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An affinity-structure database of helix-turn-
helix: DNA complexes with a universal
coordinate system
Mohammed AlQuraishi1,2*, Shengdong Tang1,2 and Xide Xia1,2

Abstract

Background: Molecular interactions between proteins and DNA molecules underlie many cellular processes,
including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses
of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally
and biochemically. While many databases exist that contain either structural or biochemical data, few integrate
these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth
of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data
types to derive computational models of molecular interactions.

Description: We have developed an integrated affinity-structure database in which the experimental and
quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the
corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative
summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of
protein-DNA binding instances. Critically, this database establishes a correspondence between experimental
structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel
alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified
residue-level coordinate system for comparing the physico-chemical environments at the interface between
complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA
interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this
database, and a downloadable version to facilitate programmatic analysis.

Conclusions: This database will facilitate the analysis of protein-DNA interactions and the development of
programmatic computational methods that capitalize on integration of structural and biochemical datasets. The
database can be accessed at http://ProteinDNA.hms.harvard.edu.

Keywords: Protein-DNA, Database, Helix-turn-helix, Transcription factors, Structure, PWM

Background
Protein-DNA interactions are among the most funda-
mental molecular interactions in the cell, underlying tran-
scriptional regulation, chromosome replication, repair,
and segregation, nucleosome positioning, plus many other
processes. Owing to their central role in biology, protein-
DNA interactions have been extensively analyzed and

modeled using a variety of computational approaches.
These approaches have traditionally been either
sequence-based or structure-based. Sequence-based
methods model the DNA-binding affinity of a protein
using its known DNA binding sites and range in
complexity from simple models such as consensus
sequences and position-weight matrices (PWMs) to
complex models like Variable-Order Bayesian Networks
and Feature Motif Models [1–6]. Data from experi-
mental methods such as DNA footprinting [7, 8],
SELEX [9], ChIP-seq [10, 11], and microarrays [12] are
used to derive such models. In contrast, structure-
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based methods predict the DNA binding affinity of a
protein from its molecular structure—obtained either
computationally or by experimental methods such as
X-ray crystallography and NMR—and its predicted
orientation vis-a-vis different DNA sequences, by
employing an energy function to compute the protein-
DNA binding energy [13–17]. The energy functions
that have been used in structure-based methods are
derived either from theory or from statistics of inter-
atomic contacts in crystallized protein-DNA structures.
Many databases have been developed that address the

particular needs of the sequence- and structure-based
approaches. On the sequence side, DNA-binding site
databases such as TRANSFAC [18], JASPAR [19], and
others provide accessibility to raw binding site data and
simple models of protein-DNA binding affinity like
PWMs. Specialty databases that include quantitative
binding-affinity data also exist, such as ProNIT [20],
UniPROBE [12]. On the structure-side, databases like
the Protein Data Bank (PDB) [21] provide general access
to protein structures, and specialty databases such as
NPIDB [22] and BIPA [23] provide culled resources
containing only protein-DNA complexes.
While these databases have proven satisfactory for

addressing the needs of computational methods that fall
squarely into one category or another, the development
of algorithmic techniques that utilize both sequence and
structural data necessitates an integrative database that
couples protein-DNA structural complexes with their
binding affinity. In particular, merely curating structural
and binding affinity is insufficient. For algorithms to
exploit the association between structural properties and
quantitative binding affinity, a correspondence must be
established between every DNA basepair position in a
protein-DNA structural complex and the protein’s
experimentally-determined binding affinity for different
nucleotides at that position. In this way, supervised
machine learning algorithms can use structural properties
as inputs and binding affinity as output to learn models
that can predict protein-DNA interactions. To our know-
ledge none of the databases currently combining struc-
tural and binding affinity data, including TFinDit [24] and
3d-footprint [25], provide such a correspondence.
We report the development of a database of protein-

DNA structural complexes that provides this corres-
pondence. We previously used this database to derive a
new class of machine-learning-based protein-DNA en-
ergy potentials that utilize structural data and binding
affinities [26, 27]. Our database contains novel features
that make it suitable for general use in the analysis of
the relationship between sequence and structure. First,
the atomic structures of 63 protein-DNA complexes are
combined with probabilistic information regarding the
likelihood of binding of every basepair in the structure.

These probabilities were specifically derived for this
database, by analysis of many primary sources and
secondary databases. We determined a probability distri-
bution for the likelihood of binding different nucleotides
at every DNA basepair position in the set of protein-
DNA complexes in the database. Second, we developed
a novel structural alignment and clustering algorithm
that performs a structural superpositioning of all the
protein-DNA complexes in the database. This enabled
us to derive a single coordinate system to index all DNA
basepair positions and all amino-acid residues in the
binding interface of the protein-DNA complexes to
facilitate analysis and comparison of the physico-
chemical environments that surround the bases and resi-
dues involved in protein-DNA binding. In deriving this
unified coordinate system we focused on one protein
family with a single DNA-binding modality. We chose
the helix-turn-helix (HTH) [28] family as it is the most
widely distributed family of DNA-binding proteins, oc-
curring in all biological kingdoms and with a large num-
ber of crystallized structures. Also, virtually all bacterial
transcription factors are HTH proteins as are about one-
fourth of human transcription factors [29]. Finally, to
facilitate their use in automated programmatic analysis,
all the protein-DNA complexes in the database have
been processed to standardize their chain ordering and
connectivity, and to remove any pathologies. We provide
this database in downloadable form and in an interactive
website that can be used to browse and visualize the
protein-DNA binding interface of all complexes. Figure 1
contains an overview of the database assembly process.
By integrating binding information from dozens of

sources, presenting a unified probabilistic formulation to
describe the DNA-binding affinity of proteins, mapped
directly onto the atomic structures of aligned protein-
DNA complexes, and creating a unified coordinate system
to analyze and compare these structures, we have
constructed a database that will be a valuable and unique
resource for researchers.

Construction and content
Curation of protein-DNA structures
To curate protein-DNA atomic structures, we developed
a largely automated pipeline beginning with the initial
data acquisition step that retrieves all HTH-DNA com-
plexes from the PDB, followed by several elimination
steps that remove inappropriate and redundant struc-
tures, and finally a processing step that prepares the
structures for use in programmatic analysis (Fig. 2a).
The initial operation in the pipeline is a systematic
search for all atomic structures of HTH-DNA complexes
in the PDB. Since HTH domains are found in many dis-
tinct subfamilies, with inconsistent naming conventions
across different classification schemes, we developed our
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own search criteria. Multiple searches were performed
to obtain all the sought structures in the PDB. Table 1
shows the settings common to all searches. In addition
to the common search settings, each query targeted a
particular structural family. Table 2 lists the structural
families that were used as targets. We found that the
combined criteria minimize false negative and false
positives, i.e. the searches missed very few, if any,
HTHs and retrieved few non-HTHs. The structures
retrieved during this step were then fed into a se-
quence of elimination steps that removed anomalous
structures based on several criteria, including the
presence of structural pathologies, false positives, and
redundancies (described below).

Elimination of pathological structures
Complexes with three types of structural pathologies
were eliminated: (i) the DNA is single-stranded in-
stead of double-stranded, (ii) the complex contains
missing backbone atoms, specifically Cα atoms for
proteins and C1’, C2’, C3’, C4’, and C5’ atoms for DNA,
and (iii) the protein contains non-standard amino acid
residues. The elimination of such pathologies stream-
lines the analysis and insures that only atomically
accurate structures are considered.

Elimination of false positive structures
Our initial search criteria retrieved a number of
domains that we identified as false positives (i.e. non-
HTH domains) through manual inspection. Based on
the true HTHs, we developed several heuristics that,
when used in concert, eliminated the vast majority of
non-HTH domains (Fig. 2b). Some of these heuristics

rely on numerical parameters, such as the separation
between helices, which we derived based on the
statistics of structural properties of HTH domains
(Fig. 3). Specifically, the algorithm first finds a puta-
tive α-helix that we consider to be a candidate recognition
helix. Our criterion for candidacy is that the mean
distance between the closest five residues (contiguous) of
the α-helix to the DNA molecule is less than 5 Å. This
criterion insures that the α-helix is sufficiently close to
make contact with the DNA molecule. Any number of
residues can be used for computing the mean distance,
but we chose five residues as that is close to the smallest
recognition helix present in our database. Figure 3a
depicts the distribution of these mean distances to the
DNA molecule for true HTH domains. Based on this
distribution, we chose 5 Å as the cutoff. We define the
distance between an α-helix residue and a DNA molecule
to be the shortest pairwise distance over all atoms in the
residue and all atoms in the DNA molecule. Once an
α-helix is identified as a putative recognition helix,
the second step is to insure that its orientation relative to
the DNA is correct. We found that an effective heuristic
for insuring correct orientation is to require that each of
the five closest residues are individually within a certain
distance cutoff of the DNA. Figure 3b depicts the distribu-
tions of these distances for true HTH domains. Based on
this distribution, we chose 6.5 Å as the cutoff. Distance is
computed in the same way as in the first step. Finally, a
third step is taken to insure that the entire domain is in
fact an HTH motif, by detecting the core tri-helical bundle
that is representative of all HTHs [28]. The distance calcu-
lations in this step are more complex, owing to the
variability of α-helix lengths between HTH domains. An

Fig. 1 Database creation steps. Protein-DNA structures and position weight matrices (PWMs) were first curated from existing databases
and the primary literature. Newly developed structural alignments algorithms were then used to establish a correspondence between
structures and PWMs, by associating a probability distribution with every residue in every protein-DNA structural complex. Finally the
resulting structures were clustered and aligned to establish a universal coordinate system across all helix-turn-helix domains
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Fig. 2 Curation of protein-DNA structures. a End-to-end process for curating protein-DNA structures. b Eliminating false positives. c Verifying that
a protein contains an HTH domain
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overview of the process is shown in Fig. 2c. First, at least
three distinct α-helices must be detected. Second, a
“central residue” is identified within the putative recogni-
tion helix that represents the centermost point of contact
with the DNA molecule. This is done by computing the
major axis of the DNA molecule [30] and then computing
the distance between this axis and the Cα atom of each
residue in the putative recognition helix. The residue
closest to the major axis of the DNA molecule is consid-
ered the central residue. Once the central residue is
identified, the pairwise distances between the Cα atom of
the central residue and the Cα atoms of all the residues in

the other α-helices are computed. Figure 3c depicts the
distributions of these distances with respect to the closest
and second closest α-helices for true HTH domains. Based
on these distributions, we classify a tri-helical structure as
an HTH if the central residue is within 18 Å of at least
one residue in two distinct α-helices. While individually
the described heuristics do not eliminate all non-HTH
structures, we found that in concert they eliminate the
vast majority, making it feasible to remove the remaining
false positives manually.

Elimination of redundant structures
As the primary purpose of this database is to enable
machine learning applications, we removed redundant
complexes to prevent algorithms trained on this
database from overfitting on overrepresented structures.
We consider complexes redundant if they have the same
amino acid sequence in the region of the recognition
α-helix. We chose this criterion due to the dominant
role that recognition α-helices play in effecting the
sequence specificity of HTH proteins, and the fact
that HTHs with otherwise highly similar sequences
may still exhibit differential DNA binding properties
[31, 32]. To identify redundant structures, the amino
acid sequence of the recognition helix of every HTH

Table 1 PDB search settings for all HTH-DNA retrieval settings.
Indented rows indicate sub-fields

Search field Setting

Macromolecule type

Contains protein Yes

Contains DNA Yes

Contains RNA No

Contains DNA/RNA hybrid No

Methods

Experimental method X-RAY

Table 2 Structural families used as target queries to retrieve HTH-DNA structures. Indented rows indicate sub-fields, and multiple
columns under “Setting” indicate a hierarchical choice

Search field Setting

Structure features

SCOP All α DNA/RNA-binding 3-helical bundle (core: 3-helices; bundle, closed or partly opened, right-handed twist; up-and down)

SCOP All α lambda repressor-like DNA-binding domains

SCOP All α Cyclin-like TFIIB

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.10

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.60

CATH Mainly α Orthogonal Bundle 434 Repressor (Amino-terminal Domain) 1.10.260.40

CATH α/β 2-Layer Sandwich CRO Repressor 3.30.240.10

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.400

CATH Mainly α Orthogonal Bundle Factor For Inversion Stimulation; Chain: A 1.10.1680.10

CATH Mainly α Orthogonal Bundle Chromosomal Replication Initiator Protein DnaA; Chain: A 1.10.1750.10

CATH Mainly α Orthogonal Bundle Trp Operon Repressor; Chain A 1.10.1270.10

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.200

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.500

CATH Mainly α Orthogonal Bundle Tetracycline Repressor; domain 2 1.10.357.10

CATH Mainly α Orthogonal Bundle Putative cytoplasmic protein 1.10.3100.10

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.560

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.570

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.580

CATH Mainly α Orthogonal Bundle Apoptosis Regulator Bcl-x 1.10.437.10

CATH Mainly α Orthogonal Bundle Arc Repressor Mutant, subunit A 1.10.10.250
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domain was extracted. The recognition sequence is
centered at the central residue of the recognition
helices, and extended by 20 amino acids on both
sides of the central residue, for a total of 41 amino
acids (Fig. 4a). We chose this criterion because the
recognition helices observed in our data set extended
in length up to 20 amino acids on either side of the
central residue, and we sought a consistent criteria to
apply to all structures (Fig. 3d). The pairwise distance
between every pair of HTH domains is computed
using the resulting sequences. Since two recognition
helices may be shifted with respect to one another,
we computed the pairwise sequence distance by
considering all possible shifts between two recognition
helices, and the number of mismatched residues for
every possible shift. The shift that gave the smallest
number of mismatched residues was selected, and the
number of mismatched residues returned as the dis-
tance. To ensure that the shifts are small, we require

that an 11-residue window flanking the central resi-
due is the minimum amount of overlap present
between two recognition helices (Fig. 4b). We chose
this criterion as it corresponds to the shortest recog-
nition helices observed in our database. Using the
resulting sequences, we formed a graph where each
node represents a recognition helix and two nodes
are connected by an edge if the sequence distance
(Hamming distance) between their respective recogni-
tion helices is 0 (Fig. 5a). Disconnected nodes, i.e.
nodes that have no edges, represent unique HTH
domains by our definition and are retained in the
data set. Fully connected subgraphs, i.e. those in
which every node is connected to every other node,
represent a subset of HTHs that are identical. From
each such subgraph, only the highest resolution crys-
tal structure is retained. In some subgraphs, owing to
the distance metric used, some nodes are connected
to all other nodes (Fig. 5b). In such instances the

Fig. 3 Statistical distribution of HTH structural properties. All histograms show distribution over HTH domains in our database. a Histogram of
mean distances of 5 closest residues of recognition helix to DNA. b Histogram of all distances of five closest residues of recognition helix to
DNA. c Histograms of distances between central residue of recognition helix (see text for description) and residues in closest and 2nd closest
α-helices. d Histogram of residue distances along protein chain from central residue to recognition helix end
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structure corresponding to the node with the largest
number of edges (i.e. the most central node) is used.
If there are several such structures, then the one with
the highest resolution is used.

Processing step
After the final set of protein-DNA complexes was
selected, we used a sequence of processing steps to
generate a uniform set of PDB files that can be readily
used in computational analysis. First, we processed all
dsDNA molecules to conform to a standardized format
in which the two strands of DNA are treated as separate
chains, the chains are ordered in a 5′ to 3′ orientation,
all overhangs are removed, and the basepairs aligned so
that they are physically matched. Since many structures
in the PDB do not conform to this standard, we devel-
oped scripts to reformat all PDB files in the database
accordingly. Second, we extracted protein chains with
multiple HTH domains and single HTH domains that
span multiple chains, and formatted these protein chains
so that each individual HTH domain is spanned by a
single chain in an individual PDB file, along with its
cognate DNA molecule. Finally, we processed the final
set of PDB files with the PDB2PQR [33, 34] utility to
carry out the protonation and dewatering steps.
PDB2PQR is run with default settings using the AMBER
molecular mechanics force field [35].

Curation of PWMs and structure mapping
We curated experimentally-determined DNA binding
sites for each of the protein-DNA structural complexes
in the database. The set of binding sites was compiled
from several data repositories such as TRANSFAC along
with primary sources [9, 12, 16, 18–20, 36–74]. All the
DNA binding sites in the database are based on experi-
mentally assays. In some instances, the same experiment
was reported in two or more of the data repositories we
used. When possible (e.g. by checking the original PMID
reference from which experiment is derived), we re-
moved such redundant entries to insure that each bind-
ing site entry in the database corresponds to a unique
experiment. Multiple distinct experiments reporting on
the same binding site were retained however. The
experimental assay and, when available, quality ratings
of binding sites included in the original data repository
are cited in the database (e.g. TRANSFAC quality
scores). Using these DNA binding sites we generated an
experimentally-derived PWM for each of the protein-
DNA complexes in the database. The PWMs were
derived by setting the probability of every nucleotide at
every position to its empirically-observed relative fre-
quency in the database. For positions for which we did
not have any data, we used a uniform distribution over
the four nucleotides as a non-informative prior. We also
used Laplace smoothing to mitigate errors due to small

Fig. 4 Criteria for comparing two recognition helices. a Schematic depiction of a recognition helix, with each residue position represented
by a numbered square whose number refers to the residue position. The central residue is the 0th position. A 41-residue window centered
on the central residue is used as the basis for comparing two HTH domains. An 11-residue window flanking the central residue defines the
minimum region of overlap for a recognition helix. b Examples illustrating allowable (top) and unallowable (bottom) shifts between two
helices. Only allowable shifts are used when computing the distance between two helices

AlQuraishi et al. BMC Bioinformatics  (2015) 16:390 Page 7 of 19



sample size. Since the orientation and length of the
binding sites varied between and within data sources,
manual and automated alignment methods were used
in constructing the PWMs, which were then mapped
onto the protein-DNA structures so that for every
basepair position in every protein-DNA complex, we
maintain a probability distribution over all four pos-
sible nucleotides.

Structural alignment
We structurally superimposed all protein-DNA com-
plexes in the database, to establish an alignment
between DNA basepairs in one complex to another,

and between the amino acid residues of the recognition
helices of the proteins. While in general this is not
possible for any two arbitrary DNA-binding proteins,
proteins within the same structural family typically
exhibit a conserved modality for binding. In particular,
the HTH family of proteins uses a highly conserved
mode of docking into the major groove of DNA [75–77].
This suggested that it would be possible to align all
HTH-DNA complexes in the database such that the
DNA molecules and recognition helices are superim-
posed. We developed a novel structural alignment
algorithm for this purpose, and used it for a pairwise
alignment of all complexes in the database.

Fig. 5 Visualizing distances between recognition helices as a graph. a Nodes (pink circles) represent individual recognition helices. Edges (blue lines) are
formed between two nodes if their respective recognition helices have a sequence distance of zero. Disconnected nodes (pink circles with
no edges) are unique HTH domains. b Some subgraphs are not fully connected, i.e. not every node is connected to every other node. In
such cases the central-most node with the highest resolution is chosen
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We formulated the structural alignment problem as
the following optimization problem. Let RMSDDNA be
the root mean square deviation (RMSD) between the
backbone carbon atoms of two DNA molecules, and
RMSDHTH be the RMSD between the Cα atoms of two
recognition helices. Then we defined the optimal align-
ment as the one (over all possible alignments) that
minimizes RMSDHTH subject to RMSDDNA < δ. The par-
ameter δ was set to 2 Å. We solved this problem using the
following four-step algorithm.

Canonical matching regions
The first step is to generate “canonical matching
regions” for each HTH-DNA complex in the database.

We define a canonical matching region to be a contigu-
ous stretch of five basepairs of the DNA molecule that
is in close proximity to the recognition helix of the
HTH domain. Depending on the proximity criteria,
many such regions exist. Our motivation for defining
these regions is to use them as a basis for aligning the
DNA molecules, in lieu of using the entire structure.
We have found through analyses of HTH-DNA com-
plexes that DNA molecules exhibit significant variation
in their bending far away from the region of binding,
i.e. the recognition helix, but are highly uniform in
shape closest to the recognition helix. Therefore by
basing the alignment on the region closest to binding,
we increase the robustness of the resulting alignments.

Fig. 6 Canonical matching regions. Canonical matching regions are contiguous stretches of DNA in close proximity to the recognition helix.
a To establish a canonical matching region, the DNA basepair position closest to the central residue of the recognition helix is identified
(designated “n”). A schematic representation of all residue positions is shown on the right. b Multiple canonical matching regions, spanning
five basepairs and constrained to include the nth DNA basepair position, are shown in pink highlights. The range of positions spanned by
each region is shown in brackets under each respective complex, and depicted schematically on the right
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To define the canonical matching regions for a given
HTH-DNA complex, we begin by identifying the
central residue of the recognition helix, as described
earlier. Once the central residue has been identified, we
find the closest DNA basepair in the docked DNA
molecule (Fig. 6a). Distance is defined as that between
the Cα atom of the central residue and the closest (of
the two) C1’ atoms of the DNA basepair. Designating
the position of the closest DNA basepair by n, five
distinct canonical matching regions are defined, each
spanning 5 bp stretches, starting with position n − 4
and ending with position n (Fig. 6b).

DNA-based alignment
Based on the canonical matching regions defined in the
first step, all possible pairwise alignments were per-
formed for each pair of HTH-DNA complexes. Since
there are five canonical matching regions in each HTH-
DNA complex, and since any two such regions can be
aligned in two orientations based on the mirror

symmetry of the DNA molecule (Fig. 7), there are a total
of 5 × 5 × 2 = 50 possible pairwise alignments for each
pair of HTH-DNA complexes (Fig. 8). All such align-
ments were performed, and their RMSD computed, then
the alignments scoring an RMSD of more than δ were
eliminated from further consideration, and the remain-
der were used as putative initial alignments in the next
step. To carry out the pairwise alignments between two
HTH-DNA complexes, we use the iterative closest
points (ICP) algorithm [78]. The ICP algorithm finds an
affine transformation (translation + rotation) that brings
two point clouds in closest correspondence. We apply
the ICP algorithm on the point clouds represented by
the backbone atoms of the DNA molecules, specifically
the C1’, C2’, C3’, C4’, and C5’ atoms. Only the DNA base-
pairs in the canonical matching regions are considered
for this purpose. When running ICP, constraints are
enforced to insure that only atoms of the same type are
put in correspondence, i.e. a C1’ atom from one complex
must map to a C1’ atom in the other complex (Fig. 9a).

Fig. 7 Mirror symmetry of DNA molecules. For any two canonical matching regions in different DNA molecules there are two possible alignments
due to the mirror symmetry of DNA. a The strands F1 and R1 are mapped to F2 and R2, respectively (mapping between F1 and F2 is depicted by
dashed lines). b The F2/R2 DNA molecule is rotated 180° around the horizontal axis, which results in strands F1 and R1 being mapped to strands R2
and F2, respectively. Schematic representations of the mappings between strands are shown on the right. Note that both alignments preserve the
5′→ 3′ directionality of DNA, i.e. alignments in which the mapped regions run in opposite directions are not allowed
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Fig. 9 Constraints for ICP correspondence. a Atom types are respected when performing ICP, so that a C1’ atom in one complex always corresponds
to a C1’ atom in another complex. An example of a correspondence between the backbone atoms of two nucleotides in two complexes
is shown. b Topology is preserved when performing ICP, so that the relative order of atoms (as defined by the DNA sequence) is the
same between corresponded atoms. Left correspondence shows a correct (topology-preserving) example, while the right correspondence
shows an incorrect (topology-violating) example

Fig. 8 Pairwise alignments based on canonical matching regions. The two rows of DNA structures in this figure represent two HTH-DNA complexes,
for which there are 50 possible pairwise alignments. Each complex has five canonical matching regions (depicted schematically to the right of every
complex), which can be matched with any of the five canonical matching regions of the other HTH-DNA complex, yielding 25 possible
pairings (represented by dashed lines). Since each pairing can yield two distinct alignments (Fig. 6), there are 50 possible alignments
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Furthermore, the topologies of the molecules have to be
preserved, so that atoms from sequential basepairs in
one DNA molecule map to atoms in sequential basepairs
in the other DNA molecule (Fig. 9b). These constraints
ensure that only physically realizable alignments are
performed, while at the same time returning all 50
possible pairwise alignments for each pair of HTH-DNA
complexes. Finally the RMSD score resulting from a
pairwise alignment of the two canonical matching
regions is computed based on the backbone atoms of
the DNA basepairs in the alignment.

Recognition helix-based alignment
The 50 alignments obtained for each pair of HTH-DNA
complexes serve as a set of putative alignments, from
which one final alignment is selected for each pair of
HTH-DNA complexes, based on the recognition helices
of the HTH domains in the complexes being aligned. To
select the final alignment, all pairwise alignments for a
given pair of complexes are considered individually. For
each alignment, the RMSD between the two recognition

helices in the corresponding complexes is computed.
This RMSD is calculated based on the distances between
the Cα atoms of the amino acid residues of the two
recognition helices. To compute these distances, the
residues of one recognition helix must be mapped onto
the residues of the other recognition helix, so that the
distances between their respective Cα atoms can be
calculated. Since a residue-by-residue mapping between
the two recognition helices is not known a priori, we
considered all such mappings, and the one yielding the
lowest RMSD was selected. For each pair of recognition
helices, the mappings considered include all possible
shifts of one recognition helix with respect to the other
one, assuming one of the recognition helices is shorter
than the other. If the shorter recognition helix is longer
than m residues (m was set to eight), “overhangs” are
allowed, such that some of the residues of the shorter
recognition helix are not mapping to any residues in the
longer recognition helix. The maximum amount of
permissible overhang is such that at least m residues are
overlapping between the two recognition helices. If both

Fig. 10 Mappings between recognition helices. All possible mappings of two recognition helices are shown schematically, where each
recognition helix is represented by a series of squares. The longer recognition helix is held fixed, and is always oriented from the N- to
the C-terminus. The shorter recognition helix is allowed to slide along the longer helix, as long as a minimum of 8 residues are overlap-ping between
the two helices. The orientation of the shorter helix can also be flipped. Acceptable mappings are shown in green, and an unacceptable mapping is
shown in pink

Fig. 11 Database schema showing all major tables and their inter-relationships

AlQuraishi et al. BMC Bioinformatics  (2015) 16:390 Page 12 of 19



recognition helices are of the same length and are longer
than m residues, then the above considerations apply as
well (which helix is treated as shorter is irrelevant). A
final issue is that one recognition helix may run in the
N-terminus to C-terminus direction, while the other
runs in the opposite direction; this has to be taken into
account as well. Figure 10 depicts all the possible
mappings for a given pair of recognition helices. For
each DNA-based alignment of a pair of HTH-DNA
complexes, this procedure is carried out, and the recog-
nition helix-based alignment with the lowest RMSD
returned. Finally, out of all possible 50 alignments, the

one yielding the lowest RMSD is returned as the final
alignment. This pairwise alignment includes a residue-
by-residue correspondence between the recognition heli-
ces of the two HTH-DNA complexes, as well as a base-
by-base correspondence between their DNA molecules.

Clustering
The alignment procedure described so far yields a pair-
wise alignment between pairs of HTH-DNA complexes.
We sought a multiple alignment that would yield a
unified coordinate system across the database, where a
DNA base (or amino acid residue) in one HTH-DNA

Table 3 List of final set of structures in database. Some PDB files contain multiple non-redundant HTH domains which were treated
as separate structures

ID PDB ID Chain ID Recognition helix residues ID PDB ID Chain ID Recognition helix residues

1 1AWC A 371–383 33 1 K61 A 172–189

2 1 AU7 A 44–51 34 1 K78 A 132–140

3 1 AU7 A 142–157 35 1 K78 A 62–75

4 1B72 A 244–262 36 1 K78 B 386–396

5 1B8I A 142–157 37 1L3L A 201–217

6 1B8I B 245–260 38 1LE8 A 110–124

7 1BC8 C 55–70 39 1LE8 B 172–188

8 1BL0 A 41–52 40 1LMB 3 44–51

9 1BL0 A 91–102 41 1LQ1 A 208–226

10 1CF7 A 55–68 42 1O3S A 179–193

11 1CF7 B 113–132 43 1PDN C 47–60

12 1D5Y A 34–47 44 1PER L 28–36

13 1DDN A 38–50 45 1PP7 U 79–90

14 1DU0 A 41–57 46 1PUE E 227–240

15 1DUX C 56–68 47 1PUF A 245–268

16 1E3O C 43–53 48 1PUF B 276–294

17 1E3O C 141–157 49 1R71 A 181–190

18 1EFA A 16–25 50 1RIO H 408–424

19 1F4K A 53–67 51 1RZR A 15–24

20 1FJL A 42–63 52 1SAX A 41–55

21 1FOK A 104–116 53 1TC3 C 236–244

22 1GDT A 172–180 54 1U78 A 92–103

23 1GXP A 192–206 55 1U8R A 37–51

24 1HCR A 172–180 56 2CGP A 180–192

25 1HLV A 119–130 57 2HDD A 42–57

26 1HLV A 38–48 58 3CRO L 28–36

27 1IC8 A 140–150 59 3HDD A 42–57

28 1IC8 A 260–273 60 6CRO A 27–36

29 1IG7 A 141–159 61 6PAX A 117–130

30 1IGN A 538–552 62 6PAX A 47–60

31 1JE8 A 183–198 63 9ANT A 42–58

32 1JGG A 141–159
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complex would map to corresponding DNA bases (or
amino acid residues) in all other HTH-DNA complexes.
To obtain such a multiple alignment and its resulting
unified coordinate system, the Affinity Propagation (AP)
[79] clustering algorithm was run on the complexes in
the database, with the distance between any two com-
plexes defined as the final RMSD value of the alignment
obtained from the pairwise structural alignment step.
The AP algorithm has the advantage of returning an
exemplar for every cluster found. Exemplars are charac-
terized by being the cluster member with the smallest
distance to all other members of the cluster. Further-
more, the AP algorithm does not require an explicit
specification of the number of clusters to be returned,
but instead uses a soft parameter approach that enables
biasing toward smaller or larger clusters. By varying this
single soft parameter and rerunning the AP algorithm, a
clustering configuration was found that yielded a single,
large cluster, which included the majority of HTH-DNA
complexes, and a set of smaller clusters, mostly com-
prising one HTH-DNA complex each. Inspection of
the singleton clusters revealed that they were either
false positives that were not detected during the earl-
ier stages of our pipeline, or protein-DNA complexes
in which the DNA molecule was substantially bent.
Because these complexes deviated markedly in struc-
ture from most HTH-DNA complexes and formed
only a small subset (nine proteins), they were ex-
cluded from the analysis used in deriving a unified
coordinate system. However they were retained in the
database, as a separate set, to facilitate their future
analysis. All false positives were removed entirely.
Using the exemplar of the cluster as a reference
point, the pairwise alignments between every HTH-
DNA complex and the exemplar complex were used
to establish a multiple alignment. A correspondence
between any two complexes can be found by first
mapping to the exemplar complex, and then mapping
to the other complex. For example, if the ith DNA
base of complex 1 mapped to the jth base of the
exemplar, and the jth base of the exemplar mapped
to the kth base of complex 2, then the ith base of
complex 1 maps to the kth base of complex 2. Using
this scheme, a single unified multiple alignment was
determined. In addition, all HTH-DNA complexes
other than the exemplar were affine transformed so
that their DNA molecules and recognition helices are
superimposed on the exemplar complex, to prepare
the final database.

Database schema
The full schema of the database is shown in Fig. 11. The
“Complex” table is the central table, whose entries
correspond to the unique protein-DNA complexes in

the database. Each complex corresponds to a single
protein domain that binds DNA. This table contains
information on the PDB id of the structure, gene and
protein name information, classification of the motif,
source organism, and a listing of database sources with
quantitative binding information for the complex. Two
other major tables, as well as a number of minor tables,
support the “Complex” table. The “Binding Site” table
contains entries corresponding to unique and experi-
mentally verified DNA binding sites. Each entry identi-
fies the complex and corresponding DNA binding sites,
the source database, the quality and type of experiment

Table 4 Distribution of DNA binding site data sources

Data source Fraction of DNA binding sites

TRANSFAC 39.39 %

PRODORIC 22.41 %

RedFly/FlyReg 18.22 %

Fly SELEX 17.79 %

Original literature 14.13 %

JASPAR 12.04 %

HTP SELEX 4.19 %

RegTransBase 2.90 %

DBTBS 2.19 %

RegulonDB 1.05 %

DPInteract 0.71 %

Percentages do not add up to 100 because some sites occur in
multiple databases

Table 5 Distribution of source organisms for DNA binding sites

Data source Fraction of DNA binding sites

Homo sapiens 36.39 %

Drosophila melanogaster 23.74 %

Mus musculus 22.17 %

Escherichia coli 19.65 %

Rattus norvegicus 12.84 %

Xenopus laevis 11.13 %

Hylobates lar 8.28 %

Gallus gallus 8.28 %

Cricetulus griseus 8.28 %

Cercopithecus aethiops 8.28 %

Bacillus subtilis 7.99 %

Tribolium castaneum 4.19 %

Drosophila pseudoobscura 4.19 %

Drosophila funebris 4.19 %

Others 3.62 %

Sus 2.85 %

Saccharomyces cerevisiae 2.00 %

Percentages do not add up to 100 because some sites occur in
multiple organisms
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used to identify the site, and the source organism. The
“PWM” table contains information about the PWMs of
each complex in the database, including IDs correspond-
ing to the files containing the actual PWMs and a listing
of all sources used deriving the PWM. In addition to the
core database which contains all the meta information,
formatted files containing PWMs and processed PDB
files containing the full complexes, the HTH domain in
complex with the DNA, the HTH domain alone, and the
DNA molecule alone are also available for download
from the website.

Utility and discussion
We obtained 63 non-redundant HTH-DNA complexes
and PWMs. The complexes are listed in Table 3, and the
data sources used in deriving the PWMs are listed in
Table 4. Over 2,100 DNA binding sites were found,
spanning over 60 distinct HTH domains and 30 organ-
isms (Table 5). The number of DNA binding sites found
per protein-DNA complex ranged from 1 to 210, with a
median of 19 (Fig. 12). The structural alignment and

clustering steps we performed resulted in a single cluster
that included all the HTH-DNA complexes in the data-
base. Figure 13 depicts the aligned complexes, and Fig. 14
shows the distribution of RMSD values from all cluster
members to the exemplar structure (closest structure to
all others). The RMSD values are low, with a median of
around 2 Å and no values above 3.5 Å, indicating that
the alignments are within experimental accuracy. This is
confirmed by the tight visual superposition (Fig. 13)
indicating that the structural alignment was success-
ful and that the HTHs selected for the database do
bind with a highly conserved binding modality that
can be exploited algorithmically using our unified
coordinate system.

Core functionality
The database is available in downloadable form for
programmatic use, and as a web service for interactive
use. Users are able to browse and search for HTH-
DNA complexes using all available fields, including gene
and protein names, motif types, and source organism. For
each entry, graphical and numerical representations of the
PWM are readily accessible on the website, in addition to
information describing the mapping of the structure to
the unified coordinate system.

Protein-specific statistics of the HTH-DNA binding
interface
For each HTH-DNA complex, the statistics of pair-
wise atomic contacts are visualizable on the website
(Fig. 15). After the user selects a distance cutoff, a
high-level summary of the most important residue
position pairs is presented, with thickness of edges
between positions indicating frequency of atomic
contacts. This enables the exploration and identi-
fication of potentially specificity-determining residues
in different HTH proteins. Furthermore, the user is
able to select specific residues for further analysis.

Fig. 13 Structural alignment of HTH-DNA complexes. Two views (different viewing angles) of the 63 structurally aligned HTH-DNA complexes in
the final database. The Cα traces of recognition α-helices are shown in blue and the C3’ traces of DNA helices are shown in pink

Fig. 12 Distribution of binding sites. A histogram of the number of
experimentally-characterized DNA binding sites found per protein-DNA
complex is shown
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The interactive website provides a listing of all ob-
served atomic contact pairs in the database for the
selected positions, including their separation distance
and atomic types.

Global statistics on HTH-DNA interactions
The web service also provides summary information
on HTH-DNA interactions across all complexes. A
“global” interactive widget is provided in which the
user can observe the overall frequencies of atomic
contacts across all position pairs in the unified coor-
dinated system. Visual inspection immediately identi-
fies positions 10, 11, 14, and 15 in the protein
interface as the most important (Fig. 16), and simi-
larly positions 5 through 10 in the DNA molecules.
Consistent with biophysical intuition, it is readily evi-
dent using this widget that most interactions occur in
the middle of the DNA sequence motif, with a grad-
ual falling off of interaction frequency as one moves
toward the periphery of the DNA motif. For more in

depth investigation, the user is able to select any
position pair of interest, as well as an interaction
distance cutoff. Detailed information is then presented
on the atomic interaction frequencies across all atom
types in the form of a Heatmap (Fig. 16). As ex-
pected, atoms from residues known to be involved in
mediating protein-DNA interactions, for example argi-
nines and lysines, are significantly overrepresented in
this interaction Heatmap (atom types 17 and 18 in
Fig. 16). More broadly, this widget enables answering
a wide array of questions, such as (i) when a given
DNA position is a certain nucleotide, what are the
most frequent protein atoms and residues interacting
with it, (ii) conversely when a given protein position
is a certain amino acid, what are the most frequent
DNA atoms and nucleotides interacting with it, (iii)
what are the relative interaction frequencies of differ-
ent types of atoms, for example those in the back-
bone versus those in the side-chains. In general, this
functionality enables the investigation of the biophys-
ical determinants of protein-DNA selectivity in HTH
domains.

Development of sequence-structure algorithms
In addition to interactive use, the major utility of this
database is to provide numeric access to the statistics of
HTH-DNA interactions using a unified coordinate sys-
tem that links structural and sequence information.
Without this mapping, it is not possible to use super-
vised machine learning methods that use structural
information as input and PWM information as output.
We previously used this database in this precise fashion to
derive de novo and statistical protein-DNA potentials that
rely on combining structural and sequence data [26, 27].
These algorithms improved protein-DNA prediction per-
formance beyond existing algorithms, and this improve-
ment was shown to be due in part to the integration of
structural and sequence information [27].

Fig. 15 Snapshot of web-based interface for analyzing atomic contact frequencies of HTH-DNA interactions. The protein-DNA binding interface
of the Ultrabithorax Homeodomain from D. melanogaster. Green and yellow squares represent residue positions of protein and DNA, respectively,
which have been mapped to the universal coordinate system. Edges connecting squares indicate proximity of atoms within a user-defined
threshold (shown at five angstroms). For each position pair, the user can interrogate the set of atom-atom interactions observed

Fig. 14 Structural similarity of HTH-DNA complexes. A histogram of
the distribution of RMSD values for the HTH-DNA complexes in
the database is shown. RMSD values are computed based on
the distance of each complex to the exemplar
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Conclusions
The database described in this work will facilitate a
number of unique applications. First, the coupling of
structural information with binding affinity data enables
the statistical analysis of the structural basis of protein-
DNA biochemical affinity. Second, the unified coordin-
ate system enables a comparison of the similarities and
differences of the steric and physico-chemical environ-
ments at the interface of HTH-DNA binding at single-
residue resolution. Third, the standardization of all
complexes in the databases facilitates machine learning
and data-driven applications that require structured and
standardized data sets. Taken together these features will
enable the exploration of sequence- and structure-based
approaches to protein-DNA modeling.
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