46759), and in vitro transcribed using MEGAshortscript-T7 (Life Technologies). Cas9 RNA (100 ng), transcribed from pT3Ts-nsi-cas9-nls (Addgene #46757) using mMessage Machine T7 and the Poly(A) Tailing Kit (Life Technologies). Treated embryos were incubated in 0.5 mg/ml of Liberase (Roche) with gentle agitation at 37°C for 2 hr and then manually dissociated by pipetting, filtered, washed, and resuspended in 1× PBS. Samples were analyzed using SYTOX Red dead cell stain (5 nM, Life Technologies) and analyzed using a BD Biosciences FACS Canto II and LSRII SORP. Data were processed on Flojo X software (Tree Star), and statistics (two-tailed Student’s t test) were performed using Prism 6 (GraphPad).

SUPPLEMENTAL INFORMATION

Supplemental Information includes a Supplemental Experimental Procedures table, four figures, and can be found with this article online at http://dx.doi.org/10.1016/j.stemcr.2015.08.010.

AUTHOR CONTRIBUTIONS

M.C. designed, performed, and analyzed all experiments. S.Y.L. performed MO injections and WISH. W.K. conducted embryo treatments and qPCR. K.A. provided cyp24a1, cyp2r1, and cyp27 plasmids. W.G. provided guidance and edited the manuscript. T.E.N. guided the project and composed the manuscript with M.C.
ACKNOWLEDGMENTS

We thank S. Alhgren (Tg(Gli-ΔmCherry)), N. Lawson (Tg(EPV/Tip1CMmu.Hbb:EGFP)), and P. and K. Crosier (Tg(Runx1P2:eGFP)) for transgenic lines; S. Wente and W. Chen for CRISPR-Cas9 plasmids; and the BIDMC Flow Cytometry Core for technical assistance. This study was supported by a V-Foundation Scholar Award (T.E.N.) and the Harvard Stem Cell Institute (T.E.N.).

Received: April 22, 2015
Revised: August 8, 2015
Accepted: August 8, 2015
Published: September 10, 2015

REFERENCES

