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The evolution of corneal and refractive
surgery with the femtosecond laser
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Abstract

The use of femtosecond lasers has created an evolution in modern corneal and refractive surgery. With accuracy,
safety, and repeatability, eye surgeons can utilize the femtosecond laser in almost all anterior refractive procedures;
laser in situ keratomileusis (LASIK), small incision lenticule extraction (SMILE), penetrating keratoplasty (PKP), insertion
of intracorneal ring segments, anterior and posterior lamellar keratoplasty (Deep anterior lamellar keratoplasty
(DALK) and Descemet's stripping endothelial keratoplasty (DSEK)), insertion of corneal inlays and cataract surgery.
As the technology matures, it will push surgical limits and open new avenues for ophthalmic intervention in
areas not yet explored. As we witness the transition from femto-LASIK to femto-cataract surgery it becomes obvious
that this innovation is here to stay. This article presents some of the most relevant advances of femtosecond lasers to
modern corneal and refractive surgery.

Keywords: Femtosecond, Laser, Refractive, Corneal surgery, Cataract surgery, Penetrating keratoplasty, Deep anterior
lamellar keratoplasty, Descemet's stripping automated endothelial keratoplasty, Laser in situ keratomileusis, Small
incision lenticule extraction
Introduction
Femtosecond laser technology was first developed by
Dr. Kurtz at the University of Michigan in the early
1990s [1] and was rapidly adopted in the surgical field of
ophthalmology. Femtosecond lasers emit light pulses of
short duration (10−15 s) at 1053 nm wavelength that
cause photodisruption of the tissue with minimum
collateral damage [1–3]. This enables bladeless incisions
to be performed within the tissue at various patterns
and depth with high precision. This review paper
presents the most recent advancements in femtosecond
lasers in modern corneal and refractive surgery.
Review
Femtosecond Laser-Assisted LASIK (FS-LASIK)
Globally, laser in situ keratomileusis (LASIK) is the
treatment of choice for the surgical correction of
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refractive errors, particularly myopia [4]. Although a
short rehabilitation period and rapid stabilization of vis-
ual outcome are main advantages over photo-refractive
keratectomy (PRK), increased incidence of dry eye and
flap related complications could have a substantial im-
pact on the patient’s quality of life [5].
Advantages in flap creation
The femtosecond laser has revolutionized corneal and re-
fractive surgery with respect to its increased safety, preci-
sion, and predictability over traditional microkeratomes.
Advantages of bladeless femtosecond assisted LASIK (FS-
LASIK) over conventional microkeratome assisted LASIK
(MK-LASIK) include reduced dry eye symptomatology,
reduced risk of flap button hole or free cap formation
[6, 7], and gentler approach with minimal or no transient
visual loss (black out period) due to close physiologic
maintenance of intraocular pressure (IOP) throughout the
procedure, especially in femtosecond laser platforms that
employ a curved contact surface. This configuration al-
lows better approximation of the corneal surface and re-
duced suction pressure compared to flat contact surface
laser interfaces and traditional microkeratomes.
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Flap accuracy and predictability
Kezirian and Stonecipher have reported fewer complica-
tions, better flap thickness predictability, and less surgi-
cally induced astigmatism in eyes treated with FS-LASIK
compared to the Hansatome (Bausch & Lomb, Rochester,
New York) and Carriazo-Barraquer (CB) microkeratome
(Moria, Antony, France) [8]. Pajic et al. found the femto-
second laser (Technolas) to be superior to the mechanical
microkeratome (Amadeus II) in terms of flap thickness
predictability and the speed of visual acuity recovery
in a prospective, randomized, paired eye study [9]. Flap
diameter, thickness accuracy, [9–15] and flap thickness
reproducibility [13] have been consistently shown to be
superior in femtosecond created flaps compared to micro-
keratome assisted flap creation. Recently, Zhang et al. [16]
investigated the thickness and the morphology of the
WaveLight FS200 (Alcon Laboratories Inc., Fort Worth,
Texas, USA) femtosecond laser microkeratome compared
with microkeratome flaps, using anterior segment optical
coherence tomography (AS-OCT). Femtosecond created
flaps were found to deliver more accurate, reproducible
flaps with uniform thickness compared to those created
by the Moria microkeratome (Moria SA, Antony,
France). Electron microscopy [17] has shown that the
quality of the stromal bed surface in flaps created
with the Moria or the 15 kHz IntraLase were com-
parable in quality and surface characteristics. In
addition, the 30 kHz IntraLase provide better stromal
bed characteristics compared to Moria and the 15 kHz
IntraLase [17].

Flap morphology / Advantages in stability, epithelial
ingrowth, and stromal surface
The accuracy and reproducibility of femtosecond lasers
allow for a thin (100–110 μm) or even thinner uniform
(planar) flap compared to the meniscus-shaped flap
(thinner centrally and thicker peripherally) created with
the manual microkeratome [18]. FS-LASIK flaps have
shown greater precision in flap diameter and thickness
and a more uniform flap thickness across the flap diam-
eter [19, 20]. Additionally, it allows the surgeon to plan
the angulation of the flap periphery, which may provide
better flap stability and reduce clinically significant
epithelial ingrowth [16, 21, 22]. Another significant
advantage of femtosecond lasers is the ability to resume a
lamellar flap after loss of suction or technical inter-
ruptions, and even when performing a secondary flap
underneath a primary of substandard quality with little
risk of serious repercussions.

Biomechanical stability
The ability to cut thinner flaps with minimal effects on
stromal architecture in addition to the option of creating
oval flaps with a shorter vertical than horizontal diameter
allows cutting of fewer vertical than horizontal lamellae
thus reducing the weakening effect of flap creation [18].
Further, the use of a femtosecond laser enables an acute
side cut angle, such as 150 ° resulting in less biomechan-
ical insult to the cornea [18]. This is in contrast to micro-
keratomes that are prone to variation in corneal
biomechanics thus creating less uniform flaps, especially
for intended thin flaps [23].
Biomechanical studies demonstrate that corneas are

more stable with thin uniform flaps compared to thicker
flaps [18, 24]. Femtosecond lasers have undergone a num-
ber of improvements since their introduction including
smaller and more tightly packed cavitation bubbles to
enable almost resistance-free stromal bridges, thinner
and more predictable flaps with smoother interfaces,
and algorithms for the creation of elliptical flaps or
flaps with everted edges to enable mechanical stability
[25–29]. There are also greater options in flap diameter,
flap thickness, side cut angle, hinge position, and hinge
length.
Early and long-term outcomes
Visual quality
Tran et al. conducted a prospective, randomized, contra-
lateral study to evaluate aberrations induced following
LASIK flap creation only (no excimer ablation) with the
femtosecond laser and the Hansatome microkeratome
[30]. No increase in high-order aberrations was observed
in eyes with femtosecond created flaps whereas a signifi-
cant increase was noted in the microkeratome group
[30]. Moreover, eyes with femtosecond created flaps have
shown better contrast sensitivity at high spatial frequen-
cies under both photopic and scopic conditions com-
pared to the microkeratome group (Carriazo Barraquer,
Moria, Antony, France) [31].
Stability of myopic treatments
A prospective, randomized, contralateral eye study com-
paring the femtosecond laser and the Hansatome micro-
keratome found significantly better uncorrected visual
acuity outcomes in the early postoperative period (up to
3 months) and less residual postoperative astigmatism in
femtosecond eyes [32]. Kanellopoulos and Assimelis
looked at 109 consecutive patients that underwent my-
opic LASIK using the FS200 femtosecond and EX500
excimer laser at 1, 3, 6 and 12 months. They found that
94.7 % of eyes had postoperative unaided visual acuity
better than 1.0 (decimal) at month 3, and maintained
this till month 12 [33]. Similarly, Han et al. [34] showed
remarkable refractive outcomes and stability in myopic
LASIK where 98 % of the eyes had a manifest refraction
within ±1.0 D at 1 year.
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Stability of hyperopic treatments
Gil-Cazorla et al. [35] performed a retrospective, non-
randomized, interventional, comparative case series that
looked at 72 eyes that had hyperopic LASIK using the
60 kHz IntraLase femtosecond laser and 72 eyes that
underwent hyperopic LASIK using the Moria M2 micro-
keratome. They found that the FS-LASIK group had sta-
tistically significantly lower mean residual sphere and
better uncorrected visual acuity compared to the micro-
keratome group. Another study looked at topography-
guided hyperopic FS-LASIK using the IntraLase FS60
and Wavelight FS200 with the Wavelight 400Hz excimer
laser in 202 eyes over a follow up period of 24 months.
Although this was not a comparative study, it showed
remarkable stability and effectiveness with no significant
changes in aberrations [36].
Epithelial remodeling
Epithelial remodeling after keratorefractive treatment
has been recognized for a considerable time [37, 38].
Although there is no study to date that directly com-
pares epithelial remodeling following FS-LASIK with
conventional MK-LASIK, the plausible explanations for
epithelial remodeling, such as the rate of stromal curva-
ture change [39] and the change in biomechanical sta-
bility especially in large corrections [40] should have a
much smaller impact compared to MK-LASIK.
Dry eye
Dry eye remains a common and important post-LASIK
complication with up to 90 % of LASIK patients experi-
encing dry eye symptoms [41–43]. Salomão et al. looked
at dry eye symptoms, signs, and severity with the
IntraLase femtosecond and Hansatome LASIK. They
found that significantly less patients suffered dry eye
symptoms and had less evidence of superficial punctate
epithelial erosions in the IntraLase group 1-month post
LASIK [44]. There were also significantly less patients
needing topical cyclosporine in the IntraLase group. The
authors postulated that patients in the IntraLase group
incurred less goblet cell damage than in the Hansatome
group. This could be attributed to the higher IOP required
for microkeratome (Hansatome) flap creation. Additionally
they speculated that the thinner flaps created with the
IntraLase were responsible for less afferent nerve damage
in the anterior corneal stroma that may influence dry eye
symptomatology. In contrast to this study, Golas et al. [45]
performed a randomized clinical trial that included 51
patients that had wavefront-guided LASIK using a
mechanical microkeratome in 1 eye and a femtosecond
laser in the fellow eye. There was no statistically signifi-
cant difference in self-reported dry eye symptoms at 1, 3,
6 and 12 months post LASIK between the two groups.
Femtosecond laser-specific complications
The incidence of complications such as button-hole, epi-
thelial abrasion, incomplete flap, free cap, Bowman
stripe, and irregular cuts are substantially reduced with
femtosecond lasers. However, there are some complica-
tions specific to femtosecond lasers such as cavitation
gas bubbles (known as opaque bubble layer (OBL)) that
tend to disappear within minutes. Modifications in flap
design can reduce their incidence [46] but their presence
can impede the surgeon and the excimer laser’s eye
tracker to visualize and locate the pupil respectively.
Extreme OBL can result in intracameral bubbles as well.
The exact origin of these bubbles is unknown. The most
credible theory suggests that they originate from stray
laser pulses into the aqueous humor [47]. Another
thought is migration of the corneal stromal gas bubbles
retrograde through Schlemm’s canal into the anterior
chamber. The bubbles can be moved away from the visual
center with gentle cannula manipulations. Alterations in
pulse duration that enable reduction in collateral tissue
damage could help to reduce the formation of cavitation
bubbles [48].
Transient light sensitivity syndrome (TLSS) is also an-

other femtosecond laser specific complication usually
encountered within the first few weeks of the femtosec-
ond LASIK procedure. It is characterized by photopho-
bia of variable severity associated with little or no
corneal inflammation [49]. It is believed to be due to a
biochemical response of corneal keratocytes to near-
infrared laser energy or an inflammatory response of the
adjacent tissues to gas bubbles [50]. Although no inflam-
mation is evident, intensive topical steroid in the imme-
diate post-operative period appears to reduce the
incidence of TLSS from 2.8 % to 0.4 % in a study by
Munoz et al. [49]. Another interesting finding in this
study was that diffuse lamellar keratitis (DLK) was more
likely to occur in eyes with TLSS (30 %) compared to
eyes without TLSS (3 %). The incidence of TLSS appears
to decrease as femtosecond laser frequency increases
allowing the use of less energy for flap creation [50].
Rainbow glare is another femtosecond LASIK-related

complication, induced from light scattering at the poster-
ior surface of the interface. Krueger et al. first described it
in 2008 [51]. Patients described seeing between 4 and 12
bands of color and this phenomenon has no predilection
to age, gender, or refractive error. However, Bamba et al.
[52] found a positive correlation between rainbow glare
and increased laser energy used. The incidence of rainbow
glare appears to have faded with the newer generation of
femtosecond lasers that provide improved focusing optics
[51–53].
DLK also known as “Sands of the Sahara” syndrome,

diffuse interface keratitis, or diffuse interstitial keratitis,
is a sterile inflammatory reaction that typically occurs
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one week after LASIK [54]. Gil-Cazorla et al., Chan et al.
and Morshirfar et al. [7, 55, 56] found a higher incidence
of DLK in femtosecond (IntraLase) performed LASIK
compared to Moria and Hansatome microkeratomes
respectively. This increased rate of DLK seems to be
attributed to higher flap interface inflammatory response
due to laser energy and gas bubbles that cause increased
activation of anterior stromal keratocytes as seen by
confocal microscopy [11].

Femtosecond refractive and small incision lenticule
extraction
In its current configuration, FS-LASIK still requires two
laser platforms – one for flap creation (femtosecond
laser) and another for stromal bed ablation (excimer
laser), which naturally affects the time required in the
laser suite and cost of the laser procedure. In 2008, Re-
fractive Lenticule extraction (ReLex) was introduced in
order to utilize one femtosecond laser platform for flap
creation and refractive lenticule extraction (Fig. 1). This
would reduce treatment time as the complete procedure
is performed with one laser platform, avoiding transfer
of the patient from one laser platform to another. Soon
after that, in 2009, both ReLex and its variation, small
incision lenticule extraction (SMILE), obtained CE ap-
proval [57–59]. SMILE potentially offers more advan-
tages than ReLex as it does not require the creation of a
flap thus avoiding flap-related early or late complications
and yet improving patient experience over conventional
microkeratome assisted LASIK with no transfer between
laser platforms. The absence of flap creation with minimal
Fig. 1 RELEX-SMILE procedure. a. The flap has been created and a spatula
anterior and then from the posterior stroma. c. The lenticule is being caug
lenticule results to a change in corneal thickness, which in turn results to a
disruption of the anterior stromal architecture as the cor-
neal lenticule is extracted from the mid stroma allows for
much greater preservation of biomechanical integrity and
stability of the cornea [16, 24]. The minimal disruption of
the anterior corneal surface epithelium, Bowman’s layer
and anterior stroma may be associated with less risk of
dry eye. In the human cornea, nerve fibers run from
the periphery in the anterior third of the stroma
towards the center in a radial fashion [60, 61] and then
penetrate Bowman's layer and branch vertically and
horizontally between the Bowman’s and basal epithe-
lium to create a network of nerve fibers known as the
sub-basal nerve plexus. This plexus is particularly dam-
aged in LASIK with the creation of the flap and further
affected with the excimer laser ablation. Compared to
SMILE, the basal nerve plexus is minimally disrupted
with significantly less risk of dry eye and patient dis-
comfort [61–65].
A number of prospective studies have shown equiva-

lence if not superiority of RELEX and SMILE to conven-
tional LASIK [61, 65–67]. SMILE is thought to be
potentially more accurate than LASIK as it is not associ-
ated with the variability of environmental factors that can
influence excimer stromal ablation, such as laser flu-
ence and differences in stromal hydration. SMILE has
mainly been but not solely used in mild myopia with
studies on low and high myopic corrections slowly
emerging [68, 69]. Although attempts have been made
to provide hyperopic SMILE treatments in a form of
endokeratophakia [70, 71], these treatment modalities
have yet to be standardized and made widely available.
is used to dilate the incision. b. The lenticule is detached first from the
ht and (d) removed through the small incision. The removal of the
refractive power change of the cornea
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At present, more work is needed to determine which
technique is superior in cases where both techniques
can be employed. LASIK has the benefit of vast surgical
and research experience but newer techniques appear to
be very promising not only in terms of their efficacy but
also in terms of quality of life factors, such as reduced
dry eye symptoms and preserved corneal sensation.
There has been a tendency in recent years to document
patient reported outcomes and it will be interesting to
see how such factors will influence our perception of
femtosecond lasers in the future [72–74].

Femtosecond laser assisted astigmatic correction
Femtosecond lasers have been programmed and ap-
proved for the treatment of corneal astigmatism in the
form of astigmatic keratotomy (AK) and intracorneal
ring segments. Preliminary results in post keratoplasty
patients with high corneal astigmatism have been re-
ported, but due to scarce literature on this topic, a firm
surgical protocol has yet to be developed. Nevertheless,
femtosecond astigmatic correction remains an attractive
possibility due to the precision provided by femtosecond
lasers in placing the incisions within the corneal stroma.

Penetrating astigmatic keratotomy
Penetrating AK has been the mainstay of non-excimer
laser assisted astigmatic correction amenable for low to
high astigmatic corrections including post-keratoplastic
astigmatism up to 10.0 D. The technique is performed
by limbal, arcuate, or transverse incisions using diamond
blades in an attempt to alter the corneal curvature. The
principal advantage of this technique is the ability to
correct high astigmatic errors that refractive excimer la-
sers cannot [75]. However, the main limitation has been
the unpredictability of manual corneal incision resulting in
variability in incision depth, corneal perforations, under-
corrections, induced irregular astigmatism and sometimes
worsening of the pre-existing astigmatism [76, 77]. The
length, optical zone and depth of the incision are import-
ant parameters in predicting the magnitude of astigmatic
correction. Several nomograms have been developed for
example; Lindstrom’s including an adjustment for the
patient’s age [78–82]. Ideally, the depth of the incision
should be approximately 95 % depth or 20 μm less
than the thinnest depth measured at the point of the
incision. Paired astigmatic incisions, usually orthog-
onal across the steep axis, can be used to correct high
astigmatic errors. Low astigmatic errors (≤2.75 D) can
be corrected by limbal incisions (11 mm optical zone),
while the addition of 8 mm optical zone incision is
intended for corrections > 3.0 D. In post-keratoplasty
AK, the magnitude of the corrected cylinder is
mainly influenced by the magnitude of the pre-existing
cylinder; therefore nomograms have less predictive capacity
and corneal topography may serve as a more useful
guide [83, 84].

Femtosecond intrastromal astigmatic keratotomy
The implementation of femtosecond laser in AK can
provide enhanced precision and control over the shape,
length, depth and location of the corneal incisions, and
improved visual outcomes [85–88]. Thus far, femtosecond
AK correction has been primarily implemented in post-
keratoplastic eyes with moderate to high cylindrical
refractive error (≥4.0 D) but its use in conjunction with
cataract surgery is rapidly growing [86, 89]. Modification of
the Donnenfeld LRI nomogram (www.lricalculator.com) at
70 % depth, Julian Stevens’s Intrastromal AK nomogram
calculator (www.femtoemulsification.com), and the
ASSORT Femto LRI Calculator have become popular.
One major benefit of femtosecond AK incisions is
that they can be penetrating- or intrastromal-only
allowing titration of the astigmatic effect and less dis-
comfort when the incisions are not opened or constructed.
Bahar et al. compared the results of manual versus femto-

second laser assisted AK in 40 eyes of 39 post-keratoplasty
and found that the femtosecond AK provides significant
improvement in uncorrected and best corrected visual acu-
ity attributed to the increased accuracy and precision of
femtosecond technology and the reduced complication
rates [90].
The most common femtosecond AK related complica-

tions are reversible, such as self-healing micro corneal
perforations and low-grade inflammation at the incision
site. Thin corneas can cause overcorrection, necessitat-
ing the incorporation of corneal topography and pachy-
metry in the surgical planning.
In a published case report of post keratoplasty astig-

matic correction using the IntraLase 30 kHz femtosecond
laser, 2 anterior arcuate incisions, (60-degree arc length,
from 180 to 240 degrees, and from 320 to 20 degrees) at
75 % depth of the thinnest corneal measurement were per-
formed, which resulted in cylinder reduction from -4.0 D to
-0.5 D with concomitant improvement in uncorrected and
best-corrected visual acuity from 20/60 to 20/50, and 20/50
to 20/32, respectively [89]. In a case report of post kerato-
plasty astigmatism, correction was attempted with the
IntraLase 60 kHz by placing paired arcuate cuts deep into
the donor corneal button at different angles, resulting in
cylinder reduction from 9.3 D to 6.5 D and uncorrected vis-
ual acuity improvement from 1.27 to 0.55 (logMAR) [91].
In a study of nine post-keratoplasty eyes of nine patients,
astigmatic correction was attempted using the IntraLase
60 kHz femtosecond laser by placing two simultaneous
opposite paired incisions of 70 degrees arc length at 80 %
of the thinnest corneal point, centered on the steep
keratometric axis with 90 degrees side cuts. The tech-
nique resulted in a significant reduction in cylinder

http://www.lricalculator.com
http://www.femtoemulsification.com
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from 9.10 (±3.90) D to 5.20 (±1.50) D (mean ± SD) and
improvement in mean best corrected visual acuity from
20/30 to 20/25 [85].
Low to moderate astigmatic errors (1.0 to 3.0 D) may

also be corrected by intracorneal ring segment implant-
ation, amenable to ectatic conditions of the cornea such
as keratoconus, post-LASIK ectasia and pellucid marginal
degeneration. The technique aims to delay or prevent cor-
neal grafting and it involves the manual creation of two
arc shaped intracorneal tunnels or a continuous ring with
the femtosecond laser at two-thirds of the corneal thick-
ness and the implantation of plastic polymethylmethacry-
late biocompatible segments peripherally in the tunnels
for the mechanical flattening of the cornea. Intracorneal
tunnels with femtosecond lasers are more predictable and
precise thus minimizing surgical complications of manual
incision, such as incomplete tunnel formation, endothelial
perforation, segment extrusion or migration, corneal melt-
ing and granulomatous particles around the Intacs seg-
ments. The reported overall complication rate of the
procedure was 5.7 % (49 out of 850 cases) in a study
comparing femtosecond and manual intracorneal ring
segment implantation [92, 93]. Both mechanical and fem-
tosecond laser-assisted procedures provide similar visual
and refractive outcomes [94].

Femtosecond laser-assisted penetrating keratoplasty
Penetrating keratoplasty (PKP) has changed over the
years, from the early 1900s, when the first procedure
was performed without any modern surgical device [95]
to the novel femtosecond laser-assisted PKP concept.
On the other hand, optimal postoperative outcomes remain
a concern as they are dependent on a centered and perpen-
dicular cut of the recipient cornea, and a well-matched
donor button and recipient bed [96]. The femtosecond laser
has shown promise in improving postoperative outcomes,
as it can achieve a greater precision in cutting either the
donor or the recipient cornea, minimize misalignments and
increase the stability of the wound [97].
The concept of a stepped graft edge dates back to

1960s, when Jose I. Barraquer described the “two-level
keratoplasty” technique, characterized by a difference in
the size of the graft at the level of the anterior and pos-
terior layers of the cornea [98]. Over the years, technical
complexity and manual techniques have prevented the
shaped corneal grafts from becoming widely implemented
[99]. However, the femtosecond laser has now enabled the
creation of advanced shaped corneal cuts, eliminating
manual dissection [96].
Laboratory studies in shaped corneal grafts using fem-

tosecond lasers first demonstrated the mechanical stabil-
ity of different known wound configurations, such as
“top-hat”, “mushroom”, “zigzag” and “Christmas tree”
[97, 100, 101]. Subsequent in vivo reports were very
optimistic in describing excellent wound apposition, wound
integrity and best spectacle-corrected visual acuity greater
than 20/30, after 6 months, in patients who underwent
PKP with femtosecond laser zigzag pattern [102]. Likewise,
the first study comparing the conventional blade trephin-
ation versus the femtosecond laser generated zigzag inci-
sion, demonstrated consistently lower induced astigmatism
in the laser group. The greatest difference was experienced
at month 1, followed by month 3, when the average astig-
matism was 4.5 D in the conventional group versus 3.0 D
in the laser group (p = 0.018) [99].
The femtosecond laser allows for patterns and angles of

incisions that are not achievable with conventional tre-
phines [99]. A prospective study following patients for one
year, showed the laser efficacy in creating precise and
complex wound configurations, even when significant cor-
neal opacity was present [103]. In addition, the typical in-
creased wound healing area in the top-hat configuration
enabled faster and secure suture removal [103].
Regular and irregular astigmatism remain a major post-

operative challenge in full thickness keratoplasty. A recent
study has shown favorable outcomes of “mushroom” fem-
tosecond laser-enabled keratoplasty (M-FLEK), in contrast
to conventional PKP in eyes with keratoconus. Decreased
astigmatism was observed despite no significant differ-
ences in best-corrected visual acuity [104].

Femtosecond laser-assisted penetrating keratoplasty in
pediatric patients
In pediatric keratoplasty, faster visual acuity rehabilita-
tion and easier postoperative management are crucial.
Laser welding of the wound, a procedure already reported
in adults undergoing cataract surgery [105], is an alterna-
tive to the conventional PKP sutures. The technique is
based on a near-infrared diode laser radiation at 810 nm
in combination with the topical application of indocyanine
green dye to the corneal wound. The photoactivation of
the agent leads to crosslinking, thereby achieving rapid
wound closure with minimal side effects [105, 106]. In
pediatric patients, femtosecond laser-assisted penetrating
PKP keratoplasty followed by laser welding of the wound
has led to suture-less surgery, with the potential to reduce
the risk for suture-related endophthalmitis, decrease the
need for general anesthesia for postoperative suture
management, and to achieve fast visual rehabilitation
after surgery [107].

Femtosecond laser-assisted lamellar keratoplasty
The use of the femtosecond laser in deep anterior lamellar
keratoplasty (DALK) allows precise identification of tissue
depth and air injection, facilitating the big bubble forma-
tion [108]. Therefore, DALK with femtosecond laser offers
several advantages over the manual technique, facilitating
the use of scissors to cut residual stromal from Descemet
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membrane, in addition to allowing a more secure wound
closure [108]. If Descemet membrane is perforated during
the procedure, conversion to a full-thickness keratoplasty
is still feasible while maintaining the benefits of the shaped
corneal incision [99]. In addition, the sutures are typically
removed earlier after femtosecond laser-assisted kerato-
plasty [99]. The disadvantage of the laser-assisted tech-
nique over the conventional technique may be due to the
high cost.
Recent studies have reported the safety, efficacy and ad-

vantages of femtosecond-assisted suture less anterior la-
mellar keratoplasty (FALK) [109], as well as its long-term
stability [110]. First described in 2008, the technique is
based on precise cuts of both donor and recipient cornea,
allowing a better apposition of the tissue without sutures.
The absence of sutures appears to promote early visual re-
habilitation with less induced astigmatism [109, 110].
New approaches to the big bubble formation have been

suggested, such as the IntraBubble technique, that creates
a channel in the posterior stromal, about 50 μm above the
endothelium layer, by which the air injection is intro-
duced, leading to the cleavage of the corneal tissue [111].

Femtosecond laser-assisted endothelial keratoplasty
Early laboratory studies suggested a possible advantage
of the femtosecond laser over the microkeratome in cre-
ating a less smooth surface, which could potentially im-
prove the endothelial disc adherence to the receptor bed
[112]. However, recent in vivo studies showed that
microkeratome-assisted Descemet's stripping automated
endothelial keratoplasty (DSAEK) led to better visual
outcomes than femtosecond laser-assisted DSAEK [113].
The increased roughness at the deep intrastromal dissec-
tion surface could be associated with interface haze and
unfavorable visual outcomes [113]. In addition, irregular-
ities of the endothelial surface, most likely due to the
applanation strain and corneal compression during the
laser procedure, may lead to poorer visual outcomes
[114]. Further studies are needed to elucidate the effect-
iveness of femtosecond DSAEK.

Femtosecond laser-assisted presbyopic correction
Corneal inlay implantation
Current surgical therapeutics for presbyopia involves
surgical intervention to the lens and cornea [115, 116].
Corneal presbyopic correction can be performed by fem-
tosecond laser-assisted inlay implantation, a procedure
that has gained attention due to the advances in flaps
and pocket creation by femtosecond lasers as well as the
remarkable improvements in the biomaterial technology
of the inlay lenticules [117].
Presbyopic treatment with inlays is achieved by chan-

ging either the curvature of the anterior corneal surface,
the refractive index of the cornea or by increasing the
depth of focus without changing the anterior corneal
surface [118]. The latter can be utilized using small-
aperture corneal inlays, designed to increase the depth
of field based on the principle of pinhole optics through
the selection of central light rays and minimized refrac-
tion. This technique is the most frequently used in mod-
ern refractive surgery, as evident by the increased number
of citations in the literature.
Several papers have reported the efficacy of femtosec-

ond laser-assisted corneal inlay implantation, showing
significant improvements in uncorrected near and inter-
mediate visual acuity with minimal change in uncor-
rected distance visual acuity (UCDVA). This procedure
provides good non-spectacle-corrected near vision for
average daily activities [119, 120]. Tomita et al. reported
a series of 180 eyes implanted with a small-aperture in-
lay (current version of the Kamra Inlay, AcuFocus, Inc.,
Irvine, California, USA) and treated with LASIK [121].
At six months postoperatively, both mean uncorrected
near visual acuity (UCNVA) and UCDVA improved sig-
nificantly. All patients had postoperative binocular
UCDVA of 20/20 or better [121].
The main advantages of inlays are: the reversibility of

the procedure by removal of the implant, the simplicity
in implantation and repositioning of implants, and the
ability to perform ad hoc refractive procedures to allow
the simultaneous correction of ametropia [121–123].
The most common complaints of patients after the

surgery are related to glare, halos, night vision deterior-
ation and dry eye, which can be subjectively assessed
with the Quality of Vision (QoV) questionnaire [73, 74,
121, 124]. The centration of the inlay lenticule on the
visual axis is based on the Purkinje reflex and is essential
to prevent postoperative symptoms and to achieve the
best possible refractive results [125].

IntraCor treatment
IntraCor surgery is a new technique that utilizes the
femtosecond laser technology to correct presbyopia by
selectively changing the topographic and refractive charac-
teristics of the central portion of the cornea [126, 127].
The technique involves the creation of several concentric
intrastromal rings (5 to 8), using a femtosecond laser, at
different corneal depths (between the Bowman’s and Des-
cemet’s boundaries) in the central portion of the cornea. It
is applicable to emotropic or low degree hyperopic eyes
(+0.5 to +1.5 D), however, recent modifications suggest
that this technique may be applicable in low myopic eye
as well [128]. It is typically performed in the non-
dominant and yields stable gain of UCNVA and integrity
of the cornea up to 12 and 18 months postoperatively with-
out changing the pachymetry of the cornea [128]. However,
this gain may cause a loss of 1–2 lines of corrected distance
visual acuity in some patients, a complication that is not
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always acceptable. No major surgical complications are as-
sociated with this technique other than the possibility of
treatment failure in regards to presbyopic correction. This
technique has already shown promising results but requires
more time for maturation.

Femtosecond laser-assisted cataract surgery
Femtosecond-laser-assisted cataract surgery (FLACS) is
a new technology in the field of ophthalmology. The first
implementation of femtosecond laser cataract surgery
was performed in 2008 in Europe by Nagy et al. [129]
and rapidly spread around the world. This technique
involves the focal photodisruption of the tissue using a laser
beam, typically generated at a wavelength of 1053 nm. All
FLACS platforms are equipped either with an optical co-
herence tomography (OCT) imaging system or a Scheimp-
flug camera to guide the laser beam to the target. In
2010, the US Food and Drug Administration (FDA) ap-
proved this technology for capsulorhexis, lens fragmen-
tation and liquefaction, corneal incision and arcuate
corneal incisions [130].
To date, five femtosecond-laser platforms are available

for cataract surgery: the LenSx (Alcon LenSx, Fort
Worth, Texas), the Catalys (Optimedica Catalys, Santa
Clara, CA, USA), the LensAR (LensAR Inc., Orlando,
FL, USA), the Victus (Technolas Perfect Vision and
Bausch and Lomb, Rochester, NY, USA) and the LDV
Z8 (Ziemer Ophthalmic Systems AG, Switzerland) [131].
The key indications of femtosecond laser cataract sur-
gery are [132]:

� Anterior capsulotomy
� Laser fragmentation of the crystalline lens (harder

lenses)
� Laser liquefaction of the crystalline lens (soft lenses)
� Single plane or multiplane (uniplanar, biplanar,

triplanar, etc.) corneal cuts with 2–3 incisions
� Arcuate corneal cuts to control preoperative corneal

astigmatism
� Pediatric cataract (for anterior and posterior

capsulotomy)

There is one relative contraindication while perform-
ing the capsulorhexis, which is the small non-dilating
pupil. Ideally, the pupil size should be at least 6.0 mm in
diameter. Smaller sizes increase the risk of phimosis and
iris trauma. This represents a real limitation compared to
manual cataract surgery where dilation can be achieved
with a ring, hooks or viscoelastic in the anterior chamber.
However, since the FLACS capsulorhexis is accomplished
without incision, enlarging the pupil is not possible [132].
Prior to FLACS surgery, eyes with a pupil diameter
smaller than 5.5 mm may receive a sequential treatment
with intracameral administration of epinephrine solution,
additional viscomydriasis or implantation of a Malyugin
ring pupil expander. No other alterations are required and
the surgery may proceed as initially planned [133, 134].

Procedural steps
At the beginning of the procedure, the surgeon has to
determine and set the optimal surgical plan. The im-
aging system of each platform is utilized to evaluate the
anatomical characteristics of the anterior part of the eye
(cornea, anterior chamber, pupil and lens). However, fur-
ther parameter adjustments are necessary to define the
capsulorhexis size, lens fragmentation pattern, corneal
incisions and probable arcuate incision size and depth.
Detailed planning of each stage of the operation is a pre-
requisite for a successful outcome [135].
Next, the eye is docked into the laser platform in a

method similar to that in excimer laser refractive surgery
(Fig. 2a). Docking of the eye in FLACS causes minimal
IOP elevation (~20 mmHg) as compared to LASIK
docking that results in acute IOP elevation of more than
80 mmHg [136]. This advantage benefits patients with
pre-existing retinal nerve fiber layer and optic nerve
head pathologies, especially in cataract surgery where
the mean patients’ age is higher than those patients of
LASIK [137–141].
The third step in the procedure involves the acquisi-

tion of high-resolution, three-dimensional, wide-field
imaging of the anterior segment (Fig. 2b). The LenSx,
Catalys (Optimedica), VICTUS (Technolas Perfect
Vision) and LDV Z8 (Ziemer Ophthalmic Systems
AG, Switzerland) are utilizing a Fourier-domain OCT
system while the LensAR uses a confocal structured
illumination-scanning transmitter system that is simi-
lar to the Scheimpflug imaging developed for corneal
topography [129, 142–144].
The last step involves the initiation of the laser

sequence (Fig. 2c-d). Different platforms require a differ-
ent sequence of procedures. For example in LenSx, the
capsulorhexis is performed first, followed by the lens
fragmentation and finalized by the corneal incisions
(Fig. 2e-f ). The lens is removed usually with modified
phacoemulsification and irrigation/aspiration technique
then exchanged with an artificial intraocular lens (IOL)
[145] (Fig. 2g).

Capsulotomy
One of the most important advantages of FLACS is the
ability to perform a customized capsulotomy. The size
and centration of the capsulotomy is very important.
Friedman et al. found increased predictability in resected
capsular button diameter using laser (29 ± 26 μm devi-
ation form intended diameter) as compared to manual
capsulotomy (337 ± 258 μm) [143]. Laser capsulotomy
improved IOL positioning and resulted in less IOL tilt



Fig. 2 Femtosecond laser assisted cataract procedure. a. The eye is docked (left) using a cone and the level of the cornea is inspected (right)
using live imaging. b. The incisions’ position is set and (c) the capsulorhexis phase is initiated followed by (d) the lens fragmentation phase.
e. The capsule is manually removed and (f) the lens fragments are separated using hydrodissection. g. The IOL is injected and positioned in the
eye, concluding the procedure
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and decentration as compared to manual continuous
curvilinear capsulorhexis (CCC) [146]. In the same
study, the authors noted that manifest refraction values
correlated with the total IOL decentration postopera-
tively. Other groups have shown more accuracy in lens
positioning and increased predictability in the refractive
outcome using laser cataract surgery (LCS). LCS pro-
vides more stable anteroposterior and central IOL posi-
tioning with better refractive outcomes. This becomes
even more important in premium IOL implantation,
where patients’ expectations are high. New generation
IOLs with capsule fixation will benefit from the unprece-
dented control over the capsulorhexis parameters pro-
vided by the laser [132, 147, 148].

Lens fragmentation and liquefaction
One of the limitations of the manual phacoemulsifica-
tion technique is the increased delivered energy to the
eye for lens fragmentation and liquefaction, which can
result in energy dependent endothelial cell damage.
Palanker et al. first reported a series of cases undergoing
LCS with decreased nuclear hardness during phacoemul-
sification. The same study also reported a 39 % reduction
in the cumulative dispersed energy during phacoemulsifi-
cation in laser cut lenses as compared with the manual co-
hort [145]. A preliminary study by Nagy et al. using
femtosecond laser in cataract surgery, saw a significant re-
duction in ultrasonic energy delivered during phacoemul-
sification with LCS as compared to routine surgery [129].
Whether these factors have an impact on endothelial cell
loss is yet to be determined [146]. Takács et al. compared
central corneal thickness and endothelial cell count
between eyes undergoing LCS or conventional phacoe-
mulsification and found that femtosecond laser-assisted
cataract surgery resulted in less corneal swelling in the
early postoperative period, possibly associated with
reduced endothelial damage. However, no differences were
found between the groups at later postoperative follow-up
examinations [148].
Corneal incisions
Corneal incisions performed by femtosecond laser are
more precise in width, depth, and length. This repre-
sents a major advantage over manual corneal surgery.
Masket et al. showed in cadaver eyes that manual incisions
are more deformable under pressure with increased risk
for being Seidel positive after cataract surgery [149]. Arcu-
ate or relaxing incisions are done in order to correct cor-
neal astigmatism. They allow the cornea to change shape
and correct the astigmatic error simultaneously with the
lens exchange surgery. Otherwise, in cases of corneal
astigmatism, a toric IOL has to be used. Literature sug-
gests that 9 to 30 % of toric IOLs exhibit rotation by 5 or
more degrees within the first 12 postoperative months.
This reduces the power of the toric correction and sug-
gests that laser-assisted corneal incisions for astigmatic
correction may provide more stable and accurate long-
term outcomes compared to toric IOLs [76, 150–152].
Femtosecond in pediatric cataract surgery
During pediatric cataract surgery, the capsulorhexis step
is technically more difficult to perform. The main chal-
lenge in manual capsulorhexis is the increased elasticity
of the capsular bag and the unpredictability of the cap-
sulorhexis shape. Dick et al. successful implemented
FLACS to perform laser-assisted posterior capsulotomies
in 4 infants aged 9 months to 7 years using the Catalys
platform. The reported outcomes showed a slight en-
largement in the diameter of the anterior and posterior
capsulotomies, which were attributed to the increased
capsular elasticity. Currently, no platforms are designed
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for pediatric cataract surgery; however, this is expected
to be improved in the near future [153].

Complications of femtosecond laser-assisted cataract
surgery
Pupillary constriction
Preoperatively, the pupil should be at least 6.0 mm in
diameter. During laser programming, the capsulotomy
diameter should be at least 1.0 mm smaller than the
pupillary diameter. Pupillary constriction may arise during
the first steps of femtolaser procedure especially after
docking. Bubble formation in the anterior chamber re-
leases small amounts of free radicals that can trigger
pupillary constriction [154]. Some studies have shown
high levels of total prostaglandin and prostaglandin E2 in
the aqueous humor during anterior capsulotomy, suggest-
ing their contribution to pupillary constriction [155, 156].
Optimizing the energy setting and administering a non-
steroidal anti-inflammatory therapy may help to circum-
vent this reaction and laser-induced miosis [155, 156].
Surgeons should also minimize the delay between femto-
laser pretreatment and cataract surgery as this may result
in pupil diameter changes [132, 154].

Capsular blockage syndrome
Introducing high-speed fluid with a large diameter hydro-
dissection cannula may inhibit the gas bubble that is
formed from leaving the nucleus. Rupture of the posterior
capsule may be caused by pressure elevation between the
capsule and lens causing the nucleus to drop into the vit-
reous cavity. Surgeons should be aware of the capsular
blockage syndrome complication and perform precise and
careful maneuvers during the lens-dissection step in order
to avoid it [154–158].

Corneal incision sizing and positioning
The initial docking of the laser ring is very important for
the accuracy of the intended incisions, capsulorhexis,
and lens fragmentation. During the first set up step of
the planning procedure, the incisions are set to the cor-
rect position automatically. Moreover, the user can set
up the incisions manually. If they are set centrally to the
cornea, this may cause corneal astigmatism, and if set
peripherally to the cornea, may complicate the manual
final procedure. Regardless of the position of the inci-
sions, dilation with a spatula before entering the eye is
generally advised [154, 159–161].

Conclusion
Femtosecond laser technology has revolutionized everyday
ophthalmic practice. The implementation of this technol-
ogy in corneal refractive surgery has dramatically im-
proved the safety, efficacy, and predictability of LASIK
flaps. Further advancements were also achieved when
femtosecond technology was introduced to non-refractive
corneal surgery, such as anterior and posterior lamellar
keratoplasty, to perform high precision cuts in the donor
and host corneal tissue. Femtosecond technology is still
under assessment for non-LASIK corneal refractive proce-
dures e.g. SMILE, and for the correction of astigmatism
and presbyopia, with initial reported results being highly
encouraging. Important advancements were also achieved
in the field of cataract surgery using femtosecond technol-
ogy especially in anterior capsulotomy, lens fragmentation,
and corneal incision. Some major limitations still exist,
such as the small, non-dilating pupil, however, femtosec-
ond lasers are very promising. As with any new tech-
nology, the execution of the surgical procedure requires
optimization and customization. Nevertheless, the techno-
logical advancements over the past few years have brought
significant software and hardware improvements resulting
in greater surgical flexibility and precision.
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