
Precise Scalable Static Analysis for Application-
Specific Security Guarantees

Citation
Johnson, Andrew Arthur. 2015. Precise Scalable Static Analysis for Application-Specific Security
Guarantees. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845430

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845430
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Precise%20Scalable%20Static%20Analysis%20for%20Application-Specific%20Security%20Guarantees&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=e70c2eef984a1c3513c7196c24205cb6&departmentEngineering%20and%20Applied%20Sciences%20-%20Computer%20Science
https://dash.harvard.edu/pages/accessibility

Precise Scalable Static Analysis
for Application-Specific Security Guarantees

A dissertation presented
by

Andrew Arthur Johnson

to
The School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

May 2015

© 2015 Andrew Arthur Johnson
All rights reserved.

Dissertation Advisor: Professor Stephen Chong Andrew Arthur Johnson

Precise Scalable Static Analysis
for Application-Specific Security Guarantees

Abstract

This dissertation presents Pidgin, a static program analysis and understanding tool that

enables the specification and enforcement of precise application-specific information se-

curity guarantees. Pidgin also allows developers to interactively explore the information

flows in their applications to develop policies and investigate counter-examples.

Pidgin combines program dependence graphs (PDGs), which precisely capture the in-

formation flows in awhole application, with a customPDGquery language. Queries express

properties about the paths in the PDG; because paths in the PDG correspond to informa-

tion flows in the application, queries can be used to specify global security policies.

The effectiveness of Pidgin depends on the precision of the static analyses used to pro-

duce program dependence graphs. In particular it depends on the precision of a points-to

analysis. Points-to analysis is a foundational static analysis that estimates the memory lo-

cations pointer expressions can refer to at runtime. Points-to information is used by clients

ranging from compiler optimizations to security tools like Pidgin. The precision of these

client analyses relies on the precision of the points-to analysis. In this dissertation we in-

vestigate points-to analysis performance/precision trade-offs, including a novel points-to

analysis for object-oriented languages designed to help establish object invariants.

This dissertation describes the design and implementation of Pidgin and the points-to

analyses that allowPidginandother static analyses to scale to large applications.We report

on using Pidgin: (1) to explore information security guarantees in legacy programs; (2)

to develop and modify security policies concurrently with application development; and

(3) to develop policies based on known vulnerabilities.

iii

Contents

1 Introduction 1
1.1 Points-to analysis . 2
1.2 Flow sensitivity and strong update . 3
1.3 Application specific security . 5
1.4 Contributions and outline . 8

2 Multithreaded Points-to Analysis 10
2.1 Introduction and background . 10
2.2 Analysis . 20
2.3 Implementation . 26
2.4 Evaluation . 31
2.5 Related work . 48

3 Flow Sensitive Points-to Analysis 54
3.1 Introduction and background . 54
3.2 Analysis . 59
3.3 Implementation . 73
3.4 Evaluation . 77
3.5 Related work . 83

4 Pidgin 88
4.1 Introduction . 88
4.2 Pidgin by example . 91
4.3 Program dependence graphs (PDGs) and security guarantees 97
4.4 Querying PDGs with PidginQL . 104
4.5 Implementation . 109
4.6 Case Studies . 113
4.7 Using Pidgin . 121
4.8 Related work . 129

5 Conclusion 134

iv

Listing of figures

2.1 Program where context sensitivity can increase precision 13
2.2 Functions used to define new procedure analysis contexts and abstract

objects. 14
2.3 Different context sensitivities and the merge and record functions which

define their behavior. 15
2.4 Analysis domains . 20
2.5 Functions used by the analysis . 22
2.6 Performance comparison with the points-to analysis built intoWALA [13]. 35
2.7 Context insensitive analysis performance relative to that for a single thread. 37
2.8 Performance relative to that for a single thread for a 2-type-sensitive anal-

ysis with a 1 type-sensitive heap. 39
2.9 Performance relative to that for a single thread for a 1-object-sensitive

points-to analysis. 42
2.10 Relativeperformance improvementwhenusing singletonabstract objects

for a given set of types. 45
2.11 Relative number of points-to graph nodes when using singleton abstract

objects for a given set of types. 46
2.12 Relativenumberof call graphnodeswhenusing singletonabstract objects

for a given set of types. 47

3.1 Strong update example . 56
3.2 Analysis domains for our flow-sensitive points-to analysis 59
3.3 Flow-sensitive analysis functions . 61
3.4 Definition of the Killed function. 64
3.5 Interaction between the recency abstraction and flow-insensitive points-

to sets. 69
3.6 Flow-sensitive points-to set definition. 70
3.7 Performance of the flow-sensitive points-to analysis vs. number of pro-

cessing threads. 79

4.1 Guessing Game program . 92
4.2 PDG for Guessing Game program . 92
4.3 Access control example . 102
4.4 PidginQL grammar . 104
4.5 PidginQL policy expressing Policy C2 125

v

List of Tables

2.1 Subset relations for points-to statements occurring in an analysis context c 24
2.2 Applications in the Dacapo Benchmark suite [9]. 32
2.3 Size of the call graph and points-to graph for a context insensitive analysis. 38
2.4 Size of the call graph and points-to graph for a 2-type-sensitive points-to

analysis with a 1 type-sensitive heap. 40
2.5 Sizeof the call graph andpoints-to graph for a 1-object-sensitive points-to

analysis . 41

3.1 Subset relations for points-to statements (in an analysis context c) that
only involve flow-insensitive points-to information. 66

3.2 Subset relations for points-to statements thatmay use ormodify the flow-
sensitive points-to graph. 67

3.3 Flow-sensitive points-to analysis performance. 78
3.4 The precision of the non-null analysis as measured by the percent of pos-

sible NullPointerExceptions (e.g. non-static method calls) that can be
proved impossible by the analysis. 80

3.5 The precision of a cast removal analysis measured by the percent of dy-
namic casts that are always allowed. 82

3.6 The precision of the interval analysis as measured by the percent of inter-
vals that contain zero. 83

4.1 Program sizes and analysis results . 114
4.2 Policy evaluation times . 114
4.3 SecuriBench Micro results . 120

vi

Acknowledgments

First and foremost, I would like to thank my advisor, Stephen Chong. Without his hard
work, guidance, and patience, this dissertation would not have been possible. I also thank
committee members Greg Morrisett and Eddie Kohler for their valuable feedback. They
especially helped provide perspective when it was needed.

Without my collaborators this work would have been a lot more difficult and a lot less
fun.MonicaChao helped lay the foundation for our flow-sensitive points-to analysis. Scott
Moore and Lucas Waye contributed to the design and implementation of Pidgin. In ad-
dition everyone in the Harvard programming languages group in some way to made my
experience more enjoyable, and I learned much through osmosis, eavesdropping on (and
occasionally contributing to) discussions.

My familywere all extremely supportive ofmydecision to return to graduate school.My
mom instilled in me a love of learning and the desire to never stop, and my dad’s weekly
conversations reminded me that there was someone else who cared about my progress.

There is not enough space to enumerate the contributionsmywife,Kim, hasmade tomy
life.Thisworkwouldnothavebeenpossiblewithout her love and support. Longwalkswith
Kingsley was the best time to work through difficult problems, and Napoleon was always
ready to play, distracting me from those same problems. Lastly, I would like to thank our
new son, Oliver, for giving me something new to strive for.

vii

1
Introduction

Many applications store and compute with sensitive information, including confidential

and untrusted data.Thus, application developers must be concerned with the information

security guarantees their application provides, such as how public outputsmay reveal con-

fidential information and how potentially dangerous operations may be influenced by un-

trusted data.These guarantees will necessarily be application specific, since different appli-

cations handle different kinds of information, with different requirements for the correct

handling of information. Moreover, these guarantees are properties of the entire applica-

tion, rather than properties that arise from the correctness of a single component.

Current tools and techniques fall short in helping developers address information se-

curity. Testing cannot easily verify information-flow requirements such as “no informa-

tion about the password is revealed except via the encryption function.” Existing tools

for information-flow security are inadequate for a variety of reasons, since they either un-

soundly ignore important information flows, require widespread local annotations, pre-

vent functional testing and deployment, or fail to support the specification and enforce-

ment of application-specific policies.

The goal of this work is to enable developers to express and enforce application-specific

security policies for programs written in existing languages with support for both legacy

applications and new development.

1

This dissertation presents a methodology that makes use of static program analysis. We

focus our attention on the security of imperative object-oriented languages. In these lan-

guages the precision of most static analyses, including all of those mentioned in this dis-

sertation, depends on the precision of a points-to analysis, a fundamental static program

analysis that approximates whichmemory locations each program expressionmay refer to.

In Chapter 2 and Chapter 3 we present scalable multi-threaded points-to analyses and ex-

plore different trade-offs in precision and performance. InChapter 4 we use the results of a

points-to analysis and several client static analyses to construct program dependence graphs

(PDGs) [29] that precisely and intuitively capture the information flows within an entire

program.¹ We show how PDGs together with a custom PDG query language can enable

the exploration, specification, and enforcement of application-specific information secu-

rity guarantees. We present a tool called Pidgin that uses the techniques described in this

dissertation and demonstrate the use of Pidgin to discover and describe security policies

for both legacy and newly developed applications.

1.1 Points-to analysis

In imperative languages, the precision and utility of the static analyses used to reason

about application security and other important program properties rely on the results of a

points-to analysis. Points-to analysis is a foundational static analysis that computes which

memory locations pointers may reference.² In this dissertation we chose to design and im-

plement a custom points-to analysis to easily explore the different trade-offs between pre-

¹PDGs for a whole program are also called system dependence graphs [47].

²There are also points-to analyses that computememory locations a pointermust point to.The sound-
ness of the client analyses we use relies on a conservative overapproximation of points-to information, i.e.,
as computed by amay-point-to analysis. This dissertation focuses on may-point-to analyses.

2

cision and performance.

Choosing which type of context sensitivity to use is one of the most important perfor-

mance/precision trade-offs a particular points-to analysis must make [52]. Our points-

to analysis analysis is parameterized à la Kastrinis and Smaragdakis [52], enabling pro-

grammable context sensitivity. This allows us to express many different points-to analyses,

including object-sensitive analyses [64, 76, 100], call-site-sensitive analyses [96, 97], and

others. This programmability can also be used to define a custom context sensitivity that

provides exactly the precision needed.

In general, a points-to analysis that produces more precise results (e.g., by choosing

more precise context sensitivity) takes more time to compute those results. In order to ef-

fectively reason about the security properties of whole programs a points-to analysis needs

to scale to hundreds of thousands of lines of code without loss of precision. To take ad-

vantage of multi-core and multi-processor architectures our analysis is multithreaded. To

scale this analysis we precisely track dependencies and use a difference propagation algo-

rithm [28, 63, 84].

1.2 Flow sensitivity and strong update

Another particularly interesting dimension of points-to analysis design is flow sensitivity.

Flow-insensitive points-to analyses, such as that described in Chapter 2, compute points-

to information that may hold at any point in the program’s execution. By contrast, flow-

sensitive points-to analyses compute points-to information for each program point, which

is potentially more precise but less scalable.The precision of flow-sensitive points-to anal-

yses is particularly appealing because it can enable strong update [15], whereby an assign-

ment can replace the statically computed facts associated with a memory location. By con-

3

trast, in a weak update, an assignment adds to the statically computed facts of a memory

location.

Strong update to an abstractmemory location can be performed only when the abstract

location corresponds to exactly one concrete memory location.³ To ensure that there are

abstract locations that usefully correspond to exactly one concrete location, Balakrishnan

and Reps [6] introduce the recency abstraction, in which objects created at a given alloca-

tion site are represented by two abstract objects: one represents the object most recently

allocated at the allocation site and one summarizes all other objects allocated at the al-

location site. A field of the most-recently-allocated abstract object represents exactly one

concrete location, and thus strong update can be performed on it.

Lhoták and Chung [62] introduce a points-to analysis for C programs that is flow-sen-

sitive only for abstract locations on which strong update may be possible and treats other

abstract locations flow insensitively, which significantly improves the performance of the

analysis.

In this dissertation we combine the recency abstraction with the insights of Lhoták

and Chung [62] to define a novel points-to analysis for object-oriented languages that

is flow-sensitive only for abstract locations on which strong update may be possible, i.e.,

for fields of most-recently-allocated abstract objects and for static variables.⁴ Our analysis

treats other abstract locations (i.e., fields of non-most-recently-allocated abstract objects)

flow insensitively. Moreover, since object construction typically takes place on the most

recently allocated object, the recency abstraction enables strong update exactly where it is

³In object-oriented analyses, an abstract object represents zero or more concrete objects, and abstract
locations include fields of abstract objects as well as local and static variables.

⁴Although abstract locations for local variables can be soundly strongly updated, we use a partial static
single assignment (SSA) program representation [20], which gives many of the benefits of flow-sensitive
analysis for local variables, with the efficiency of flow-insensitive analysis.

4

most useful for object-oriented analyses: during the establishment of object invariants.

1.3 Application specific security

This dissertation presents a novel approach to application-specific security combining

program-dependence graphs with a custom graph query language. PDGs express the con-

trol and data dependencies in a program, and abstract away unimportant details such the

sequential order of non-interacting statements. They are a great fit for reasoning about in-

formation security guarantees, since paths in the PDG correspond to information flows in

the application. Our queries express properties of PDGs which thus correspond to infor-

mation-flow guarantees about the application.

Often application-specific security guarantees are enforced with labor intensive and er-

ror-prone testing and auditing based on informal policy specifications. It is also difficult or

impossible to verify certain information-flow properties with this approach.

Security-typed languages (e.g., Volpano et al. [114], Jif [78] and FlowCaml [98]) can

also be used to enforce application-specific policies for programs written in full-featured

programming languages. In these languages, all expressions carry a security type defining

the allowed information flows between expressions. Global security policies are broken

into many pieces and expressed via type annotations throughout the program. If an ap-

plication type-checks then the security policy specified by these annotations holds. This

is problematic for at least three reasons. First, it is difficult to determine from these anno-

tations how sensitive information is handled by the system as a whole, particularly in the

presence of declassification [94]. Second, changing the security policy may require mod-

ifying many program annotations. Third, supporting legacy applications using these tech-

niques is often infeasible, as they require significant annotations and/or modifications to

5

the applications.

Dynamic or hybrid information-flow enforcement mechanisms (e.g., [4, 5, 14, 48, 57,

106]) are sometimes able to specify security policies separate fromcode, but interferewith

the deployment of systems: they must be used during testing in order to ensure that en-

forcement does not conflict with important functionality.

Taint analysis tools (e.g., [17, 27, 65, 110, 111, 122]) are inevitably unsound because

they do not account for information flow through control channels, and often do not sup-

port expressive application-specific policies.

Pre-defined policies (such as policies that might be enforced on all Android apps) can

capture many security requirements of broad classes of applications. However, applica-

tionshandledifferent typesof sensitive information(e.g., bankaccount information, health

records, school records, etc.) andwhat constitutes correct handling of this information dif-

fers between applications. Pre-defined policies cannot express these application-specific

security requirements.

Previous PDG-based information security tools (e.g., [30, 35, 37]) have many of the

same issues as security-typed languages. For all but the simplest security policies, these

tools require program annotations to specify security policies, with the concomitant issues

regarding legacy applications, modifying security policies, and understanding the system-

wide security guarantees implied by the annotations.

Moreover, all these existing techniques focus almost exclusively on enforcement of se-

curity guarantees and do not support exploration.

Our approach as embodied in our tool, Pidgin, addresses several of the weaknesses

discussed above.

− Pidgin security policies are expressive, precise, and application specific, since they are

6

queries in an expressive query language designed specifically for finding and de-

scribing information flows in a program.Queries can succinctly express global secu-

rity guarantees such as noninterference [31], absence of explicit information flows,

trusted declassification [42], and mediation of information-flow by access control

checks.

− Developers can interactively explore an application’s information security guarantees. If

there is no predefined security specification then Pidgin can be used to quickly ex-

plore the security-relevant information flows in a program and discover and specify

the precise security policies that an application satisfies. If a policy is specified but

not satisfied, then Pidgin can help a developer understandwhy by finding informa-

tion flows that violate the policy.

− Pidgin security policies are not embedded in the code. Pidgin policies are specified

separate from the code. The code doesn’t require program annotations nor does it

mention or depend on Pidgin policies. This enables the use of Pidgin to specify

security guarantees for legacy applications without requiring modification of the

application.

− Enforcement of security policies does not prevent development or testing. Because the

program code does not mention or depend on Pidgin policies, the policies do not

prevent compilation or execution. This makes it possible for developers to choose

a balance between development of new functionality and maintenance of security

policies.

− Pidgin enables regression testing of information security guarantees. Pidgin can be in-

corporated into a build process to warn developers if recent code changes violate a

security policy that previously held. This includes information-flow properties that

7

traditional test cases can not easily detect.

1.4 Contributions and outline

This dissertation presents a new approach to application-specific security and demon-

strates its utility with Pidgin, a tool that implements this methodology for Java bytecode.

Since our approach is based on static analysis we rely heavily on a precise and scalable

points-to analysis. Chapter 2 describes the design and implementation of the custommul-

tithreaded implementation of a context-sensitive flow-insensitive points-to analysis used

by Pidgin.We discuss the different trade-offs thatmust bemadewhen designing a points-

to analysis and how we achieve scalability. We also report on the performance of our im-

plementation for Java bytecode. To our knowledge, this is the firstmultithreaded points-to

analysiswithparameterized context sensitivity and thefirstmultithreaded implementation

of a context-sensitive points-to analysis for an object-oriented language.

Chapter 3 focuses on a particularly interesting points-to analysis trade-off, flow sensitiv-

ity, as well as exploiting the precision improvement enabled by strong update.We describe

a novel analysis for object-oriented languages that is specifically designed to enable strong

update.We show that this analysis scales well and improves precision in several client anal-

yses. Note that we do not use this partially flow-sensitive analysis in our implementation

of Pidgin.

Chapter 4presentsour approach to application-specific security as embodied inPidgin.

The primary contributions of this chapter are:

1. The novel insight that PDGs offer a unified approach that enables exploration, speci-

fication, and enforcement of security guarantees.

2. The design of an expressive language for precise, application-specific security poli-

8

cies, based on queries evaluated against PDGs.

3. The realization and demonstration of these insights and techniques in an effective

and scalable tool.

Chapter 4 describes our methodology, the structure of the PDGs we generate, and se-

curity guarantees that can be expressed as queries in PidginQL, our custom graph query

language. We also discuss our implementation for Java bytecode. This chapter culminates

in Sections 4.6 and 4.7 where we relate our experience using Pidgin to discover, specify,

and enforce security guarantees in several legacy applications and as part of the develop-

ment process. We show that Pidgin scales to large applications and that we can find and

enforce strong and precise security guarantees even for legacy applications where the se-

curity policy is not part of an a priori specification.

The work on Pidgin was done in collaboration with Lucas Waye, Scott Moore, and

Stephen Chong and is adapted from Johnson et al. [49].The flow-sensitive points-to anal-

ysis is joint work with Ling-Ya (Monica) Chao and Stephen Chong.

9

2
Multithreaded Points-to Analysis

2.1 Introduction and background

A points-to analysis or pointer analysis computes an approximation of the points-to graph,

a map from the pointer expressions in a program to the set of memory locations to which

they refer [26].¹ A more precise points-to analysis computes a better estimate of the loca-

tions that pointers can point to at runtime. The precision of static analyses for imperative

languages often relies heavily on the precision of a points-to analysis. Client analyses that

depend on the results of a points-to analysis range from simple compiler optimizations to

complex analyses used to reason about the correctness and security of whole applications.

Computing an exact points-to graph is an undecidable problem so the best we can do is

compute an approximation.² In general amoreprecise points-to graph takes longer to com-

pute. There are a number of well known points-to analysis performance/precision trade-

offs. We chose to implement our own points-to analysis rather than use an off-the-shelf

analysis in order to more easily be able to explore these trade-offs and in order to take ad-

vantage of multi-core and multi-processor architectures.

Toour knowledge, our analysis is the firstmultithreadedpoints-to analysis that supports

¹A points-to analysis is related to but distinct from an alias analysis which determines which pairs of
pointer expressions may refer to the same memory location [59].

²The undecidability of points-to analysis can be derived from the undecidability of the halting prob-
lem [55, 89].

10

many different types of context sensitivity and the first multithreaded context-sensitive

analysis for an object-oriented language.Throughout this dissertationwe restrict ourselves

to analyses for object-oriented languages, although much of what we describe is not spe-

cific to these languages and is relevant to analyses for any imperative language.

2.1.1 May or must

Most points-to analyses compute the set of memory locations each pointer may point

to (also called the points-to set).This is known as amay points-to analysis. Amay points-to

analysis is sound if it conservatively over-approximates each points-to set. This is in con-

trast to a must points-to analysis which computes an under-approximation of the memory

locations each pointer must point to at run-time. The soundness of most client analysis,

including all those in this dissertation, depend on the results of a may points-to analysis. ³

For the rest of this dissertation we will consider only may points-to analyses.

2.1.2 Modeling memory locations

There are a potentially unbounded number of memory locations that are dynamically

allocated at runtime. In order for our points-to analysis to terminate we need some finite

abstraction. We abstract heap locations in an object-oriented points-to analysis using ab-

stract objects. An abstract object represents zero or more concrete objects (i.e., objects dy-

namically created at run-time). The most common abstraction is to model an object by

its static allocation site. In this so-called allocation-site abstraction an abstract object rep-

resents all objects that are dynamically created at a given static allocation site. Less pre-

cise representations include using a single abstract object per type or even a single abstract

³In somecases amust-point-to analysis canbeused to improve theprecisionof amaypoints-to analysis
and client analyses [26].This is beyond the scope of this dissertation.

11

object for the entire heap. In Chapter 3 we the recency abstraction introduced by Balakr-

ishnan and Reps [6] which uses two abstract objects per allocation site; one representing

the most-recently-allocated object and another representing all other allocations. There

are also more complex shape analyses that base abstractions on various properties of the

heap [34, 95, 117].

2.1.3 Context sensitivity

In order to provide useful results for sophisticated client analyses a points-to analy-

sis must compute interprocedural points-to information, i.e., points-to information for an

entire application taking into account the calling relationships between procedures. The

number ofmethods called during the execution of a program is unbounded and, as a static

analysis that must terminate, we model these using a finite abstraction. One simple choice

is to analyze each method at most once, merging the results for all possible call sites. This

is known as a context-insensitive analysis.

A context-sensitive analysis [26], on the other hand, differentiates multiple calls to the

same procedure based on an analysis context (e.g., the static procedure call site). A “good”

choice of analysis context for method calls groups “similar” dynamic call sites under the

same context and differentiates call sites that should be kept distinct. The definitions of

“good” and “similar” in the previous sentence depend on many factors including the lan-

guage being analyzed, the client analysis that will use the points-to results, and even com-

mon programming idioms and design patterns. As a result, the choice of context is largely

application-specific.Thechoiceof context-sensitivity alsohas a large effectonperformance

(see e.g., [26, 52, 76, 100]). We use the abstraction of Kastrinis and Smaragdakis [52] to

allow our points-to analysis to be run with many different types of context-sensitivity.

In object-oriented points-to analyses abstract objects can also include a context, called

12

1 a = new C1();
2 b = new C2();
3 foo() {
4 Object x = bar(a);
5 Object y = bar(b);
6 }
7
8 bar(Object z) {
9 return z;
10 }

Figure 2.1: Program where context sensitivity can increase precision

a heap context in Smaragdakis et al. [100] to differentiate it from the procedure analysis

contexts used to distinguish different method calls and described above. Heap contexts

serve the same purpose as method contexts, enabling the fine-grained partitioning of an

unbounded number of memory locations into a finite number of abstract objects. This is

achieved by incorporating information about the context in which an allocation occurs

into these abstract objects. For example an abstract object may inherit the context of the

allocating procedure.

To see why context sensitivity can produce amore precise points-to graph, consider the

simple example in Figure 2.1. There are two calls to the method bar each with a different

argument. If this codewere analyzed context-insensitively then barwould be analyzed just

once and the return value of this single method would point to C1 and C2.⁴ The points-to

set of x would be similarly imprecise. If we used a call-site sensitive analysis [26], where

analysis contexts are based on the static call site, then the calls to bar on lines 4 and 5

would be analyzed separately.The return from bar on line 4 would point only to C1 andwe

⁴We use the types C1 and C2 to describe the allocations on lines 1 and 2. In the analysis we use abstract
objects to represent allocated objects. The use of types is to simplify the exposition.

13

would correctly determine that x also points only to C1.The cost of this added precision is

analyzing bar an extra time. In general the cost andprecisionof a points-to analysis analysis

varies dramatically with the choice of context [52, 76, 100].

Several different types of analysis context are commonly used, many of which are cap-

tured by the parameterization introduced by Smaragdakis et al. [100] and refined by Kas-

trinis and Smaragdakis [52].

C : contexts
CS : call-sites
AS : allocation sites
AO : abstract objects
Record : AS × C → AO
Merge : AO × CS × C → C
MergeStatic : CS × C → C

Figure 2.2: Functions used to define new procedure analysis contexts and abstract objects.

Theabstraction ofKastrinis and Smaragdakis [52] is definedby the three functions seen

in Figure 2.2. C ranges over contexts, CS ranges over method call sites, AS ranges over al-

location sites, andAO ranges over abstract objects. At a call site cs for a non-static method,

the function Merge computes the new context for the callee from the abstract object ao

for the receiver object and the context cof themethod caller.MergeStatic similarly com-

putes contexts for callees at call sites to static methods which have no receiver. Record is

used to compute an abstract object at an allocation site as in a method with context c.⁵

These three functions can be used to instantiate a number of different context-sensitive

⁵Kastrinis and Smaragdakis [52] treat abstract objects as an allocation site and a separate heap context.
We combine the two in an abstract object and only discuss abstract objects in this dissertation. This gives
us the flexibility of ignoring the allocation site and using a coarser grained abstraction such as the type of
the object being allocated. Abstract objects that do not include the allocation site tend to produce results
that are too imprecise to be useful, which is why Kastrinis and Smaragdakis [52] always include it.

14

Call-site sensitive
C = CSn

AO = AS
Merge(ao, cs, c) push(cs, c, n)
MergeStatic(cs, c) push(cs, c, n)
Record(as, c) as

Full-object sensitive
C = ASn

AO = ASn

Merge(ao, cs, c) ao
MergeStatic(cs, c) c
Record(as, c) push(as, c, n)

Type sensitive
C = ClassNamen

AO = AS × ClassNamem

Merge(ao, cs, c) push(allocatingClass(fst(ao)), snd(ao), n)
MergeStatic(cs, c) c
Record(as, c) (as, firstm(c))

Figure 2.3:Different context sensitivities and themerge and record functions which define their
behavior.

analyses including call-site sensitive analyses, object-sensitive analyses [76], type-sensitive

analyses [100], and others. We show three such instantiations in Figure 2.3. The function

push(e, s, n), pushes an element, e, onto a stack, s, keeping only the n most recently added

elements, thus maintaining a maximum stack height of n. The function firstn returns the

firstn elementsof a stack, andallocatingClass extracts the class nameof the allocatingobject

from an allocation site.

In a call-site sensitive analysis the contexts correspond to the top n frames of the call

stack at the time the analyzed method is called. The two context creation functions add

the current call site to the top of the stack. Abstract objects are named with the object’s

15

allocation site.

In a full-object-sensitive analysis contexts for dynamic dispatch methods are based on

the receiver object abstraction. More precisely the context for a particular method call in

a full-object-sensitive analysis is the abstract object for the receiver of that method call.

Abstract objects are derived from the allocation site and the context of the method where

the allocation occurs, i.e., combining the new allocation site with the allocation site of the

object doing the allocation. A full-object-sensitive analysis is parameterized by an integer

n; contexts and abstract objects are both stacks of allocation sites of height n. A larger n

will result in a more precise analysis. At an allocation site, the abstract object for the newly

allocated object is computed by pushing the new allocation site onto the current analysis

context. The analysis context used at a non-static call site is the abstract object for the re-

ceiver. At a static call site there is no receiver so the context for the caller is used.We could

also use the distinguished initial context for static call sites which would produce less pre-

cise results, but be more scalable. This analysis is extremely effective for object-oriented

languages: more effective than a call-site sensitive analysis since distinguishing methods

called on different receivers often produces better client analysis results than distinguish-

ing different call sites [76].

A type-sensitive analysis is similar to a full-object-sensitive analysis except that the types

of allocating objects are used in place of allocation sites. Type sensitive analyses are param-

eterized by n, the number of types in an analysis context stack, andm, the number of types

in the abstract object stack. Note that at a call site the type of the object containing the

receiver’s allocation site is used rather than the type of the receiver since the method sig-

nature already contains a lot of information about the receiver type.This analysis has been

shown to be more efficient than an full-object-sensitive analysis and provides many of the

16

same benefits [100].

The Merge/Record parameterization allows a composite analysis to be built from

other analyses using a simple cross product operation. For example, when using an full-

object-sensitive analysis all calls to static methods are analyzed using the caller’s context

(since these methods have no receiver). This can lead to imprecision similar to that found

in Figure 2.1. By taking the product of a standard full-object-sensitive analysis with an anal-

ysis that is call-site sensitive analysis only for staticmethod calls, we can gain the benefits of

an object-sensitive analysis for virtual calls while also being precise when analyzing static

calls.

We can also use this parameterization to define custom context sensitivities that pre-

cisely meet the needs of client analyses. Smaragdakis et al. [100] recommend a type sensi-

tive analysis with n = 2 and m = 1 (called a 2type+1H analysis). We found this analysis

to be too imprecise for client analyses that need to reason about Java collections. Using

an easy-to-extend context parameterization allows us to create a custom analysis by taking

the cross product of the 2type+1H analysis with an analysis that is more precise only for

classes in the Java collections framework.

2.1.4 Flow sensitivity and strong update

A flow-sensitive points-to analysis computes a different points-to graph for each program

point. A flow-insensitive points-to analysis computes a single points-to graph that is a con-

servative approximation of the points-to relations that hold across all program points. By

taking control flow into account, a flow-sensitive analysis can be more precise than a flow-

insensitive analysis. This additional precision can result in more opportunities for strong

update. When a strong update is performed at an assignment to a particular abstract loca-

tion, the points-to information for that location is replaced by new points-to information.

17

This is in contrast to a weak update where an an assignment adds to the points-to informa-

tion for an abstract location. Strongupdate canbeperformed at an assignment any time the

points-to set for the assignee corresponds to a single concrete memory location. A flow-

sensitive points-to analysis can also allow client analyses to perform strong update, replac-

ing statically computed facts at some assignments. We discuss more about flow sensitivity

and strong update in Chapter 3 where we present a novel points-to analysis specifically

designed to enable strong update for object-oriented programs. In this chapter we restrict

our attention to a flow-insensitive analysis.

2.1.5 Static single assignment form

In static single assignment (SSA) form[20] each local variable is assigned to at exactly one

static location in the program.When transforming to SSA form variables that are assigned

to multiple times are split into multiple copies, one for each assignment, and each copy is

given a different name. At control-flow join points φ assignment statements are inserted

to combine different copies of the same variable. For example, an SSA variable cannot be

assigned-to in two branches of a conditional, as this violates the SSA assumption. Instead

assignments are made to different variables in each branch and a φ statement is created

directly after the conditional that will choose which variable to use based onwhich branch

of the conditional was taken.

Many of the benefits of flow-sensitivity mentioned in Section 2.1.4 can be achieved by

transforming a program into (SSA) form. In fact much previous work on flow-sensitive

analysis has involved a whole program transformation into SSA form (e.g., [15, 41, 104,

109]). While computing whole program SSA form itself requires the results of a points-to

analysis (e.g., to compute SSA form for object fields), a programcan be converted to partial

SSA form efficiently and without points-to analysis results. Partial SSA form requires that

18

only local variables meet the SSA condition, and allows fields to be assigned to multiple

times. The language we analyze throughout this dissertation is in partial SSA form. Each

SSA local variable has the same points-to set throughout the program and flow sensitivity

is not needed for these local variables.

2.1.6 Other trade-offs

Analysis style Most of the work on points-to analysis derives from one of two proto-

types. Steensgaard-style analyses [105] are based on equivalence classes and use a union-

find data structure to efficiently compute results. Andersen-style analysis [2], the style we

use throughout this dissertation, is basedon subset constraints and efficiently solving these

constraints. Hind and Pioli [45] compares these two styles finding Steensgaard’s analysis

to be more efficient and Andersen’s to compute more precise results. Most recent work

focuses on scaling Andersen-style analyses.

Path sensitivity A path-sensitive analysis builds on flow-sensitive analysis by incor-

porating information learned at branch points. This can improve precision by ruling out

points-to relationships that only occur on infeasible paths (e.g. a path where a number

must be both positive and negative or a boolean must be both true and false). While all

analyses in this dissertation are path insensitive, there is some recent work that suggests

path sensitive analyses may be possible and effective [107].

Field sensitivity A field-sensitive analysis differentiates the different fields in an ob-

ject or struct. Since our implementations are for Java bytecode, and fields in Java can be

distinguished by name and cannot alias one another, we get this feature easily. Indeed,

most points-to analyses for Java are field-sensitive. In C field-sensitivity is more complex;

19

T : class types
F : resolved instance fields
S : method signatures
M : resolved methods
V : reference variables
C : contexts
AO : abstract objects
CS : call sites
AS : allocation sites

Figure 2.4:Analysis domains

a field-sensitive analysis for C is more expensive than field-insensitive analysis but is much

more precise [85]. We use a field-sensitive analysis throughout this dissertation.

2.2 Analysis

In this sectionwe describe our points-to analysis.We present our analysis as subset rela-

tions in the style of Andersen [2]. The points-to analysis algorithm computes the smallest

points-to sets that satisfy all the constraints induced by the subset relations. Our imple-

mentation for Java bytecode is discussed in Section 2.3.

Ourpoints-to analysis assumes a class-basedobject oriented languagewithdynamicdis-

patch and catchable exceptions and that all allocated entities are objects. Our implementa-

tion (Section 2.3) relaxes some of these constraints (e.g., allowing the allocation of arrays),

and many of the concepts presented here will be applicable to non-class based languages.

In the exposition and figures, we indicate functions with small caps (i.e., FieldsOf),

variables arewritten italicswith an initial lowercase letter (e.g., c), domains arewrittenwith

italicized uppercase letters (e.g., AS), and domain elements are written using a typewriter

font (e.g., AONULL).

20

2.2.1 Domains

The domains of the analysis are shown in Figure 2.4.These are the types of the values in

our analysis. In addition we use Set<D> to indicate a finite set of domain elements of type

D. The type of a pair of domain elements, one from D1 and the other from D2, is denoted

D1×D2. An element of D1+D2 is either an element of D1 or an element of D2.

DomainT is the set of class types used by the program, and Domain F is the set of fully

resolved fields that may occur in the program. Domain S contains method signatures and

is used to resolve dynamic dispatch. Amethod signature is a method name and a list of the

types of themethod’s formal arguments. DomainM is the set of all fully resolvedmethods

that may be called in the program.

Domain V is the set of reference variables, which represent program variables with ref-

erence type. Every local variable in the program with reference type (including formal

method arguments and method return) has a unique v ∈ V that represents it. Addition-

ally, every static field of reference type is represented by a unique element of V.

Our analysis is context sensitive, and domain C is the set of contexts. A pair (v, c) ∈

V × C is called a reference-variable replica [76], a local variable v of a method analyzed in

context c. Reference variables representing static fields may only appear in a distinguished

initial context.

AO is the set of abstract objects each representing zero or more concrete or runtime

objects. Each abstract object carries a single concrete type. Object fields are defined by a

pair (ao, f) ∈ AO × F, where ao is an abstract object and f is a field.

DomainsCS andAS are the unique labels (i.e., program points) for call sites and alloca-

tion sites respectively.

21

Lookup
FieldsOf : T → Set<F>
ResolveMeth : S× AO → M
Pts : (V× C) + (AO× F) → Set<AO>

Context Creation
Record : AS× C → AO
Merge : AO× CS× C → C
MergeStatic : CS× C → C

Figure 2.5: Functions used by the analysis

2.2.2 Functions

The first three functions in Figure 2.5 are functions used to lookup information needed

during the analysis. FieldsOf takes a class, C ∈ T, and returns the set of non-static fields

on an object of type C. This includes any fields defined in a super class.

ResolveMeth takes amethod signature for a dynamically dispatchedmethod call and

the abstract object for the receiver of that call and returns the fully resolved method. In

our analysis we require that each abstract object has a particular concrete type, so there is

always resolved method returned from this function.

Function Pts takes a reference variable replica or an object field (collectively called

points-to graph nodes) and returns the points-to set.Thepoints-to set is the set of all abstract

objects that may be pointed to by a points-to graph node at any point in the program.

Context creation Our analysis is context sensitive and is parameterized by the three

functions discussed in Section 2.1.3 and repeated in Figure 2.5. Function Record(as, c)

provides the abstract object for an object created at allocation site as in context c. Function

Merge(ao, cs, c) provides the callee analysis context for a dynamic-dispatch method in-

vocation at call site cs in a method analyzed in context c, where the receiver is the abstract

22

object ao. MergeStatic(cs, c) provides the callee analysis context for a static method in-

vocation at call site cs in a method analyzed in context c (i.e., there is no receiver object).

2.2.3 Points-to statement processing

We specify our analysis for a Java-bytecode-like language in static single assignment

(SSA) form (see Section 2.1.5 for more on SSA form). This language includes object allo-

cations (via new statements), assignments between reference variables, dynamic cast state-

ments, φ assignment statements, and (non-static) field load and store instructions. Our

language also includes exceptions and try/catch statements, dynamic dispatch method

invocation and static method invocation.

In a pre-processing step we translate these instructions into points-to statements. Points-

to statements represent the constraints induced by the instructions in the program. Ta-

ble 2.1 presents the constraints that must be satisfied by the final points-to graph for each

different type of points-to statement. Since our analysis is context sensitive a points-to

statement may occur in multiple contexts.

The relations for the first points-to statement in Table 2.1 indicate that if an allocation

of an object of type C occurs at an allocation site as and assigns to reference variable to then

reference variable replica (to, c) points to the newly allocated abstract object ao, computed

using the Record function. Also at allocation sites, the fields of a newly created abstract

object point to null. We use a special abstract object, AONULL, to represent null.⁶

The next three relations specify constraints induced for different kinds of move state-

ments. The first, for a simple assignment, ensures that all elements of the points-to set of

⁶Since our target language is Java bytecode fields are initially null. This may be different in other lan-
guages.

23

Table 2.1: Subset relations for points-to statements occurring in an analysis context c

Points-to statement (in context c) Subset relations
to = new C Pts(to, c)⊇ {ao}
at allocation site as ∀f ∈ fieldsOf(C).Pts(ao, f)⊇ {AONULL}

where Record(as, c) = ao

to = from Pts(to, c)⊇ Pts(from, c)

to = null Pts(to, c)⊇ {AONULL}

to = (C) from ∀ao ∈ Pts(from, c).
if ao is a subtype of C then ao∈ Pts(to, c)

caught = (Ex) (notTypes) thrown ∀ao ∈ Pts(thrown, c).
if ao is a subtype of Ex
∧∀T ∈ notTypes.ao is not a subtype of T

then ao∈ Pts(caught, c)

to = φ(from , ..., fromn) for i ∈ {0, ..., n}.Pts(to, c)⊇ Pts(fromi, c)

to = o.f ∀ao ∈ Pts(o, c).Pts(to, c)⊇ Pts(ao, f)

o.f = from ∀ao ∈ Pts(o, c).Pts(ao, f)⊇ Pts(from, c)

to = o.m(a , ..., an) throws ex ∀ao ∈ Pts(o, c).
at call site callSite Pts(thist, calleeC)⊇ {ao}

for i ∈ {0, ..., n}.
Pts(formalt,i, calleeC)⊇ Pts(ai, c)

Pts(to, c)⊇ Pts(returnt, calleeC)
Pts(ex, c)⊇ Pts(exceptiont, calleeC)
where
Merge(ao, callSite, c) = calleeC
ResolveMeth(ao, m) = t

to = C.m(a , ..., an) throws ex for i ∈ {0, ..., n}.
at call site callSite Pts(formalm,i, calleeC)⊇ Pts(ai, c)

Pts(to, c)⊇ Pts(returnm, calleeC)
Pts(ex, c)⊇ Pts(exceptiont, calleeC)
where MergeStatic(callSite, c) = calleeC

24

the assigned reference variable replica are contained in that of the assignee. The next re-

lation adds abstract object AONULL to the points-to set of replicas of a reference variable

assigned the literal null. The relation for a checked cast, to = (C) from, ensures that all

elements ao from the points-to set for replica (from, c) that are subtypes of C are contained

in the points-to set for replica (to, c).

A fourth kind ofmove, a filteredmove, is generated from an assignment to the formal ar-

gument of a catch block.This relation is similar to that for a checked cast, but additionally

requires that the type of elements of the points to set for replicas of thrown not be sub-

types of any element of the set notTypes in order to be copied to the corresponding replica

of caught. This additional information is used to ensure that exceptions that are definitely

caught by a catch statement do not propagate further.The set notTypes generated for a par-

ticular assignment to a catch formal contains the types that have definitely been caught by

a previous catch block.

The next two relations in Table 2.1 propagate points-to information at field loads and

stores. The relations produced for a field load, to = o.f, ensures that if the receiver of the

field access (o, c)points to an abstract objectao then (to, c)points to everythingobject field

(ao, f) points to. The relations generated for a field store propagates points-to information

from the stored reference variable replica to the appropriate object field of each abstract

object the receiver of the field access can point to.

The last two entries in Table 2.1 give the relations for interprocedural propagation of

points-to information at method calls. For dynamic-dispatch method invocation each re-

ceiver abstract object is used to resolve the calleemethod based on the type of the abstract

object, and to compute the callee context, using the function Merge. In Table 2.1 the ith

formal argument ofmethod t is denoted formalt,i and the ith actual argument for amethod

25

call is denoted ai. The points-to sets for the formal arguments (excluding this) must be

supersets of those for the actual arguments. The abstract element for the receiver needs to

be added to the points-to set for the special parameter for this. If the method has a return

value that is assigned to a reference variable to, then the points-to set for replica (to, c)must

be a superset of that for the formal return of each resolved method. Similarly if a method

throws an exception ex then the points-to set for replica (ex, c)must be a superset of that

for the formal exception exit of each resolved method.

Static method invocation is similar, but uses function MergeStatic to compute con-

texts, and is not concerned with a receiver object.

At runtime, some Java bytecode instructions can throw exceptions generated by the Java

virtual machine. For example a field access or dynamic-dispatch method call will throw a

NullPointerException if the receiver is null. We conservatively assume that such excep-

tions can be thrown by all such instructions.We use a special variable to represent the gen-

erated exceptions that may be thrown by a particular instruction and create filtered move

points-to statements from this variables to any catch blocks that may catch the exception.

2.3 Implementation

We implemented the analysis described in Section 2.2 as amultithreadedpoints-to anal-

ysis for Java bytecode. Our points-to analysis is built on the WAtson Library for Analy-

sis (WALA) [13] and is written using approximately 7.5k lines of Java code. In a single-

threaded preprocessing step,WALA parses and translates the stack based Java bytecode to

a register based intermediate language in partial Static SingleAssignment (SSA) form[20].

Our points-to analysis runs on this intermediate language.

As discussed in Section 2.1.5, by analyzing a language in SSA form we get greater pre-

26

cision for local variables. Since each local is assigned to at a single program point and the

points-to set for each local variable can bemodified only by that assignment, we get a form

of flow-sensitivity for local variables even in our flow-insensitive points-to analysis. Client

analyses that use the results of this flow-insensitive points-to analysis enjoy similar benefits.

Our implementation supports all Java language features except reflection. We do not

directly reason about concurrency, but since our analysis is flow-insensitive for heap al-

located fields, any read from the field of a shared object will be seen by every write. This

means we are soundwith respect to concurrency although, since we do not capture the or-

der of reads and writes, client analyses may not be able to reason precisely about race con-

ditions. We provide hand-written analysis signatures for some important native methods

(e.g., System.arrayCopy). In addition, for efficiency andprecision,weprovide analysis sig-

natures for a handful of Java standard library classes (e.g., java.lang.StringBuilder). For

nativemethodswith no hand-written analysis signaturewe automatically generate an anal-

ysis signature that allocates a new instance of the return type. These are potential sources

of unsoundness in our analysis.

Like other practical Java points-to analyses (e.g., [11, 13])we provide a client-selectable

option to allow all instances of some common types (e.g., exceptions and strings) to be

represented by a single abstract object per type, which improves performance but loses

precision. Some client analyses do not rely on precision for certain types and others can

regain much of this precision by other means. For example, in Section 4.5 we recover pre-

cision for java.lang.String objects by treating them like primitive values in the client

analysis.

27

2.3.1 Points-to engine

The points-to analysis engine computes the least fixpoint solution to the subset con-

straints presented in Section 2.2.Theengine is implementedusing aworkqueue algorithm.

Our algorithm is multithreaded and the queue is managed by Java’s fork/join framework,

which uses a work stealing algorithm [58].

As a preprocessing step a points-to statement is generated for each instruction that may

modify the points-to graph. These points-to statements embody the subset relations as

described in Section 2.2.3. The queue consists of these points-to statements paired with

an analysis context and is initialized by adding all points-to statements for the entry-point

method in the distinguished initial context. When a statement for a method invocation is

processed the context for potential callees is computedusing theMergeorMergeStatic

function and, if a new context c is computed for a given callee, all points-to statements for

that callee are paired with c and added to the work queue.

2.3.2 Dependency tracking and difference propagation

There are two classes of dependencies generated by the subset relations. There are sim-

ple subset dependencies for instruction like those for an assignment. As a reminder, the

relation for an assignment to = from is: Pts(to, c) ⊇ Pts(from, c). This means that the

points-to set for (to, c)will always be a superset of the points-to set for (from, c).

Because these superset constraints are so commonwe track them directly in the points-

to engine. When the points-to set, s, for an object field or reference variable changes we

propagate these changes to all the supersets of s as part of the same element of work (i.e.,

this propagation takes place within a single thread). We are careful to only propagate the

newly added elements, a technique called difference propagation that has been used in

28

various forms in other points-to analyses [28, 63, 84]. Since points-to sets are monotonic

(i.e., elements are only added to points-to sets during the analysis, never removed) this is

a sound and efficient way to propagate changes.

We use a similar technique for checked casts and filtered moves propagating new ele-

ments only if certain subtyping relationships hold.

The second kind of dependency arises for more complex relations. Consider the rela-

tions for o.f = from in a context c:

∀ao ∈ Pts(o, c).Pts(ao, f)⊇ Pts(from, c).

If an element is added to the points-to set of (from, c) then the points-to engine will auto-

matically propagate this to the points-to set for the appropriate object fields. However if an

abstract objectao is added to thepoints-to set for (o, c) thenall elementsof thepoints-to set

for (from, c)must be added to that for the object field (ao, f). We ensure this by recording

a dependency from the points-to statement on the points-to set for (o, c) and reprocessing

the points-to statement if that points-to set changes. Againwe use a difference propagation

strategy; only the new elements of the points-to set for (o, c) are used when reprocessing

the points-to statement.

2.3.3 Reducing the size of the points-to graph

The complexity of inclusion-based points-to analyses based on the analysis of Andersen

[2] like ours is nearly cubic in the size of the program [16, 90], although in practice this is

quadratic for most Java programs [103].These complexities were computed for a context-

insensitive analysis.No formal analysis has beenperformed for a context-sensitive analysis;

it should similarly cubic, but in the size of the programmultipliedby thenumber of analysis

contexts.

29

Oneway to improve performance is to reduce the number of elements in the domain of

the points-to graph decreasing the effective program size. We can do this if we recognize

when multiple points-to graph nodes (either reference variable replicas or object fields)

will have identical points-to sets and collapse all these into a single node.

Some reference variables canbe collapsedbefore the points-to analysis evenbegins. Any

assignment to a local variable to = from can be removed and everywhere the points-to set

for to is required the points-to set for from can be used instead. Because our language is in

partial SSA form we can be sure that local variables are only assigned to once and that this

is a valid and precise substitution.

Consider also the relations for load statement to = o.f:

∀ao ∈ Pts(o, c).Pts(to, c)⊇ Pts(ao, f).

Suppose we have two such load statements in the same method with the same reference

variable for o and f but different reference variables for to. Because fields are tracked flow-

insensitively (and locals are in SSA form), the points-to sets for both reference variables of

to will be identical regardless of the order the two loads appear in the source code. This

means we can remove one of the load statements and use the points-to set for one of the

to variables in place of the other. Removing these kinds of constraints results in 30-35%

less points-to statements before the analysis even starts for the benchmarks we analyze in

Section 2.4.

We can also find opportunities for substitution during the analysis. If a cycle is intro-

duced in the subset relations recorded by the points-to engine then all nodes in this cycle

can be removed and represented by a single points-to graph node. A cycle is of the form

Pts(x, c1) ⊇ Pts(y, c2) ⊇ ... ⊇ Pts(z, c3) ⊇ Pts(x, c1)where the same reference vari-

able replica appears multiple times in a chain of superset relations. If a cycle of this form

30

is found then all the points-to sets are identical. We identify these cycles when propagat-

ing changes from subsets to supersets and effectively replace all elements of the cycle by

a single representative. This is known as lazy cycle detection [38] and removes 1-6% of the

points-to graph nodes for the benchmarks in Section 2.4.

2.3.4 Other performance optimizations

A common optimization technique in Java is to map objects to primitive integers and

use the integer representationwhenever possible.This is especially effective for objects that

are stored in maps or sets. We use variants of Java’s Map and Set interfaces specialized for

primitive integers allowing for faster insertion and containment checks as well as reducing

the size of our data structures in memory.

When a points-to set is requested, an iterator for that set is returned rather than a ref-

erence to the set itself. This allows us to lazily compute elements of the sets while they are

iterated. For example when a checked cast or filtered move statement is first encountered,

we do not check the types of the points-to set for the replica of from, but instead install

a type filter, that is only applied when elements must be computed and ensures that the

correct subtype relations hold.

2.4 Evaluation

We evaluate our points-to analysis using the Dacapo benchmark suite of 11 applica-

tions [9].These applications are described inTable 2.2.The second column gives the num-

ber of lines of code reachable from the application entry point including library code. The

third column gives the number of reachable (i.e., analyzed) SSA instructions. These num-

bers include code from JDK version 1.6 and all other library code. The benchmarks range

31

Table 2.2:Applications in the Dacapo Benchmark suite [9].

Program Lines of Code SSA Instructions
antlr 62,750 79,395
bloat 143,649 177,942
chart 228,325 310,742
eclipse 130,236 123,860
fop 74,621 88,348
hsqldb 46,562 46,375
jython 73,378 153,496
luindex 104,306 104,774
lusearch 49,885 50,121
pmd 127,351 145,389
xalan 64,754 71,482

in size from 46k lines of code to just under 228k lines of code.

All examples in this section were run on an 32 vCPU Amazon EC2 node with 60GB

of RAM and Intel Xeon E5-2680 v2 (Ivy Bridge) processors. Each vCPU is a single hy-

perthread and there are two hyperthreads per physical core.⁷ For some of the results we

present, the performance boost from hyperthreading did not outweigh the greater coordi-

nation costwhenmoving from16 to 32 threads. Asmentioned in Section 2.3.1 our analysis

generates points-to statements as a preprocessing step. This process is single threaded and

takes about ten seconds. We include this preprocessing time when comparing to WALA’s

analysis in Section 2.4.1, but not in the other experiments presented in this section.

Every points-to analysis chooses a different point in the complex trade-off space be-

tween performance and precision described in Section 2.1. This makes it difficult to un-

derstand exactly where in that trade-off space a particular implementation lies. One of the

reasons for implementing our own analysis is to parameterize asmany of these trade-offs as

possible.Throughout this section we will explore different choices in this parameter space

⁷http://aws.amazon.com/ec2/instance-types/

32

http://aws.amazon.com/ec2/instance-types/

and how they effect performance and scalability.

2.4.1 Comparison with WALA’s points-to analysis

Wecompare theperformanceof our analysis to thepoints-to analysis built into theWAt-

son Library for Analysis (WALA) [13]. Both points-to analyses use the same front end to

parse the bytecode and convert to SSA form.

In order to make this comparison as fair as possible we implemented Record,Merge,

and MergeStatic functions that emulate the behavior of WALA’s analysis. The Merge

function computes analysis contexts based on the type of the receiver object.⁸ This analy-

sis is context-insensitive for static calls and MergeStatic always returns the same distin-

guished context. Abstract objects, computed by Record, are allocation sites in an analysis

context (i.e., a context-sensitive allocation-site abstraction).

Exceptions, suchasNullPointerExceptions andArrayIndexOutOfBoundsExceptions,

that could be generated at runtime by the JVM are treated specially in WALA’s points-to

analysis. Each is assigned a single abstract object and we do the same in our analysis.⁹ Al-

though WALA’s points-to analysis supports reflection, we disable it for this comparison.

We match our analysis signatures for native methods and other parameters to the defaults

provided by WALA.

The only substantial difference between WALA’s points-to analysis specification and

that described in Section 2.2 is in the way we handle exception propagation. When an ex-

ception reaches a catch block and the type of the exception is a subtype of the type caught

⁸A lot of information about the type of the receiver object is inherent in the callee’s method signature,
meaning that this analysis context contains redundant information. In contrast, a type-sensitive analysis
computes contexts based on the type the receiver was allocated in.

⁹This behavior is a parameter in our analysis. See Section 2.4.3 for more detail on the effect and im-
portance of using singleton abstract objects.

33

by the catch block (i.e. the exception must be caught), we do not propagate the exception

further. WALA, in contrast, propagates exceptions to all exceptional successors without

taking into account their order.This difference is embodied by the filteredmove discussed

in Section 2.2.3.

Figure 2.6 shows the time our analysis takes relative to WALA’s points-to analysis. For

each application we scale the results by dividing the absolute time by the average time

WALA’s analysis takes. Each bar gives the mean of ten runs together with error bars repre-

senting one standard deviation from the mean. On the first bar we give the absolute time

for WALA’s analysis. This is the scaling factor. Successive bars give the relative time our

analysis takes for different numbers of threads including our single threaded preprocess-

ing step. The last group gives the relative time for running all applications.

When using one thread our analysis takes about 19% less time thanWALA’s on average.

For this context abstraction our performance flattens out at eight threads for the smaller

benchmarks. Analysis of each example programs finished in under 63 seconds when us-

ing eight threads, so there may be more contention due to lack of work. It is possible that

the per-thread queues are running out of work faster with more threads, a common cause

of contention in work-stealing algorithms like the one we use. On average our analysis is

fastest with 16 threads when it takes about 20% as long as WALA’s, a 5x speedup on aver-

age.

2.4.2 Scaling context sensitivity

Kastrinis and Smaragdakis [52] exhaustively map out the precision and performance

of several different kinds of context sensitivity building on similar studies carried out in

previous work by Smaragdakis et al. [100] and Milanova et al. [76]. We do not attempt to

34

0
0.
2

0.
4

0.
6

0.
81

1.
2

an
tlr

blo
at

ch
art

ecl
ips
efop

hsq
ldb

jyt
ho
n

lui
nd
ex

lus
ear
chpm

d
xal
an

To
tal

RelativeTime

Th
re
ad
s

W
A
LA
1 2 4 8 16 32

.

.

.

.

.

.

.

.

.

.

.

.

Fi
gu

re
2.
6:

Pe
rfo

rm
an
ce

co
m
pa
ris
on

w
ith

th
e
po

in
ts
-to

an
al
ys
is
bu

ilt
in
to
W
A
LA

[1
3]
.

35

replicate this here, but instead look at the scalability of a few different flavors of context

sensitivity as we increase the amount of concurrency in our analysis.

For each application the bar plots in this section (Figures 2.7, 2.8, and 2.9) are scaled

to the amount of time for our analysis run with a single thread. The absolute time for the

single-threaded analysis (the scaling factor) is written on the first bar. In this section we do

not include the preprocessing time in any of the bar charts.

For all tests in this sectionweuse a singleton abstract object for each immutablewrapper

type (java.lang.String, java.lang.Integer, etc.), each primitive array type, and each

subtype of java.lang.Throwable (i.e., exceptions). We also use signatures for key native

methods (java.lang.System.arrayCopy, etc.) as described in Section 2.3.

Using awork-stealing-stylework queue rather than a global queue reduces coordination

by providing each thread with its own queue to manage [58]. Work-queue based interac-

tions occur only when one of the threads runs out of work. In a points-to analysis there are

a number of global data structures besides thework queue that are possible sources of con-

tention. Each element of work (i.e., a points-to statement) potentially uses and modifies

the global points-to graph, the call graph, and the recorded superset relations. In addition

global dependency maps are used to ensure the correct propagation of changes to both

these data structures. These are the potential sources of contention in our multi-threaded

analysis.

Context Insensitive Table 2.3 shows the size of the points-to graphs and call graphs

when using a context-insensitive analysis. A context insensitive analysis analyzes a single

copy of each method, regardless of the receiver object and call-site. This means that this

36

0
0.
2

0.
4

0.
6

0.
81

1.
2

an
tlr

blo
at

ch
art

ecl
ips
e

fop

hsq
ldb

jyt
ho
n

lui
nd
ex

lus
ear
chpm

d
xal
an

tot
al

RelativeTime

Th
re
ad
s

1 2 4 8 16 32

.

.

.

.

.

.

.

.

.

.

.

.

Fi
gu

re
2.
7:

C
on

te
xt
in
se
ns
iti
ve

an
al
ys
is
pe
rfo

rm
an
ce

re
la
tiv
et
o
th
at
fo
ra

sin
gl
et
hr
ea
d.

37

Table 2.3: Size of the call graph and points-to graph for a context insensitive analysis.

Program Call Graph Points-to Points-to
Nodes Graph Nodes Graph Edges

antlr 7,237 107,733 5,641,320
bloat 9,095 142,814 11,514,191
chart 11,832 178,161 14,195,319
eclipse 7,655 114,300 6,464,625
fop 6,755 97,760 5,212,569
hsqldb 6,497 94,433 4,951,341
jython 8,711 129,425 8,402,812
luindex 6,816 98,323 5,015,726
lusearch 6,514 93,707 4,838,386
pmd 8,250 118,031 6,334,704
xalan 6,516 93,921 4,931,801

analysis tends to produce less precise points-to information, but be more efficient to com-

pute. Each of the examples takes less than 40.1 seconds to compute using a single thread

and under 7.3 seconds when using 32 threads.

Figure 2.7 shows the scalability of the context insensitive analysis as time relative to

single-threaded. In total, for all applications, two threads takes 60.8% as long as the single

threaded, a 1.7x speedup. Four threads takes 36.0% as long (2.8x speedup), 8 threads 23.8%

(4.2x speedup), 16 threads 22.4% (4.5x speedup), and 32 threads 21.6% (4.6x speedup).

There lack of significant speedup beyond 8 threads.The absolute times are fairly small and

the added coordination timewashes out any performance improvement beyond 8 threads.

Type-Sensitive Figure 2.4 shows the size of the points-to graphs and call graphs when

using a type-sensitive analysis.Weuse the languageof [100] describing this particular anal-

ysis as a 2-type-sensitive points-to analysis with a 1-type-sensitive heap. This means that anal-

ysis contexts consist of two types the first is the type that allocated the receiver object and

38

0
0.
2

0.
4

0.
6

0.
81

1.
2

an
tlr

blo
at

ch
art

ecl
ips
e

fop

hsq
ldb

jyt
ho
n

lui
nd
ex

lus
ear
chpm

d
xal
an

tot
al

RelativeTime

Th
re
ad
s

1 2 4 8 16 32

.

.

.

.

.

.

.

.

.

.

.

,.

Fi
gu

re
2.
8:

Pe
rfo

rm
an
ce

re
la
tiv
et
o
th
at
fo
ra

sin
gl
et
hr
ea
d
fo
ra

2-
ty
pe
-s
en
sit
iv
ea

na
ly
sis

w
ith

a1
ty
pe
-s
en
sit
iv
eh

ea
p.

39

Table 2.4: Size of the call graph and points-to graph for a 2-type-sensitive points-to analysis with
a 1 type-sensitive heap.

Program Call Graph Points-to Points-to
Nodes Graph Nodes Graph Edges

antlr 54,725 595,517 10,216,398
bloat 79,739 856,407 55,409,374
chart 102,626 1,174,688 53,167,335
eclipse 67,472 753,795 36,174,629
fop 55,015 599,140 10,604,274
hsqldb 52,583 586,045 9,742,771
jython 134,972 1,598,154 172,342,948
luindex 54,420 591,160 10,106,414
lusearch 52,280 567,248 9,692,756
pmd 60,536 657,605 11,745,068
xalan 52,647 572,516 9,849,863

the second is the type that allocated the object that allocated the receiver. Abstract objects

consist of the first element from the analysis context of the method containing the alloca-

tion site (i.e., the type that allocated the receiver object) together with the allocation site

itself.

Smaragdakis et al. [100] find that a type-sensitive analysis which uses these parame-

ters provides a good trade-off between performance and precision formany client analysis.

Anecdotally we also found this to be true and use an enhanced version of this analysis for

our security tool described in Chapter 4.

Even though it is more efficient than other points-to analyses [100], a type-sensitive

analysis is far slower than the context-insensitive analysis we described earlier. The worst

offender, jython, takes over 900 seconds single threaded and 75 seconds with 32 threads

for a type-sensitive analysis, whereas the context-insensitive analysis took 24 seconds and

5 seconds respectively.

Figure 2.8 shows the scalability of a type-sensitive analysis as time relative to single-

40

Table 2.5: Size of the call graph and points-to graph for a 1-object-sensitive points-to analysis

Program Call Graph Points-to Points-to
Nodes Graph Nodes Graph Edges

antlr 45,541 447,844 4,984,359
bloat 79,385 797,831 22,918,218
chart 101,150 1,096,426 49,025,542
eclipse 51,894 528,533 8,348,777
fop 43,359 429,400 4,500,565
hsqldb 41,921 414,573 4,171,052
jython 80,140 851,614 22,419,646
luindex 42,986 425,498 4,420,326
lusearch 41,477 410,221 4,138,896
pmd 51,784 506,040 6,844,963
xalan 41,597 411,575 4,144,637

threaded. Benchmark jython has the most work and also scales the best, taking 7.4% as

much timewith 16 threads as with one thread a 13.5x speedup (hyperthreading 32 threads

provides no benefit in this case).On average our analysis takes 12.1%of the single threaded

time when using 16 threads, an over 8.2x speedup. For this analysis hyperthreading 32

threads on 16 cores takes only about 7% less time than with 16 threads. This is an 8.9x

speedup over single-threaded, but some applications see little or even a negative effect

moving from 16 to 32 threads.

Object Sensitive Figure 2.5 gives the size of the points-to results and Figure 2.9 shows

the scalability for a full-object-sensitive analysis [100].The particular analysis we use here

is a 1-object-sensitive points-to analysis. Abstract objects are simply the object allocation site

and analysis contexts are the abstract object (i.e., the allocation site) for the receiver object.

The precision of this analysis is not strictly better or worse than the type-sensitive analysis

we evaluate above. Full-object-sensitive analysis contexts use the entire abstraction of the

41

0
0.
2

0.
4

0.
6

0.
81

1.
2

an
tlr

blo
at

ch
art

ecl
ips
e

fop

hsq
ldb

jyt
ho
n

lui
nd
ex

lus
ear
chpm

d
xal
an

tot
al

RelativeTime

Th
re
ad
s

1 2 4 8 16 32

.

.

.

.

.

.

.

.

.

.

.

.

Fi
gu

re
2.
9:

Pe
rfo

rm
an
ce

re
la
tiv
et
o
th
at
fo
ra

sin
gl
et
hr
ea
d
fo
ra

1-
ob

je
ct
-s
en
sit
iv
ep

oi
nt
s-
to
an
al
ys
is.

42

receiver object (hence full-object-sensitive) instead of just the type of the allocation site,

but a 1-object-sensitive context contains less historical information than a 2-type-sensitive

context (which tracks the type that allocated the receiver’s allocator) so the precision is

incomparable [100]. For these experiments the points-to graph and call graph were gen-

erally smaller for 1-object-sensitive analysis than the type-sensitive analysis, and thus per-

formance was better. In Figure 2.9 we see about the same scalability as the type-sensitive

analysis. When using 32 threads this analysis takes 12.1% of the single threaded time for

an 8.3x speedup.

2.4.3 Are singletons necessary?

In Section 2.3 we briefly touched on a common technique used to achieve scalability in

points-to analyses for Java. This technique is based on the type abstraction, a heap abstrac-

tion where each Java type is represented by a single abstract object, ignoring the particular

allocation site. This is too imprecise for most client analyses and this abstraction is rarely

used.However,many analyses including ours provide an option to use a single abstract ob-

ject to represent all objects of certain types. We investigate the performance implications

of using singleton abstract objects, as well as the effect on the size of the points-to graph.

The types that have the greatest affect onperformance are those that are pervasive in Java

applications such as java.lang.String and subtypes of java.lang.Throwable. Others,

such as primitive arrays, do not have any non-primitive fields so collapsing themmay have

little affect on client analyses. Whether the precision lost by these optimizations is accept-

able depends on the particular client analysis.

In this section we use singleton abstract objects for different sets of types in isolation

to investigate the effect this has on performance. All examples use a type-sensitive analy-

sis (2-type-sensitive points-to analysis with a 1-type-sensitive heap) and were run with 16

43

threads.

All experiments use single abstract object per type for JVMgenerated exceptions.These

include NullPointerException, ArrayIndexOutOfBoundsException, and several others.

The analysis for many of the benchmarks ran out of memory if we did not use single-

ton abstract objects for generated exceptions. In Java, generated exceptions, in particular

NullPointerExceptions, can be thrown by many different instructions and lead to an ex-

plosion in the size of the points-to results. By using a single abstract object we guarantee

that any given points-to set will contain at most one generated NullPointerException,

and if using an object-sensitive analysis, such as a full-object-sensitive or type-sensitive

analysis, a single context will be produced for eachmethod called on a generated exception

type.

Figure 2.10 shows the effect that using a singleton abstract object for different types

has on performance, while Figure 2.11 and Figure 2.12 show the effect on the size of the

points-to analysis results. In general, size is inversely related to performance; bigger points-

to graphs take longer to compute.Asmentioned inSection2.3.3 our analysis is nearly cubic

in the size of the program, but is quadratic in practice for Java programs [103]. In each of

these figures Baseline corresponds to using singleton abstract objects for only generated

exceptions and the absolute value for the baseline for each application is shown on the

first bar (this is the scaling factor). The other experiments use a singleton abstract object

per type for primitive arrays, java.lang.String, immutable wrapper classes (including

java.lang.String), and for subtypesofjava.lang.Throwable (i.e., exceptions and errors)

respectively.Theexperiment labeled “All” uses singleton abstract objects for all these types.

The bars show the values relative to the baseline. We do not show results for the jython

44

0
0.
2

0.
4

0.
6

0.
81

1.
2

an
tlr

blo
at

ch
art

ecl
ips
efop

hsq
ldb

lui
nd
exlus

ear
chpm

d
xal
an

tot
al

RelativeTime

Ba
se
lin

e
Pr
im

iti
ve

A
rr
ay
s

St
rin

gs
Im

m
ut
ab
le
W
ra
pp

er
s

Ex
ce
pt
io
ns A
ll

.

.

.

.

.

.

.

.

.

.

.

Fi
gu

re
2.
10

:R
el
at
iv
ep

er
fo
rm

an
ce

im
pr
ov
em

en
tw

he
n
us
in
g
sin

gl
et
on

ab
st
ra
ct
ob

je
ct
sf
or

ag
iv
en

se
to

ft
yp
es
.

45

0

0.
2

0.
4

0.
6

0.
81

an
tlr

blo
at

ch
art

ecl
ips
efop

hsq
ldb

lui
nd
exlus

ear
chpm

d
xal
an

To
tal

PTGNodeRatio

Ba
se
lin

e
Pr
im

iti
ve

A
rr
ay
s

St
rin

gs
Im

m
ut
ab
le
W
ra
pp

er
s

Ex
ce
pt
io
ns A
ll

,,

,,

,,

,,

,,

,

,,

,

,,

,

,,

Fi
gu

re
2.
11

:R
el
at
iv
en

um
be
ro

fp
oi
nt
s-
to
gr
ap
h
no

de
sw

he
n
us
in
g
sin

gl
et
on

ab
st
ra
ct
ob

je
ct
sf
or

ag
iv
en

se
to

ft
yp
es
.

46

0

0.
2

0.
4

0.
6

0.
81

an
tlr

blo
at

ch
art

ecl
ips
efop

hsq
ldb

lui
nd
exlus

ear
chpm

d
xal
an

To
tal

CallGraphNodeRatio

Ba
se
lin

e
Pr
im

iti
ve

A
rr
ay
s

St
rin

gs
Im

m
ut
ab
le
W
ra
pp

er
s

Ex
ce
pt
io
ns A
ll

,

,

,

,

,

,

,

,

,

,

,,

Fi
gu

re
2.
12

:R
el
at
iv
en

um
be
ro

fc
al
lg
ra
ph

no
de
sw

he
n
us
in
g
sin

gl
et
on

ab
st
ra
ct
ob

je
ct
sf
or

ag
iv
en

se
to

ft
yp
es
.

47

benchmark; this benchmark runs out of memory if a singleton abstract object is not used

for exceptions, even though we saw the analysis for this application complete in about 70

seconds when using singleton abstract objects for all the types described above.

As seen in Figure 2.10 using a singleton abstract object for primitive arrays does not

significantly affect performance. Using a singleton abstract object for java.lang.String

objects is almost always effective taking less than half the time in total (an exception, bloat,

takes about 14% longer). Using singleton abstract objects for other immutable wrapper

objects (e.g., java.lang.Integer) provides little additional benefit over using a singleton

for just strings. For almost all the benchmarks the largest benefit comes from using a sin-

gleton abstract object per exception type. The total time for applications is 35.1% of the

baseline time for a 2.8x speedup.The times range from 64.9% to 18.0% of the baseline time

for a 1.5x to 5.5x speedup.

The last bar for each benchmark shows the relative time when using singleton objects

for primitive arrays, immutable wrappers, and exceptions at the same time. For the eclipse

benchmark the speedup was over 20x. The other benchmarks range from 41.2% to 25.1%

of the baseline time for a 2.5x to 4x speedup. The total time for all benchmarks was 18.8%

of the baseline time an over 5x speedup.

2.5 Relatedwork

There has been an enormous amount of work on points-to analysis. We focus on prac-

tical points-to analyses for Java and multithreaded analyses. Hind [43] provides an excel-

lent summary of the first 20 years worth of points-to analysis research. Most of this ini-

tial work focused on C programs. Many of the concepts and techniques are applicable to

object-oriented languages, but Java inparticular tends tohavemore address-takenvariables

48

and abstract heap locations than C. Every reference in Java is heap-directed and every field

is represented in a points-to analysis as an abstract location. This makes scaling points-to

analyses for Java more difficult than scaling C points-to analyses. Smaragdakis and Balat-

souras [99] present amore recent tutorial covering newer developments in points-to anal-

ysis including analyses for object-oriented languages.

Practical Java points-to analyses. Whaley [116] presents the first efficient analy-

sis for Java that is context-sensitive.There are three commonly used Java points-to analyses.

Like that ofWhaley [116] they are all single threaded.These are the points-to analysis built

into theWALA analysis framework [13], Doop [11] (a points-to analysis built on top of a

single-threaded datalog engine), and PADDLE [60] (the points-to analysis incorporated

into the Soot analysis framework [112]). These three analyses largely supersede Whaley

[116] in part because they are part of larger static analysis frameworks. Accrue¹⁰ is an inter-

procedural extension to the Polyglot extensible compiler framework [83], and includes an

early prototype of our multithreaded points-to analysis that operates on Java source code

rather than Java bytecode.¹¹

TheWALApoints-to analysis analyzes the same intermediate language as our analysis, a

static single assignment translation of Java bytecode.WALAuses their dataflow framework

to compute the points-to analysis results. They keep track of previously processed points-

to constraints which has a similar effect to our incremental propagation algorithm. They

have a similar abstractions to the Merge and Record functions we use to define context

sensitivity, although their versions (the ContextSelector and InstanceKeyFactory in-

¹⁰http://people.seas.harvard.edu/~chong/accrue.html

¹¹The Accrue points-to analysis can also be extended to compute points-to results for extensions of the
Java programming language expressible using Polyglot.

49

http://people.seas.harvard.edu/~chong/accrue.html

terfaces respectively) are not quite as cleanly defined. Similar to our analysis their default

implementation of InstanceKeyFactory allows for the use of a single abstract object for

certain types (java.lang.String, exceptions, and primitive arrays) as well as for types

that have a large number of allocation sites.

Bravenboer and Smaragdakis [11] introduce the Doop framework. Doop is a points-to

analysis that is declaratively specified and implemented in datalog, a declarative language.

This means that their specification is close to their implementation, although in order for

their analysis to scale, their code is still much more complex than their specification. Sub-

sequent work [52, 100] defines the parameterization of context sensitivity we use andmap

out this parameter space, including the definition of several novel types of context sensitiv-

ity. Although notmentioned in any of their papers, Doop has flags allowing the use of a sin-

gle abstract object for certain types (subclasses of java.lang.AbstractStringBuilder,

exceptions, primitive arrays, and classes with only primitive fields).We allow for the use of

single abstract object for some of these types, but did not investigate the impact of single-

ton java.lang.AbstractStringBuilder or classes with primitive fields.

Lhoták andHendren [63]describes thedesign and implementationof SPARK.SPARK,

like our analysis, is a work-list algorithm that uses difference propagation to eliminate re-

dundant recomputation. For difference propagation they use a data structure called an

incremental set, a set which distinguishes new and old elements. We, on the other hand,

only use the new elements when propagating changes, which should reduce the amount of

propagation, but is effectively the same. SPARK is a context-insensitive analysis; Lhoták

[60] describes PADDLE, an analysis that builds on SPARK supporting context-sensitivity

and using binary decision diagrams to achieve scalability. We use integer sets to represent

points-to sets and a map from integers to integer sets to represent the points-to graph.

50

While not as memory efficient as binary decision diagrams, this representation is less ab-

stract and is well within modern memory limits. Both PADDLE and SPARK are included

in the Soot analysis framework [112].

Multithreaded points-to analyses There has been surprisingly little work to par-

allelize points-to analysis. To our knowledge, our analysis is the first multithreaded points-

to analysis that supports a wide range of context-sensitivities and is the first multithreaded

context-sensitive points-to analysis for an object-oriented language.

In 2010 Méndez-Lojo et al. [74] implemented the first multithreaded points-to analy-

sis algorithm. Their context-insensitive analysis is for C and is based on the algorithm of

Hardekopf and Lin [38].They pose the solving of the points-to graph as a graph rewriting

problem. Edges in the graph are points-to relations and nodes are pointer variables. The

existence of certain edges results in the addition of new edges or modification of existing

edges.Theydonot allow formodifications to the set of nodes in the graph,whichprecludes

functionpointers and some formsof context-sensitivity.Their algorithmwould alsonot di-

rectly support a languagewith dynamic dispatch.They use a formof optimistic speculative

execution in a system that automatically rolls back failed operations. In order to limit the

number of expensive rollbacks they use a work-stealing algorithm similar to the one that

we use.Their algorithm also supports a form of cycle detection similar to that described in

Section 2.3.3, although they identify possible cycles before running their analysis to help

speed up detections, while we detect cycles on the fly with no pre-computed data (which

they call online cycle detection). Mendez-Lojo et al. [75] port this algorithm to the GPU

while reducing the amount of synchronization needed for their graph rewriting rules, and

Nagaraj and Govindarajan [79] implement a flow-sensitive (but still context-insensitive)

51

version of the analysis of Méndez-Lojo et al. [74] using a work-list to manage the graph

rewrites. Some of the graph rewriting rules in this line of work are analogous to the propa-

gation of changes for superset relations described in Section 2.3.2.Themore complex rules

for load and store are handled in our analysis by carefully tracking dependencies and repro-

cessing points-to statements as necessary. It is not clear which approach ismore expensive,

but ours is applicable to arbitrarily complex points-to statements, such as those for virtual

method calls.

Nasre [81] use a two-dimensional variation of a Bloom filter to represent points-to sets

and other data structures in a flow-sensitive context-insensitive analysis. Collisions in the

hash functions used for theBloomfilters can cause unrelated pointers to share points-to in-

formation. They bootstrap their GPU based flow-sensitive analysis with a single-threaded

flow-insensitive analysis used to generate constraints for load statements.

Prabhu et al. [87] use a GPU to accelerate a 0CFA analysis (analogous to a context-

insensitive analysis) for the lambda calculus and report speedups of up to 72 times for

an artificial benchmark suite. They suggest that their work could be adapted to compute

points-to information, but have not yet pursued this goal.

Putta and Nasre [88] use a replication-based approach creating a separate points-to set

for each points-to statement as it is processed. This may lead to a given points-to graph

nodemapping to two different points-to sets.These sets aremerged after iterating through

all statements. Aftermerging, all points-to statements are reprocessed and this repeats until

the analysis reaches a fixpoint. Their analysis supports a form of call-site sensitivity that

uses a stack to representmethod contexts, but does not support arbitrary analysis contexts.

Edvinsson et al. [25] implement a context-insensitive analysis for object-oriented lan-

guages using a coarse grained parallelism. They parallelize the different method targets of

52

dynamic dispatch sites and independent control-flow branches. They propose, but do not

implement, a similar technique for parallelizing different contexts in a context-sensitive

analysis.

53

3
Flow Sensitive Points-to Analysis

3.1 Introduction and background

Flow-insensitive points-to analyses, such as the one described in Chapter 2, compute

points-to information that may hold at any point in the program’s execution. By contrast,

flow-sensitive points-to analyses compute points-to information for each program point,

which is potentially more precise but less scalable. The precision of flow-sensitive points-

to analyses is particularly appealing because it can enable strong update [15], whereby an

assignment can replace the statically computed facts associatedwith amemory location. By

contrast, in aweak update, an assignment adds to the statically computed facts of amemory

location.

In this chapter, we present a points-to analysis for object-oriented programs that en-

ables strong update in both the points-to analysis and subsequent client analyses.Strong

update is particularly important in object-oriented program analyses because the correct-

ness, security, and performance of object-oriented programs often rely on object invariants

established during object construction. Without the ability to perform strong updates in

object-oriented program analysis, it is difficult to reason about the establishment of object

invariants. For example, in Java, many objects have as part of their invariant that some field

is non-null, but since the initial value of all fields is null, a flow-insensitive analysis, or an

analysis with only weak update, is unable to reason that the field is always non-null after

54

object construction.

OverviewofAnalysis Strong update to an abstractmemory location can only be per-

formed when the abstract location corresponds to exactly one concrete memory location.

To ensure that there are abstract locations that usefully correspond to exactly one concrete

location, we use the recency abstraction of Balakrishnan and Reps [6], in which objects cre-

ated at a given allocation site are represented by two abstract objects: one represents the

object most recently allocated at the allocation site and one summarizes all other objects

allocated at the allocation site.¹ By definition, a field of themost-recently-allocated abstract

object represents exactly one concrete location, and thus strong update can be performed

on it. Moreover, since object construction typically takes place on the most recently allo-

cated object, the recency abstraction enables strong update exactly where it is most useful

for object-oriented analyses: during the establishment of object invariants. (Balakrishnan

andRepsuse the recency abstraction to reasonprecisely about the establishmentof virtual-

function tables in stripped executables, which is similar to reasoning about the establish-

ment of a specific object invariant.)

Inspired by Lhoták and Chung [62], our points-to analysis is flow-sensitive only for ab-

stract locations on which strong update may be possible, i.e., for fields of most-recently-

allocated abstract objects, and for static variables. We treat other abstract locations (e.g.,

fields of non-most-recently-allocated abstract objects) flow insensitively, which improves

the performance of the analysis significantly. For local variables we use a partial static sin-

gle assignment (SSA) program representation [20], which gives many of the benefits of

flow-sensitive analysis for local variables, with the efficiency of flow-insensitive analysis.

¹As described in Section 2.1, an abstract object represents zero ormore concrete objects, and in anobject-
oriented analysis abstract locations include fields of abstract objects as well as local and static variables.

55

1 A a = new A();
2 a.f = new B();
3 a.f.foo(); // Can a.f be null?
4
5 Collection<C> bag = ...
6 while(...) {
7 C c = new C();
8 c.g = new D();
9 c.g.bar(); // Can c.g be null?
10 bag.add(c);
11 }
12
13 for (C o : bag) {
14 o.g.bar(); // Can o.g be null?
15 }

Figure 3.1: Strong update example

Therefore we do not track local variables flow-sensitively even though abstract locations

for local variables can be soundly strongly updated.

As discussed in Section 2.1.3, our flow-insensitive points-to analysis is parameterized

in the same way as the framework of Kastrinis and Smaragdakis [52]. That is, the names

of abstract objects and the analysis contexts for code are determined by three functions,

Record, Merge, and MergeStatic and different instantiations of these functions en-

able many different points-to analysis. Because we use a similar parameterization for our

flow-sensitive analysis, this can be seen as a transformation that enables useful, efficient

strong update by adding the recency abstraction and limited flow sensitivity to any exist-

ing flow-insensitive points-to analysis (that is expressible using the framework of Kastrinis

and Smaragdakis).

56

Example To see the benefits of flow sensitivity and the recency abstraction, consider

the Java-like code in Figure 3.1 and a client analysis that attempts to identify field accesses

and method calls where the target is guaranteed to be non-null (and thus the field access

or method call cannot throw a NullPointerException).

Note that the target of themethod call to foo() on line 3 is never null. However, in Java,

all fields with reference type are initialized to null so field a.fwill be null immediately after

the allocation on line 1. Thus, a flow-insensitive points-to analysis (which conservatively

approximates what a.f may point at any program point) must include null in the points-

to set for a.f, and is not able to conclude that the target of the method call will be non-

null. Flow sensitivity can help precision here, by distinguishing the points-to set of a.f

immediately after line 1 (where it might be null) from the points-to set of a.f immediately

after line 2 (where it is definitely not null).

Now consider a points-to analysis that is flow sensitive, but uses just a single abstract

object to represent all objects created at an allocation site (this is called the allocation-site

abstraction in contrast with the recency abstraction). Immediately following line 7, this

analysis would know that local variable c points to the (abstract) object allocated at line

7, and that the field g of that object may point to null. Since this allocation occurs inside

a loop, c points to one of potentially many concrete objects created at that allocation site.

Thus, we are not able to use strong update for the assignment c.g = new D() on line 8

(since the abstract location referred to by c.g represents potentially many concrete loca-

tions).We thus can only add to the points-to set of c.g, instead of replacing it, andwemust

conservatively assume that the target of the method call at line 9 may be null, even though

it is never null at run time.

Now consider a flow-sensitive points-to analysis that uses the recency abstraction. Since

57

the abstract object pointed to by c at line 8 represents the most recent object allocated at

line 7, we know that abstract location c.g represents exactly one concrete location, and so

can perform strong update, thus concluding that immediately after line 8 the points-to set

of c.g cannot contain null. Thus, the target of the method call on line 9 cannot be null.

Moreover, since we have established that field g of themost recent object created at line

7 cannot be null after execution of the while loop, the points-to analysis can conclude that

this holds true of all objects created at line 7, whether they are the most recent or not.

Thus, at line 14, where omay refer to either the most-recently-allocated abstract object or

the non-most-recently-allocated abstract object, the points-to analysis is able to conclude

that o.g, the target of the method call, is non-null.

Contributions This chapter makes the following contributions.

1. A novel efficient points-to analysis for object-oriented programs that enables strong

update in both the points-to analysis and subsequent client analyses. This analysis

builds on the recency abstraction of Balakrishnan and Reps [6] to enable strong

update, and, for efficiency, uses flow sensitivity for only a subset of the abstract lo-

cations [62].Theanalysis is parameterized à laKastrinis andSmaragdakis [52], thus

providing efficient strong update for a wide variety of points-to analyses.

2. An implementation of this analysis for Java bytecode that scales up to 130k lines of

code in 92 seconds. Althoughour analysis limits flow-sensitivity just to the locations

where it is most useful, the implementation required careful engineering to ensure

efficiency. Our implementation is multi-threaded, and uses a novel representation

of flow-sensitive points-to sets that is amenable to efficient computation.

3. A demonstration of the usefulness of our points-to analysis, and of strong update for

58

T : class types
F : resolved instance fields
S : method signatures
M : resolved methods
V : reference variables
C : contexts
AO : abstract object

IPP : inter-program points
PP : program points

Figure 3.2:Analysis domains for our flow-sensitive points-to analysis

object-oriented languages, by comparing the performance of several client analyses

using our points-to analysis versus our flow-insensitive points-to analysis. For exam-

ple, we are able remove 93%of the null-pointer exceptions in a commonbenchmark

suite compared with 86% removed by a flow-insensitive analysis.

3.2 Analysis

We present our points-to analysis as points-to statements and subset constraints analo-

gous to those seen in Section 2.2.Our points-to analysis engine finds the smallest points-to

sets that satisfy these constraints. Again our points-to analysis assumes a class-based object

oriented languagewith dynamic dispatch and that all allocated entities are objects, and our

implementation relaxes the latter assumption to include the allocation of arrays.

This analysis is an extension of the analysis from Section 2.2, and we use the same type-

faces and notation as that section. This analysis adds selective flow sensitivity and incor-

porates the recency abstraction [6] into our heap object abstraction. The primary goal of

this section is to emphasize changes to a flow-insensitive analysis needed to support flow-

sensitivity, strong update, and the recency abstraction.

59

3.2.1 Domains

The domains of our analysis are shown in Figure 3.2. These are the types of values used

by our analysis. The first seven domains are the same as those from in our flow-insensitive

analysis and are described in Section 2.2.1.

Thefirst difference between this analysis and the flow-insensitive analysis of Section 2.2,

is that all abstract objects (elements of domain AO) contain a parameter that indicates

whether the abstract object represents a most-recently-allocated object or non-most-re-

cently-allocated object.This is howwe implement the recency abstraction of Balakrishnan

and Reps [6] in our analysis.

The last two domains PP and IPP are needed to support flow sensitivity. Domain PP

is the set of all program points in the program. In our flow-insensitive analysis we only

needed the program points for allocation sites and call sites, here we need program points

for any pointer-relevant statement. We use inter-program points IPP to describe analysis

facts immediately before and after program points. Specifically, for program point pp ∈

PP, there is one inter-program point immediately before pp, and one inter-program point

immediately after pp. Because program points occur in methods, andmethods may be an-

alyzed in multiple contexts, a program point replica (pp, c) ∈ PP × C represents program

point pp of method m being analyzed in context c. Similarly, inter-program point replica

(ipp, c) ∈ IPP × C represents inter-program point ipp of method m being analyzed in

context c.

3.2.2 Functions

Figure 3.3 lists the functions used to specify our analysis. FieldsOfandResolveMeth

are the same as for our flow-insensitive analysis and are described in Section 2.2.2. TypeOf

60

Lookup
FieldsOf : T → Set<F>
ResolveMeth : S× AO → M
TypeOf : AO → T
PtsFI : (V× C) + (AO× F) → Set<AO>
PtsFS : AO× F× IPP× C → Set<AO>
PtsInit : AO× F → Set<AO× IPP× C>
IsRecent : AO → Boolean
NonMostRecent : AO → AO

Context Creation
Record : PP× C → AO
Merge : AO× PP× C → C
MergeStatic : PP× C → C

ProgramPoint Graph
MethEntry : M → PP
MethExit : M → PP
Succs : PP → Set<PP>
Succs : PP → Set<PP>
Before : PP → IPP
After : PP → IPP
ValidPathExists : IPP× C× IPP× C → Boolean
KilledOnAllPaths : IPP× C× IPP× C× AO× F → Boolean
AllocOnAllPaths : IPP× C× IPP× C× AO → Boolean
Killed : PP× C → Set<AO× F>

Figure 3.3: Flow-sensitive analysis functions

61

gives the type of the abstract object (in our analysis all abstract object are always of a par-

ticular type).

The next two functions, PtsFI and PtsFS, are used to lookup the points-to sets for

flow-insensitive and flow-sensitive points-to graph nodes, respectively. A points-to graph

node is either a reference variable replica (in V × C) or an object field (in AO × F). As

discussed in Section 3.1 local variables and fields of non-most-recent abstract objects are

tracked flow-insensitively; flow-insensitive points-to sets are looked up using PtsFI. Fields

of most-recent abstract objects are tracked flow-sensitively and their points-to sets can be

looked up using PtsFS.²Note that flow-sensitive points-to sets are computed for an object

field at a particular inter-program point replica replica in IPP× C.

PtsInit is used to lookup the inter-program points at which elements of the flow-sen-

sitive points-to set are first added. PtsInit(ao, f) returns a set of abstract objects together

with the inter-programpoint replicas atwhich theywere added to theflow-sensitivepoints-

to set for (ao, f). For example, if there is an assignment tofield f of abstract objectao at inter-

program point replica (ipp, c) that may cause that field to point to abstract object ao′ then

(ao′, ipp, c) is in PtsInit(ao, f). Note that the same abstract objectmay be added at differ-

ent inter-programpoint replicas, in which case it will appearmultiple times in PtsInit(ao,

f).

The function IsRecent(ao) returns true if ao is a most-recent abstract object and false

if it is a non-most-recent abstract object. NonMostRecent takes a most-recent abstract

object andprovides thenon-most-recent versionof the sameabstract object. Ifao is already

a non-most-recent abstract object then NonMostRecent(ao) returns ao unchanged.

²We also track points-to sets for static fields flow sensitively in our implementation.The modification
to the analysis is straightforward, but we elide it for simplicity.

62

As in our flow-insensitive analysis, this analysis is parameterized by three functions used

for context creation: Record,Merge, andMergeStatic.These functions are analogous

to their counterparts introduced in Section 2.1.3, but we use the program points for call

sites and allocation sites in place of the specialized types, CS and AS, seen there. This pa-

rameterization is essentially that of Smaragdakis et al. [100] andKastrinis andSmaragdakis

[52], and this analysis still supports any context sensitivity expressible using these func-

tions (e.g., all those described in Section 2.1.3 and any hybrid analysis [52] seen elsewhere

in this dissertation).

The last eight functions in Figure 3.3 are used to query the program-point graph and

inter-program-point graph. For eachmethod the program-point graph has a distinguished

methodentry andexit programpoint retrievedusingMethEntryandMethExit respec-

tively. Succs(pp) gives the intraprocedural successors to program point pp, defining the

intraprocedural program-point graph.These three functions combinedwith the call graph,

computed by the points-to analysis, define the interprocedural program point graph. Be-

fore(pp) and After(pp) give, respectively, the inter-program point that is immediately

before and after program point pp.

Function ValidPathExists(ipp′, c′, ipp, c) determines whether there is a valid path

in the inter-program-point graph from (ipp′, c′) to (ipp, c). We give several definitions of

valid path in Section 3.2.5. KilledOnAllPaths(ipp′, c′, ipp, c, ao, f) returns true if and

only if object field (ao, f) is killed on all valid paths in the inter-program-point graph from

(ipp′, c′) to (ipp, c). An object field is killed when it is strongly updated. Similarly, Allo-

cOnAllPaths(ipp′, c′, ipp, c, ao) returns true if abstract object ao is allocated on all valid

paths from (ipp′, c′) to (ipp, c).

Killed(pp, c) returns the set of object fields that are killed at a particular program point

63

Killed(pp, c) =



{} |PtsFI(o, c)| > 1
{} PtsFI(o, c) = {ao}

∧ ¬IsRecent(ao)
{(ao, fld)} PtsFI(o, c) = {ao}

∧ IsRecent(ao)
{(ao, f) | f = fld} PtsFI(o, c) = {}

where o.fld = x is the points-to statement at pp

Figure 3.4:Definition of the Killed function.

replica. An object field (ao, f) is killed at (pp, c) if the instruction at (pp, c) strongly updates

(ao, f). This function is defined in Figure 3.4, described in the next section.

3.2.3 Defining strong update

Figure 3.4 gives the definition of the Killed function. Killed describes which object

fields are strongly updated at a particular program point and is used to define the Kille-

dOnAllPaths function.

The Killed function returns an empty set for all program points except those corre-

sponding to field store instructions. If Killed(pp, c) returns a non-empty set then the

elements of that set are strongly updated at (pp, c) and elements of the points-to set for the

object field are not preserved across (pp, c). If a program point replica (pp, c) does corre-

spond to a field store o.fld = from, there are four cases based on the size of the points-to

set for (o, c) (and the recency of its elements). Let pts be the points-to set for (o, c). First,

if the size of pts is larger than one we do not know which concrete memory location is up-

dated by the field store. In this case strong update cannot be performed and no object field

is killed. Second, if the size of pts is one but the element of pts is a non-most-recent abstract

object then no strong update can be performed because non-most-recent abstract objects

64

can correspond to more than one concrete object. Third, if the size of pts is one and the

element, ao, of pts is a most-recent abstract object, then strong update can be performed

and the field (ao, fld) is killed.

Lastly we consider the case when the points-to set for (o, c) is empty. Note that while

this can occur during the analysis, the final solution will not have empty points-to sets, at

least not on any valid path. While solving the constraints elements are added to points-to

sets but never removed. Conservatively, we assume that any abstract object containing the

appropriate field could be added to the points-to set for (o, c). This means that any object

field with that field could be killed at (pp, c).

At a particular program point replica the kill set can only shrink as more elements are

added to the points-to set for (o, c). This is necessary to ensure the monotonicity of all

points-to sets, otherwise a points-to set element that was previously preserved at (pp, c)

could later be killed at (pp, c). If monotonicity were violated this could cause the analysis

to enter an infinite loopwhen attempting to find the least solution to the subset constraints.

3.2.4 Flow-sensitive subset constraints

Wespecify our analysis using the samepoints-to statements fromSection2.2.3. Sincewe

track reference variables and fields of non-most-recent abstract objects flow-insensitively

manyof the points-to statements represent the same, flow-insensitive, subset relations seen

in that section. These are shown in Table 3.1 for completeness, but are the same as those

presented in Section 2.2.3 and are not described here.

The flow-sensitive points-to sets are only used in the relations produced for a field load

and field store when the receiver is a most-recent abstract object and for new allocations.

Table 3.2 shows the subset relations that the points-to graph must satisfy for these state-

65

Table 3.1: Subset relations for points-to statements (in an analysis context c) that only involve
flow-insensitive points-to information.

Instruction Subset relations
in context c

to = from PtsFI(to, c)⊇ PtsFI(from, c)

to = null PtsFI(to, c)⊇ {AONULL}

to = (C) from PtsFI(to, c)⊇C PtsFI(from, c)

caught = (Ex) (notTypes) thrown ∀ao ∈ Pts(thrown, c).
if ao is a subtype of Ex
∧∀T ∈ notTypes.ao is not a subtype of T

then ao∈ Pts(caught, c)

to = φ(from , ..., fromn) for i ∈ {0, ..., n}.Pts(to, c)⊇ Pts(fromi, c)

to = o.m(a , ..., an) ∀ao ∈ PtsFI(o, c).
PtsFI(thist, newC)⊇ {ao}
for i ∈ {0, ..., n}.
PtsFI(formalt,i, newC)⊇ PtsFI(ai, c)

PtsFI(to, c)⊇ PtsFI(returnt, newC)
Pts(ex, c)⊇ PtsFI(exceptiont, calleeC)
where Merge(ao, pp, c) = newC
ResolveMeth(ao, m) = t

to = C.m(a , ..., an) for i ∈ {0, ..., n}.
PtsFI(formalm,i, newC)⊇ PtsFI(ai, c)

PtsFI(to, c)⊇ PtsFI(returnm, newC)
Pts(ex, c)⊇ PtsFI(exceptiont, calleeC)
where MergeStatic(pp, c) = newC

66

Table 3.2: Subset relations for points-to statements that may use or modify the flow-sensitive
points-to graph.

Instruction Subset relations
in context c
at program point pp

to = new C let ao= Record(pp, c)

ao∈ PtsFI(to, c)

∀f ∈ FieldsOf(C).(AONULL,After(pp), c)∈ PtsInit(ao, f)

∀f ∈ FieldsOf(C).
∀ ao′ ∈ PtsFS(ao, f,Before(pp), c).
ao′ ̸= ao⇒ ao′ ∈ PtsFI(NonMostRecent(ao), f)

∀f ∈ FieldsOf(C).∀ ao′ ∈ PtsFS(ao, f,Before(pp), c).
ao′ = ao
⇒NonMostRecent(ao′)∈ PtsFI(NonMostRecent(ao), f)

∀f ∈ FieldsOf(C).∀ao′ ∈ AO.
ao∈ PtsFS(ao′, f,Before(pp), c)∧ ao′ ̸= ao
⇒ (NonMostRecent(ao),After(pp), c)∈ PtsInit(ao′, f)

to = o.f ∀ao ∈ PtsFI(o, c).
IsRecent(ao)⇒ PtsFI(to, c)⊇ PtsFS(ao, f,Before(pp), c)
¬ IsRecent(ao)⇒ PtsFI(to, c)⊇ PtsFI(ao, f)

o.f = from ∀ao ∈ PtsFI(o, c).
IsRecent(ao)⇒

∀ao′ ∈ PtsFI(from, c).(ao′,After(pp), c)∈ PtsInit(ao, f)
¬ IsRecent(ao)⇒ PtsFI(ao, f)⊇ PtsFI(from, c)

67

ments. Each statement is labeled with a program point, and since our analysis is context-

sensitive each statement is analyzed in a particular context. PtsFS is used to get the flow-

sensitive points-to set at a particular program point. PtsInit records the inter-program

point replicas at which elements are added to a flow-sensitive points-to set.We discuss the

propagation of flow-sensitive points-to information from this initial inter-program point in

Section 3.2.5.

An allocation statement to = new C uses the Record function to compute a new ab-

stract object ao and ensures that ao is in the points-to set for (to, c). The abstract objects

produced by the Record function are always most-recent abstract objects as expected for

a newly allocated object. The fields of the new abstract object point to null at the inter-

program point immediately after the allocation, so we add AONULL at this inter-program

point to PtsInit for these fields.

In addition, because ao (a most-recent abstract object) has just been allocated, what

was previously the most-recent version of ao is now the non-most-recent. Any elements

(not equal to ao) that were in the points-to set for (ao, f) before the allocation are added

to the points-to set for (NonMostRecent(ao), f)which is tracked flow-insensitively. If an

element of the points-to set (ao, f) is equal to ao then, in this special case, NonMostRe-

cent(ao) is added to the points-to set for (NonMostRecent(ao), f). Lastly, any flow-

sensitivepoints-to set that containedaobefore the allocation contains thenon-most-recent

version of ao after the allocation.³

The constraints for a field load, to = o.f, ensure that for every abstract object ao ∈

PtsFI(o, c) everything that the field f of ao pointed to before the assignment is pointed to

³Via the constraint in Figure 3.5 flow-insensitive points-to sets already contain the non-most-recent
version if they contain the most-recent version and do not need this update at allocations.

68

ao∈ PtsFI(x, c)∧ IsRecent(ao)⇒NonMostRecent(ao)∈ PtsFI(x, c)

Figure 3.5: Interaction between the recency abstraction and flow-insensitive points-to sets.

by (to, c). If ao is a most-recent abstract object (i.e., IsRecent(ao) is true) then we track

(ao, f) flow-sensitively, the points-to set before the assignment is PtsFS(ao, f, Before(pp),

c), and these elements are added to the points-to set for (to, c). If ao is a non-most-recent

abstract object then the points-to set for (ao, f) is PtsFI(ao, f) which must be a subset of

the points-to set for (to, c).

The constraints for field store, o.f = from, are also split into two cases. If ao is an ele-

ment of the points-to set for (o, c) and ao is a most-recent abstract object then all elements

of the points-to set for (from, c) are added to the flow-sensitive points-to set for (ao, f) at

the inter-program point immediately following the store instruction (i.e., these elements

are added to PtsInit together with this inter-program point replica). If ao is a non-most-

recent abstract object we track (ao, f) flow-insensitively and the constraint ensures that the

flow-insensitive points-to set for (ao, f) contains all the elements of the points-to set for

(from, c).

The constraint in Figure 3.5 holds for all points-to statements and describes how the re-

cency abstraction interacts with flow-insensitive points-to sets. If a flow-insensitive points-

to set points to a most-recently-allocated abstract object ao, then it must also point to the

corresponding non-most-recently allocated abstract object NonMostRecent(ao). Intu-

itively, this is because flow-insensitive points-to sets describe facts that may hold at any

program point and if a field points to the most-recently allocated object just before the al-

location site that allocated the object, then immediately after the allocation it points to the

corresponding non-most-recently allocated object.

69

PtsFS(ao, f, ipp, c) =


ao′

(ao′, ipp′, c′)∈ PtsInit(ao, f)
∧ ValidPathExists(ipp′, c′, ipp, c)
∧¬ KilledOnAllPaths(ipp′, c′, ipp, c, ao, f)
∧¬ AllocOnAllPaths(ipp′, c′, ipp, c, ao)
∧ (¬ IsRecent(ao′)

∨¬ AllocOnAllPaths(ipp′, c′, ipp, c, ao′))


Figure 3.6: Flow-sensitive points-to set definition.

3.2.5 Flow-sensitive points-to set propagation

Figure 3.6 describes the elements in the flow-sensitive points-to set for (ao, f) at a par-

ticular inter-program point replica, (ipp, c). In order to compute this set we use PtsInit,

which gives the inter-program point replicas at which an element is added to a flow-sensi-

tive points-to set, together with reachability queries on the inter-program-point graph.

If (ao′, ipp′, c′) is an element of PtsInit(ao, f) thismeans that ao′ was first added to the

points-to set for (ao, f) at inter-program point replica (ipp′, c′). In order for ao′ to be in the

points-to set at a different inter-programpoint replica, (ipp, c), theremust be a valid path in

the inter-program-point graph from (ipp′, c′) to (ipp, c). In addition, at least one of these

valid paths must not kill the field (ao, f). If (ao, f) is strongly updated then the points-to

set is replaced (i.e., elements of the point-to set for (ao, f) before the strong update are no

longer in the points-to set after the strong update). If (ao, f) is strongly updated on every

valid path from (ipp′, c′) to (ipp, c) then KilledOnAllPaths(ipp′, c′, ipp, c, ao, f) is true

and ao′ is not in the points-to set at (ipp, c).

We also have to consider the allocations that occur on valid paths from (ipp′, c′) to

(ipp, c). An allocation of ao will result in a new most-recent ao and fields of that new ob-

ject will be initialized to null as seen in Table 3.2. If an allocation of ao occurs on all valid

70

paths from (ipp′, c′) to (ipp, c) (i.e., AllocOnAllPaths(ipp′, c′, ipp, c, ao) is true) then

elements that were added at (ipp′, c′)will not remain at (ipp, c).

Assume ao′ is a most-recent abstract object in the points-to set for (ao, f) before ao′ is

allocated.ThenNonMostRecent(ao′) replaces it in the points-to set for (ao, f) after the

allocation (as seen inTable 3.2). Ifao′ is added to thepoints-to set for (ao, f) at (ipp′, c′) and

ao′ is allocated on all valid paths from (ipp′, c′) to (ipp, c) (i.e., AllocOnAllPaths(ipp′,

c′, ipp, c, ao′) is true) then ao′ will not be in the points-to set for (ao, f) at (ipp, c).

In summary if ao′ is added to the points-to set for (ao, f) at inter-program point replica

(ipp′, c′) then it is in the points-to set at (ipp, c) if all the following conditions hold:

1. There is a valid path from (ipp′, c′) to (ipp, c) in the inter-program-point graph;

2. There is at least one valid path from (ipp′, c′) to (ipp, c)where (ao, f) is not strongly

updated;

3. There is at least one valid path from (ipp′, c′) to (ipp, c)where ao is not allocated;

4. If ao′ is a most-recent abstract object then ao′ is also not allocated on all paths from

(ipp′, c′) to (ipp, c).

The definitions of valid path in ValidPathExists, KilledOnAllPaths, and Allo-

cOnAllPaths has intentionally been left opaque.The definition of valid produces sound

results as long as we do not rule out paths that may occur at runtime during a particular

execution. Different definitions of what constitutes a valid path lead to differing levels of

precision in our analysis.

At one extreme we could declare that there is a valid path between every pair of inter-

program point replicas and ignore strong updates on that path. To do this we can define

ValidPathExists to return true for any two inter-program point replicas and define the

functions KilledOnAllPaths and AllocOnAllPaths to always return false. In this

71

case, an element added to a points-to set at any program point will be contained in that

points-to set at anyotherprogrampoint. Inotherwords the analysis is fully flow-insensitive.

Another option is to define the path predicates using graph reachability in the inter-

program-point graph. In this case, ValidPathExists checks for the existence of a path in

the graph theoretic sense, KilledOnAllPaths(ipp′, c′, ipp, c, ao, f) returns false if (ipp, c)

is reachable from (ipp′, c′) on some path in the inter-program-point graph that does not

strongly update (ao, f), and AllocOnAllPaths is defined in a similar way.

Thegraph reachability definitions aboveproduceflow-sensitive points-to results, butwe

can bemore precise if we rule out paths that are infeasible at runtime. For example, we can

only consider paths with matching call and return sites, a form of CFL reachability [90].

Paths in the inter-program-point graph that enter via a particular call site and exit via a

different return site do not correspond to any actual execution and can safely be ignored.

This improves precision eliminating some spurious elements in our flow-sensitive points-

to sets.

There are other paths in the inter-program-point graph that do not correspond to a pos-

sible program execution. For example, there may be a path which passes through the true

branch of the conditional x > 42 and the false branch of the conditional x > 32 in a pro-

gramwhere this is impossible for any real execution. By gathering such conditions and de-

termining their satisfiability (e.g., by using an SMT solver such as Z3 [22]) we can further

eliminate infeasible paths, improving the precision of our analysis.

In our implementation, we do not take into account the compatibility of a path’s condi-

tionals, but do rule out paths based on incompatible call and return sites.

72

3.3 Implementation

Thisanalysis uses amodifiedversionof the frameworkused for ourflow-insensitive anal-

ysis, the implementation of which is discussed in Section 2.3. As a result they share many

of the same features. The implementation of our flow-sensitive points-to analysis consists

of approximately 14.5k lines of Java code of requiring about 7kmore lines of code than our

flow-insensitive analysis (much of the remaining 7.5k is shared between the two analyses).

We again implement our analysis for Java bytecode. As in our flow-insensitive analysis we

use WALA [13] to parse and translate Java bytecode to a register-based intermediate lan-

guage in partial Static Single Assignment (SSA) form [20] and our points-to analysis runs

on this intermediate language.

We handle almost all features of Java. Like our flow-insensitive analysis we do not han-

dle reflection. Unlike in our flow-insensitive analysis, reads and writes are ordered, and we

do not reason soundly about the order of concurrent accesses to shared data. We handle

native methods in the same way as our flow-sensitive analysis, writing analysis signatures

in Java for key methods and generating an analysis signature for other methods. We also

use analysis signatures to improve precision and performance for some key Java standard

library classes. These are sources of unsoundness in our analysis.

Another feature inherited from our flow-insensitive analysis, we allow client analyses to

use a single abstract object for some common types. Choosing this option will improve

performance, but lose precision for those types.

Our points-to analysis engine solves the constraints described in Section 3.2 and is im-

plemented as a multi-threaded work queue algorithm, using Java’s work-stealing fork/join

framework [58]. To efficiently propagate changes, we carefully track dependencies and use

a difference propagation algorithm [28, 63, 84]. The basic points-to analysis engine and

73

optimizations carry over from our flow-insensitive analysis; more detail on these can be

found in Section 2.3. The rest of this section is dedicated to describing further optimiza-

tions specifically in support of flow-sensitivity and strong update.

3.3.1 Points-to set representation

We represent the points-to facts as a graph, where edges go from points-to graph nodes

to abstract objects (to reiterate, a points-to graph node is either a reference variable replica

or an object field).We represent the flow-insensitive points-to graph simply as a map from

points-to graph nodes to sets of abstract objects.

For flow-sensitive points-to graph nodes (i.e., fields of most-recently-allocated heap ob-

jects), we associate with each flow-sensitive points-to graph node n and abstract object o

a set of inter-program point replicas sn,o, such that if inter-program point replica (ipp, c) is

in sn,o, then n points to o at (ipp, c). We do not explicitly represent eachmember of this set.

Instead we use a novel compact representation of the set of inter-program point replicas,

called program-point closures.

A program-point closure is specific to a particular points-to graph node n and abstract

object o, and contains an explicit set of sources: inter-program point replicas at which the

points-to relation between n and o is established (e.g., immediately following field stores

that add o to the points-to set of n).These sources are precisely the elements of PtsInit(n)

(described in Section 3.2.2) where the first element of the returned tuple is o. A program-

point closure implicitly represents the set of all inter-programpoint replicas forwhich there

is a valid path from a source that does not go through a programpoint replica that allocates

either o or n, nor goes through a program point replica that performs a strong update to

object field n. (This corresponds to finding an appropriate path as defined in Figure 3.6.)

Thus, determining whether an inter-program point replica is in a set represented by a

74

program-point closure is reduced to a graph reachability problem in the inter-procedural

control-flow graph.We are able to efficiently and precisely answer these graph reachability

questions by computing a method summary for each (method, context) pair

Specifically, if method m is analyzed in context c, then we compute (and memoize)

which abstract objects are allocated and which object fields are killed on all paths from

the entry program point replica to the exit program point replica.That is, if abstract object

o is allocated on all paths from the method entry to the method exit, then o will be in the

summary; if there exists some path from the method entry to the method exit where o is

not allocated, then o will not be in the summary. Since the method may call other meth-

ods, computation of the method summary may require using the method summaries of

the callees. In addition, we also compute (and memoize) what method-context pairs are

reachable from m in context c, and which abstract objects are allocated and object fields

killed on all paths to that method. That is, if there is a path from the entry of method m

in context c to the entry of method m′ in context c′, then the method summary for m in

context c will describe which objects are allocated and which object fields are killed on all

paths from the entry of m in context c to the entry of m′ in context c′.

Method summaries greatly improve the efficiency of determining whether some source

inter-program point replica can reach some target inter-program point replica without go-

ing through a program point replica that allocates a relevant abstract object or kills a rele-

vant object field. In particular, whenever a method call is encountered during this search,

method summaries efficiently summarize the potential results of exploring the callee, in-

cluding allowing the search to jump directly to the entry of the method containing the

target inter-program point replica.

Computation of the method summaries must be iterated until a fixed point is reached,

75

and must be updated as the call graph is discovered. However, many inter-program point

reachability queries use the method summaries, and the computational effort required for

method summaries may be paid off by increased efficiency of inter-program point reacha-

bility queries. For the three applications in the DaCapo benchmark suite [9] not analyzed

in Section 3.4 this approach did not scale. We hypothesize that this is due to large con-

nected components in the call graph for those applications, which could inflate the cost of

the iteration and re-computation of these method summaries.

In addition, the use of method summaries also improves the precision of the inter-pro-

gram point reachability queries, since it ensures that only paths the inter-procedural con-

trol flowgraphwithmatching call and return sites are explored.That is, it does not consider

paths that enter a callee method from one caller, and return to a different caller. We thus

implement a formofCFL reachability [90].Other possible alternative definitions of reach-

ability are discussed in Section 3.2.5.

3.3.2 Context sensitivity

The context sensitivity of our analysis is parameterized in the context by the Merge,

MergeStatic, and Record functions. State-of-the-art abstractions for object-oriented

programs include type-sensitivity [100] and hybrid analysis [52] (which combine object-

sensitive and non-object-sensitive approaches), and we have implemented several of these

abstractions in our analysis.

However, in order for our analysis to employ strong update at a field store o.f = from,

the replica of reference variable o must point to a single abstract object which is a most-

recently-allocated object. In particular, since this is most useful in establishing object in-

variants,weneed the receiver in constructormethods tobe a singlemost-recently-allocated

object. Unfortunately, this is generally not the case for a type-sensitive analysis. While it is

76

true for a full-object sensitive analysis [76], we found that this abstraction does not scale

well.

We therefore use a novel analysis that provides full-object sensitivity for constructor

calls, andprovides type sensitivity everywhere else, ensuring scalability.This novel analysis

is simply the cross-product of a type sensitive analysis with an analysis that uses a full-

object-sensitive context to analyze constructors and a single other context to analyze all

other methods.

In a full-object sensitive analysis the context is based on the abstract object for the re-

ceiver. Because, in Java bytecode, constructors are always called immediately after the allo-

cation of the object being constructed, the receiver for constructor calls is always a most-

recent abstract object. This means that if we use a full-object sensitive analysis for these

constructor calls, the this variable inside constructor methods will (almost⁴) always be a

single most-recent abstract object, and updates to fields on this object can be strong up-

dates, enabling us to establish object invariants that hold after object initialization in the

constructor.

3.4 Evaluation

In this section we present the results of applying our analysis to several applications in

theDacapo Benchmark suite (version 2006-10-MR2) [9].We present and discuss the per-

formance of the points-to analysis. For three of the applications, bloat, chart, and jython,

our flow-sensitive analysis did not terminate after an hour so these do not appear in our re-

sults. We compare the precision of our flow-sensitive analysis to a flow-insensitive analysis

⁴It is possible to contrive an example where, in a constructor, an allocation of the same abstract object
that the receiver pointed to occurs before a field update and prevents us from strongly updating this field.
We did not encounter this type of code in our evaluation and suspect that it is rare in practice.

77

by examining the results of three client analyses: a non-null analysis, a cast removal anal-

ysis, and a numeric interval analysis. We also empirically demonstrate the importance of

strong update by running each client analysis with andwithout strong update and compar-

ing the results. All evaluationwas performedon a 16 virtual-CPUAmazonEC2 instance (8

hyper-threaded cores) using Intel XeonE5-2666 processors with 30GBofRAM(although

none of our tests required more than 4GB of RAM).

3.4.1 Performance

Table 3.3: Flow-sensitive points-to analysis performance.

Program Lines SSA Mean (s) Std Dev
of code Instructions

antlr 62,750 79,395 55.11 4.08
eclipse 130,236 123,860 91.67 3.21
fop 74,621 88,348 62.13 3.44
hsqldb 46,562 46,375 10.25 0.72
luindex 104,306 104,774 19.22 2.64
lusearch 49,885 50,121 9.61 1.31
pmd 127,351 145,389 25.17 1.10
xalan 64,754 71,482 14.76 1.11

Table 3.3 shows themean performance of our flow-sensitive analysis.We analyzed each

application together with all library code including JDK version 1.6; the number of lines of

code and WALA SSA instructions express the size of all methods that are reachable from

the programentry point including library code.To compute the average and standard devi-

ation we ran each analysis 10 times.While the performance is significantly worse than our

flow-insensitive points-to analysis (taking on average over 40 times longer), the absolute

time taken for the analysis is still reasonable: the slowest example takes just over a minute

and a half. For some client applications, the additional gain in precision may make this a

78

reasonable trade off.

0
1
2
3
4
5
6
7
8
9

0 1 2 4 8 16
0
1
2
3
4
5
6
7
8
9

Av
er
ag
eS

pe
ed

U
p

Threads

antlr
eclipse
fop
hsqldb
luindex
lusearch
pmd
xalan

Figure 3.7: Performance of the flow-sensitive points-to analysis vs. number of processing
threads.

Figure 3.7 shows how our analysis scales with the number of processing threads. All

tests were run on a single 16 vCPU instance, but using differing numbers of worker threads

in Java’s fork/join framework. We see a general upward trend, with some of faster bench-

marks trending downwith increasing thread count as contention for shared data structures

including contention on the work queues takes proportionally longer.

3.4.2 Client analyses

To test the precision of our points-to analysis we implemented three useful and com-

mon client analyses. These analyses rely on the results of the points-to analysis for their

precision.

Non-null analysis A non-null analysis is a data-flow analysis that determines the set

of variables andmemory locations that aredefinitely non-null ormay-be-null before andaf-

79

ter every instruction in an application. In Java every non-staticmethod call, non-static field

access, array access, and even throw statement may potentially dereference a null pointer.

For safety reasons, a Java VirtualMachine (JVM)dynamically checks these operations be-

fore executing them. If a dereferenced pointer (e.g., through a field access or method call)

is null a run-time NullPointerException is thrown and, if it is not handled, the JVM will

exit. A non-null analysis can be used to statically detect both possible null-pointer accesses,

which may indicate buggy code, and places where it is impossible for a given pointer to be

null, which may allow for the removal of dynamic checks.

Table 3.4: The precision of the non-null analysis as measured by the percent of possible
NullPointerExceptions (e.g. non-staticmethod calls) that can be proved impossible by the anal-
ysis.

Program Percent of possible NPE proved impossible
Flow-sensitive Flow-sensitive Flow-insensitive

w/ Strong Update no Strong Update
antlr 91.95% 84.93% 84.85%
eclipse 91.00% 86.96% 83.51%
fop 93.39% 88.21% 86.90%
hsqldb 94.24% 89.97% 89.15%
luindex 92.25% 87.36% 83.39%
lusearch 95.16% 90.47% 89.18%
pmd 92.82% 88.24% 85.63%
xalan 94.55% 88.24% 88.12%
TOTAL 92.88% 87.95% 85.72%

Table 3.4 shows the difference in precision of the non-null analysis in three different

configurations. The first column shows the percent of NullPointerExceptions that can

be proven impossible using the results of our flow-sensitive points-to analysis.The second

column shows the percentages using the results of a flow-sensitive points-to analysis that

does not perform strong update, i.e., in the points-to analysis all object fields are weakly

updated.The third column shows the results when the non-null analysis uses the results of

80

a flow-insensitive points-to analysis.

The flow-sensitive analysis without strong update enables the removal of 87.95% of the

possible null-pointer exceptions in the program, more than the flow-insensitive analysis

which removes 85.72%. This is due to a more precise points-to graph, but the real benefit

is seen when using the results of our flow-sensitive points-to analysis with strong update.

Here, 92.88% of the exceptions are proven impossible. Compared to the flow-sensitive

analysis with strong update, the flow-insensitive analysis leaves more than twice as many

locations in the code that the programmer needs to manually check for errors and/or

that the run-time system needs to dynamically inspect. The difference between the flow-

sensitive analysis with andwithout strong update shows the benefit of the recency abstrac-

tion, which, as discussed in Section 3.1, is what enables client analyses to usefully employ

strong update.

Cast removal The cast removal analysis makes a single pass over the code, inspecting

each checkcast instruction. If a given instruction casts program variable v to type T and

if the points-to set for (all replicas of) v contains only abstract objects that are subtypes T

then the cast can never fail. In this case the checkcast instruction is unnecessary and can

safely be removed.

Table 3.5 shows the percentage of casts that can be removed using the results of our

points-to analysis, a flow-sensitive points-to analysis without strong update, and a flow-

insensitive points-to analysis.Our analysis removes 60.72%of the casts across all programs,

which is over 35% more than the flow-insensitive analysis and 17% more than the flow-

sensitive analysis without strong update.⁵This increase in precision is due to themore pre-

⁵For two of the programs, the flow-sensitive analysis without strong update performs slightly worse

81

Table 3.5:Theprecision of a cast removal analysismeasured by the percent of dynamic casts that
are always allowed.

Program Percent of dynamic casts that can be proven unnecessary
Flow-sensitive Flow-sensitive Flow-insensitive

w/ Strong Update no Strong Update
antlr 58.55% 52.71% 47.27%
eclipse 60.39% 47.99% 45.51%
fop 57.03% 49.81% 50.61%
hsqldb 59.69% 49.64% 52.26%
luindex 61.57% 53.72% 48.69%
lusearch 62.20% 54.01% 50.00%
pmd 66.54% 52.88% 35.44%
xalan 58.79% 58.12% 50.23%
TOTAL 60.72% 51.65% 44.73%

cise points-to sets.

Interval analysis A numeric interval analysis conservatively approximates the value

of program variables and fields with numeric type. Like the non-null analysis, the interval

analysis is a data-flow analysis.

Figure 3.6 gives the percentage of intervals that the analysis determines cannot contain

zero.Using the results of a flow-sensitive points-to analysiswith strong update results in 9%

more intervals that cannot contain zero than the analysis that uses flow-insensitive points-

to results.The performance of the interval analysis using a flow-sensitive points-to analysis

with and without strong update is essentially equivalent.

percentage-wise than the flow-insensitive analysis.This is due to amore precise call graph (i.e., fewermeth-
ods are reachable), which means there are fewer class casts that could potentially be removed.

82

Table 3.6:Theprecision of the interval analysis as measured by the percent of intervals that con-
tain zero.

Program Percent of intervals that do not contain zero
Flow-sensitive Flow-sensitive Flow-insensitive

w/ Strong Update no Strong Update
antlr 62.19% 62.02% 59.15%
eclipse 62.98% 62.45% 58.11%
fop 58.83% 58.08% 57.40%
hsqldb 63.22% 63.14% 55.40%
luindex 58.51% 57.94% 55.20%
lusearch 61.55% 60.89% 55.62%
pmd 64.81% 64.14% 53.70%
xalan 57.06% 54.75% 53.88%
TOTAL 61.06% 60.64% 56.06%

3.5 Relatedwork

Our work focuses on providing strong update in analyses of object-oriented programs,

whichwe achieve via a points-to analysis that uses Balakrishnan andReps’ recency abstrac-

tion [6] with flow-sensitivity for singleton abstract locations. We focus here on previous

work related to strong update and flow-sensitive points-to analysis. Discussion on multi-

threaded points-to analysis can be found in Section 2.5.

Strong update Lhoták and Chung [62] present an efficient points-to analysis with

strong update for C/C++ programs. The analysis is flow sensitive only for singleton ab-

stract locations, and treats an abstract locationflow insensitivelywhen its points-to set con-

tains two or more elements.The analysis is cubic in the size of the program, although con-

text insensitive. Our approach to strong update and flow sensitivity is based on their work.

However, their techniques are not directly applicable to object-oriented programs [61],

sincewithout careful context sensitivity, there are fewsingletonabstract locations inobject-

83

oriented programs. To achieve efficient strong update in Java-like languages, we needed to

incorporate context sensitivity and the recency abstraction [6] in order to usefully increase

the number of singleton abstract locations.

Balakrishnan and Reps [6] introduce the recency abstraction that we use in this paper.

They use it to resolve virtual function calls in executables.The recency abstraction is effec-

tive in their setting because function dispatch tables are typically established immediately

after creating an object, and thus gaining additional precision on the most recently cre-

ated object enables precision exactly where it is most useful. It is effective in our setting,

for both points-to analysis and client analyses, for similar reasons: because object invari-

ants are established during object construction, the recency abstraction enables precision

exactly where it is most useful.

Balakrishnan and Reps also point out that many points-to analyses for C unsoundly as-

sume that the initial points-to set for a pointer is the empty set when, in fact, all pointer

variables initially point to uninitialized memory (i.e., they can take on any address). Sim-

ilarly in Java, it is unsound to assume that the initial points-to set for fields with reference

type is the empty set, since the initial points-set is actually {null}. To our knowledge all of

the flow-sensitive points-to analyses we discuss in this section that perform strong update

make this unsound assumption in order for their analyses to scale and perform strong up-

date. Our analysis does not make this assumption. Instead we soundly rely on the recency

abstraction to strongly update fields when they are first assigned to.

Sagiv et al. [95] use a 3-valued logic to reason about shape analysis, and introduce a

“focus” operation, which permits the extraction of a single location from a summary node

(i.e., a node in a shape graph that represents multiple locations), and thus enables precise

reasoning and strong update for the single location. Hackett and Rugina [34] introduce a

84

novel shape abstraction where each shape configuration is concerned with reasoning pre-

cisely about a single heap location, and thus strong update can be performed on the sin-

gle heap location. Yavuz-Kahveci and Bultan [119] use a shape abstraction that explicitly

counts the number of concrete locations represented by an abstraction location, thus en-

abling strong update.

Dillig et al. [24] generalize strong and weak update to reasoning about under- and over-

approximations of the locations that an update might modify. Specifically, they consider

updates to array elements, where approximating the locations that may be updated corre-

sponds to approximating the array index.

Flow-sensitive points-to analysis Most work on flow-sensitive points-to analysis

casts it as a data-flow problem on an interprocedural control flow graph or a similar data

structure.Choi et al. [18] present a flow-sensitive analysis forC that uses an iterative traver-

sal of the call graph where intraprocedural aliasing information is computed with a data-

flowona sparse evaluation graph: a control flowgraph that elides all basic blocks that cannot

affect points-to information. Hind and Pioli [44] improve Choi et al.’s performance by us-

ing aworklist algorithmandonly propagating reachable alias relations to callees, andGoyal

[32] improves the computational complexity using finite differencing and dominated con-

vergence optimizations.

Using a static single assignment (SSA) program representation [20] can improve the

propagation of points-to information, by making def-use chains more easily available. In

addition, SSA form can provide a form of flow sensitivity even for a flow-insensitive anal-

ysis (which we benefit from for local variables in our analysis, using WALA’s partial SSA

form). Chase et al. [15] propose an algorithm for a Lisp-like language that dynamically

85

transforms a whole program into SSA form during the points-to analysis. Tok et al. [109]

implement a similar algorithm that recomputes both client analysis results and points-to

results as new dependencies in the points-to graph are discovered.Hasti andHorwitz [41]

propose a flow-insensitive analysis that iteratively transforms a program into SSA form,

with each iteration providing more precise results. They speculate that in the limit their

analysis approaches the sameprecision as aflow-sensitive analysis. Staiger-Stöhr [104] also

computes a whole-program SSA, but does so incrementally during a flow-sensitive points-

to analysis.

Hardekopf and Lin [39] present an analysis for C that uses a partial SSA form (for local

variables) and an iterative data-flow analysis to propagate points-to information.Theynote

that SSA form implies that flow sensitivity gives additional precisiononly for address-taken

variables, which greatly reduces the size of the propagated flow-sensitive points-to infor-

mation. This observation does not carry over to object-oriented languages, where almost

all locations are “address taken”, since they are fields of dynamically created objects. They

further improve their analysis by using def-use information for heap allocated variables

computed using an auxiliary flow-insensitive points-to analysis [40].

Yu et al. [121] present a flow-sensitive context-sensitive points-to analysis for C pro-

grams, also using an auxiliary flow-insensitive points-to analysis. They partition variables

into levels and use points-to information at higher levels to transform variables at lower

levels into SSA form.

Nagaraj and Govindarajan [79] implement a flow-sensitive context-insensitive version

of the graph-rewriting-based analysis of Méndez-Lojo et al. [74] using a work-list to man-

age the graph rewrites.

Kahlon [50] also uses an auxiliary flow-insensitive points-to analysis to partition a pro-

86

gram intoparts onwhich the analysis can run independently and inparallel, thus improving

the efficiency of the flow-sensitive analysis (note that they simulate parallelism and do not

implement amultithreaded version of their analysis). Ye et al. [120] also partition the pro-

gram, and their analysis is flow sensitive only between partitions, using a flow insensitive

analysis within a partition. Nasre [81] bootstraps a context-insensitive GPU implementa-

tion with a flow-insensitive analysis and uses a two-dimensional variation of a bloom filter

efficiently represent large data structures. Unrelated pointers can imprecisely share infor-

mation due to collisions in the hash functions used for the bloom filters.

Li et al. [66] formulate the results of a flow-sensitive points-to analysis for C as a graph

reachability problem on a value flow graph. Traditional points-to sets are computed using

the transitive closure of the value flow graph.

Several of the flow-sensitive points-to analyses described above scale tomillions of lines

of C code. However, in general, C code typically has fewer address-taken variables and ab-

stract heap locations than Java code, where every field is represented in a points-to analysis

as an abstract location. De and D’Souza [21] present a scalable flow-sensitive points-to

analysis for Java that computes the points-to sets of access paths (i.e., sequences of fields

accesses), instead of points-to sets of variables and object fields. This provides more op-

portunities for strong update, as often the points-to set of an access path in a given context

is a singleton. They use an auxiliary flow-insensitive points-to analysis to bootstrap their

analysis and reduce the time needed to reach a fix point. Scalability is achieved by limiting

access paths to length 2. While they reduce the size of the call graph compared to a flow-

insensitive analysis, they donot reportwhether their points-to analysis provides additional

precision for client analyses, so the relative precisionwith respect to our analysis is unclear.

87

4
Pidgin

4.1 Introduction

What security guarantees a program provides is a property of the whole program and

these guarantees are application-specific.Applications dealwith different types of sensitive

data as diverse as personal photos, credit card numbers, andmedical records.What consti-

tutes correct handling of this information varies greatly between applications: a shopping

website may reveal the last four digits of your credit card number and amessage to a friend

may include a photo (but only the specific photo and only to the specific recipient).

This chapter presents a new approach to achieving application-specific security guaran-

tees.We combine awhole-application program-dependence graph (PDG) [29, 47], which

precisely captures the information flows in a program, with a domain-specific graph query

language. Paths in a PDG correspond to information flows in an application. Our queries

express properties of these paths which therefore correspond to information-flow security

guarantees provided by the application. This methodology as implemented in our tool,

Pidgin, has several benefits:

− Expressive policies Because policies in Pidgin are queries in a language specifically

built to describe how information flows through a program, Pidgin can be used to

express complex and precise whole-program security policies. These include non-

interference [31], absence of explicit information flows (taint-tracking), trusted de-

88

classification [42], and mediation of information-flow by access control checks.

− Support for exploration and discovery Pidgin provides a unified approach that sup-

ports the exploration, expression, and enforcement of information security policies.

Pidgin can be used interactively, using successive queries and their results to ex-

plore how information propagates through a program and what security guarantees

that program provides. This is especially effective for legacy applications that were

not developed with a specific a priori security policy. Exploration can help discover

what security guarantee an application provides and decide whether that guarantee

is sufficient. If an appropriate security guarantee is identified, Pidgin can be used

to succinctly express the policy corresponding to that guarantee and check whether

it holds.

− Policies separate from code Pidgin security policies do not require any modification

to application code and enforcement of Pidgin policies does not require any run-

time support. This means that Pidgin does not interfere with other development

and testing efforts, and developers can choose how to balance the development of

new functionality with the maintenance of security policies.

− Support for regression testing Pidgin policies can be used to check security guaran-

tees during development, perhaps as part of a build process. If a policy fails, Pidgin

canbe used to help understandwhyby identifying information flows in the program

that violate the policy.

These benefits stand in contrast to existing tools and techniques. Security-type systems

(e.g., Volpano et al. [114], Jif [78] and FlowCaml [98]) and previous work that uses PDGs

to enforce information security (e.g., [30, 35, 37]) specify polices as annotations scattered

throughout the program.This canmake it hard to identify the security guarantee provided

89

by the application especially in the presence of declassification [94]. In addition, mod-

ifying the application or security policy may require the modification of many program

annotations. Support for legacy applications is difficult or impossible since it requires the

addition of many annotations and possibly other modifications.

Dynamic information-flow enforcement techniques (e.g., [4, 5, 14, 48, 57, 106]) can

sometimes express policies separate from code, but interfere with development and must

be used during testing to ensure that the enforcement mechanism does not prevent in-

tended functionality.

Static and dynamic taint-tracking tools (e.g., [3, 17, 27, 65, 110, 111, 122]) do not con-

sider implicit information flows [53], support a limited class of policies, and often do not

support application-specific policies. One of the most recent, FlowDroid [3], works with

a pre-defined (i.e., not application-specific) set of sources and sinks and does not support

sanitization, declassification, or access control policies. Because Pidgin supportsmore ex-

pressive policies, we detect 159 of the 163 (=98%) vulnerabilities in the SecuriBench Mi-

cro [70] 1.08 test suite compared to Flowdroid’s 117 (=72%).

In addition, previous work focuses almost exclusively on the enforcement of security

policies with no support for exploration and discovery.

The rest of this chapter describes the design and implementation of Pidgin. Pidgin

combines PDGswith an expressive policy language to provide a unified approach enabling

exploration, specification, and enforcement of application-specific security guarantees.

Pidgin produces PDGs for Java bytecode and evaluates queries against these PDGs,

either interactively or in batch mode. Our techniques are applicable to other languages.¹

¹We have generated PDGs for C/C++ programs by analyzing LLVM bitcode [56] produced by the
clang compiler (http://clang.llvm.org/), and explored information security in these programs using
the same query language and query evaluation engine.This dissertation focuses on our Java tool.

90

http://clang. llvm.org/

Pidgin is both useful and scalable. We have used Pidgin to discover diverse information

security guarantees in legacy Java applications, and to specify and enforce information se-

curity policies as part of the development process for two new applications. We have ana-

lyzed programs ranging in size up to 330,000 lines of code (including library code); even

for the largest program, construction of the PDG (including our flow-insensitive points-to

analysis, and dataflow analyses to improve precision) takes 90 seconds, and checking each

of our policies on the PDG takes less than 14 seconds.

Security guarantees we have established using Pidgin include: in a password manager,

the master password is not improperly leaked; in a chat server application, punished users

are restricted to certain kinds of messages; and in a course management system, the class

list is correctly protected by access control checks. Moreover, we have developed security

guarantees based on reported vulnerabilities in Apache Tomcat, and Pidgin verifies that

the security guarantees hold after the vulnerability is patched and fail to hold in earlier

versions.

4.2 Pidgin by example

Consider the Guessing Game program presented in Figure 4.1.This program randomly

chooses a secret number from 1 to 10, prompts the user for a guess, and then prints a mes-

sage indicating whether the guess was correct.

A program dependence graph (PDG) representation of this program is shown in Fig-

ure 4.2. Shaded nodes are program-counter nodes, representing the control flow of the pro-

gram. All other nodes represent the value of an expression or variable at a certain program

point. There is a single summary node representing the formal argument to the output

91

1 secret = getRandom(1, 10);
2
3 output(“Guess a number between 1 and 10”);
4 int guess = getInput();
5
6 bool correctGuess = (secret == guess);
7 if (correctGuess) {
8 output(“Congratulations! ”+ guess + “ was right”);
9 }
10 else {
11 output(“Sorry, your guess was incorrect”);
12 }

Figure 4.1:Guessing Game program

"Guess a number …"

guess = getInput()

return: getRandom

secret = getRandom...secret == guess

PC1

correctGuess = ..

"Congratulations! " +
guess + " …"

PC2

"Sorry, your guess …"

FORMAL: msg

Input from
player

TRUE FALSE

MERGE
MERGE

COPY

CD

COPY

EXPEXP

EXP

return: getInput

COPY

getRandom

COPY

output

ACTUAL: msg

MERGE

ACTUAL: msg

COPY

CD

ACTUAL: msg

COPY

"Congratulations! "

EXP

" was right"

EXP

String.valueOf

"Congratulations! " +
guess

EXP

Figure 4.2: PDG for Guessing Game program

92

function.There are three nodes representing actual arguments, one for each call to output,

and an edge from each to the formal argument. Edges labeled CD indicate control depen-

dencies and other edges indicate data dependencies. Dashed edges and clouds showwhere

we have elided parts of the PDG for clarity. (All other emphasis is for the exposition be-

low. Program-counter nodes that are not relevant to the discussion have been removed for

simplicity.)

Although the Guessing Game program is simple, it has interesting security properties

that can be expressed as queries on the PDG.

No cheating! The program should not be able to cheat by choosing a secret value that

is deliberately different from the user’s guess. That is, the choice of the secret should be

independent of the user’s input.This policy holds if the followingPidginQLquery returns

an empty graph:

let input = pgm.returnsOf(‘‘getInput’’) in
let secret = pgm.returnsOf(‘‘getRandom’’) in
pgm.forwardSlice(input) ∩ pgm.backwardSlice(secret)

PidginQL is a domain specific graph query language that enables exploration of a pro-

gram’s information flows, and specification of information security policies.Constant pgm,

short for program, is bound to the PDG of the program. Primitive expressions (such as

forwardSlice) compute a subgraph of the graph to the left of the dot. Query expression

pgm.returnsOf(‘‘getInput’’) evaluates to the node in the program PDG that represents the

value returned from function getInput (shown in a rectangle in Figure 4.2). This is the

user’s input. Similarly, the second line identifies the node representing the value returned

from function getRandom as the secret. This node is outlined with a double circle in the

PDG.

93

Query expression pgm.forwardSlice(input) evaluates to the subgraph of the PDG that is

reachable by a path starting from thequery variable input.This is the subgraph that depends

on the user input, either via control dependency, data dependency, or some combination

thereof. Similarly, pgm.backwardSlice(secret) is the subgraph of the PDG that can reach

the node representing the secret value. The entire query evaluates to the intersection of

the subgraphs that depend on the user input and onwhich the secret depends, i.e., all paths

from the user input to the secret.

For the PDG in Figure 4.2, this query evaluates to an empty subgraph. This means that

there are no paths from the input to the secret, and thus the secret does not depend in any

way on the user input.

Finding all nodes in the PDG that lie on a path between two sets of nodes is a common

query, and we can define it as a reusable function in PidginQL as follows:

let between(G, from, to) = G.forwardSlice(from) ∩ G.backwardSlice(to)

This allows us to simplify our query.We can also turn our PidginQL query into a secu-

rity policy (i.e., a statement of the security guarantee offered by the program) by asserting

that the result of this query should be an empty graph. This is done in PidginQL by ap-

pending “is empty” to the query.

Noninterference Noninterference [31, 93] requires that information does not flow

from confidential inputs to public outputs. For our purposes, the secret number (line 1 in

Figure 4.1) is a confidential input, and output statements (lines 3, 8, and 11) are publicly

observable.

We can check whether noninterference holds between the secret and the outputs using

a query similar to the one above:

94

let secret = pgm.returnsOf(‘‘getRandom’’) in
let outputs = pgm.formalsOf(‘‘output’’) in
pgm.between(secret, outputs)

Unlike our previous example the query does not result in an empty subgraph. Indeed,

this program does not satisfy noninterference: there are two paths from the secret to the

output (marked in Figure 4.2 with bold lines). This is not surprising, as the functionality

of this program requires that some information about the secret is released.

From secret to output By characterizing all paths from the secret to the output we

can provide a guarantee about what the program’s public output may reveal about the se-

cret. Inspecting the result of the noninterference query above, we see there are two paths

from the secret to the public outputs. (If there were many paths, we could have isolated

one path to examine, by changing the last line to pgm.shortestPath(secret, outputs).) Both

paths pass through the node for the value of expression “secret == guess”. This means

that the public output depends on the secret only via the comparison between the secret

and the user’s guess.We can confirm this by removing this node from the graph and check-

ing whether any paths remain between the secret and the outputs. This can be expressed

in PidginQL as:

1 let secret = pgm.returnsOf(‘‘getRandom’’) in
2 let outputs = pgm.formalsOf(‘‘output’’) in
3 let check = pgm.forExpression(‘‘secret == guess’’) in
4 pgm.removeNodes(check).between(secret, outputs)
5 is empty

95

Expression pgm.forExpression(‘‘secret == guess’’)² evaluates to the node for the condi-

tional expression (outlined in Figure 4.2 with a dotted line). The fourth line removes this

node from the PDG then computes the subgraph of paths from secret to outputs.

This query results in an empty subgraph, meaning we have described all paths from

secret to outputs.Thus the program satisfies the policy:The secret does not influence the out-

put except by comparison with the user’s guess.

This is an example of trusted declassification [42] and is a pattern found in many appli-

cations. We capture this with a user-defined policy function asserting that all flows from

srcs to sinks pass through a node in declassifiers.

let declassifies(G, declassifiers, srcs, sinks) =
G.removeNodes(declassifiers).between(srcs, sinks)
is empty

Using this function we change our policy to:

let secret = pgm.returnsOf(‘‘getRandom’’) in
let outputs = pgm.formalsOf(‘‘output’’) in
let check = pgm.forExpression(‘‘secret == guess’’) in
pgm.declassifies(check, secret, outputs)

Note that our policy is weaker than noninterference: the output does depend on the se-

cret. Noninterference is too strong to hold inmany real programs, andweaker, application-

specific guarantees are common. PDGs often contain enough structure to characterize

these (potentially complex) security guarantees, which can be stated succinctly and intu-

itively given an expressive language to describe and restrict permitted information flows.

²For presentation reasons we refer to the specific Java expression ‘‘secret == guess’’. In a more realistic
example, a policy would likely refer instead to a function or class, which is less brittle with respect to code
changes. However, the ability to refer to specific expressions allows developers to precisely specify queries
and policies if needed.

96

4.3 Programdependencegraphs (PDGs) and security guarantees

Pidgin allows programmers to explore a program’s information flows and to express

and enforce security policies that restrict permitted information flows.We achieve this us-

ing program dependence graphs (PDGs) [29] to explicitly represent the data and control

dependencies within a program. Pidgin’s PDGs represent control and data dependencies

within awhole program.Annotations andmeta-information encoded inPidginPDGs en-

able precise and useful queries and security policies. In this section, we describe the struc-

ture of Pidgin’s PDGs and the different kinds of security guarantees that can be obtained

from them.

4.3.1 Structure of Pidgin PDGs

There are several kinds of nodes in Pidgin PDGs. Expression nodes represent the value

of an expression, variable, or heap location at a program point. Program-counter nodes rep-

resent the control flow of a program, and can be thought of as boolean expressions that are

true exactly when program execution is at the program point represented by the node. In

addition, procedure summary nodes facilitate the interprocedural construction of the PDG

by summarizing a procedure’s entry point, arguments, return value, etc. Finally,merge nodes

represent merging from different control flow branches, similar to the use of phi nodes in

static single assignment form [20]. Nodes also contain metadata, such as the position in

the source code of the expression a node represents.

PidginPDGs are context sensitive, object sensitive, and field sensitive. A context-sensi-

tive PDGwill have a copy of the PDG for amethod for each context in which that method

appears.Methods in our PDG analysis inherit contexts from the points-to analysis used by

thePDGanalysis. In thiswork they are flow sensitive for local variables andflow insensitive

97

for heap locations. We discuss more about PDG flow sensitivity in Section 4.5.

Edges of the PDG indicate data and control dependencies between nodes. To improve

precision and enable more complex queries, edges in Pidgin PDGs have labels that indi-

cate how the target node of the edge depends on the value represented by the source node

of the edge. Examples of these edge labels can be seen in Figure 4.2. COPY indicates that

the value represented by the target is a copy of the source. EXP indicates that the target is

the result of some computation involving the source. Edges labeled MERGE are used for

all edges whose target is a merge or summary node.

LabelCD indicates a control dependency fromaprogram-counter node to an expression

node. An expression is control dependent on a program-counter node if it is evaluated only

when control flow reaches the corresponding program point. An edge labeled TRUE or

FALSE from an expression node to a program-counter node indicates that control flow

depends on the boolean value represented by the expression node.

4.3.2 Security guarantees from PDGs

As Section 4.2 demonstrated, paths in a PDG can correspond to information flows in a

program, and Pidgin allows developers to discover, specify, and enforce security guaran-

tees.

Information security guarantees are application specific, since what is regarded as sensi-

tive information andwhat is regarded as correct handling of that information varies greatly

between applications.The query language PidginQL (described in Section 4.4) provides

several convenient ways for developers to indicate sources and sinks, such as queries that

select the values returned from a particular function. The ability for PidginQL to specify

relevant parts of the graph means that the program does not require annotations for se-

curity policies. Pidgin can be used to describe many complex policies. We next describe

98

several kinds of security guarantees that developers can express using PidginQL.

Noninterference Theabsenceof apath in aPDGfroma source to a sink indicates that

noninterference holds between the source and the sink.This result was proved formally by

Wasserrab et al. [115]. As seen in Section 4.2, this is equivalent to the PidginQL query

pgm.between(source, sink) evaluating to an empty graph:

let noninterference(G, source, sink) = G.between(source, sink) is empty

Noninterference is a strong guarantee, and many applications that handle sensitive in-

formationwill not satisfy it: thequerypgm.between(source,sink)will result in anon-empty

graph. For example, an authentication module doesn’t satisfy noninterference because it

needs to reveal some information about passwords (specifically, whether a user’s guess

matches the password).

Even when noninterference does not hold, developers need assurance that the program

handles sensitive information correctly. For example, a developer may want the result of

the authentication module to depend on the password only via an equality test with the

guess. In the remainder of this section, we describe security guarantees that are weaker

than noninterference and can be expressed as queries on PDGs.

Noexplicitflows Acoarse-grainednotionof information-flowcontrol considersonly

explicit informationflows and ignores implicit informationflows [23].This is also knownas

taint tracking and corresponds to considering only data dependencies and ignoring control

dependencies.

Although arbitrary information may flow due to control dependencies, it can be useful

and important to show that there are no explicit information flows from sensitive sources

99

to dangerous sinks. Indeed, the prevalence of taint-tracking mechanisms (e.g., Perl’s taint

mode, and numerous systems [3, 65, 111, 122]) show that it is intuitive and appealing for

developers to consider just explicit flows. Moreover, tracking only explicit flows can lead

to fewer false positives (albeit at the cost of more false negatives) [27, 53].

Restricting attention to data dependencies is straightforward with a PDG. Specifically,

if all paths from sensitive sources to sensitive sinks have at least one edge labeled CD (i.e.,

a control dependency from a program-counter node to an expression node), then there

are no explicit flows from the source to the sink. This can be expressed by the following

PidginQL policy function:

let noExplicitFlows(sources, sinks) = pgm.removeEdges(pgm.selectEdges(CD))
.between(sources, sinks) is empty

Expressionpgm.removeEdges(pgm.selectEdges(CD)) selects all edges labeledCD in the

PDG and removes them from the graph. Using this graph, between(sources, sinks) finds

the subgraph containing all paths between sources and sinks. If this results in an empty

graph the policy holds, and there are no explicit flows from the sources to the sinks.

Often a program intentionally contains explicit flows (e.g., a program that prints the last

four digits of a credit card number). Toobtain guarantees in this case, amore precise policy

is needed.

Describe all information flows In general, a developer can specify a security pol-

icy by describing all permitted paths from sensitive sources to dangerous sinks. This is be-

cause paths in the PDG correspond to information flows in the program. Using the query

language, the developer can enumerate the ways in which information is permitted to flow.

If, after removingpaths corresponding to thesepermitted informationflows, only anempty

graph remains then all information flows in the program are permitted, and the program

100

satisfies the security policy. The “no explicit flows” example can be viewed in this light

(i.e., the policy requires that all paths from a source to a sink must involve a control de-

pendency), but more expressive characterizations of paths are often necessary, useful, and

interesting.

For example, consider a program that takes a (secret) credit card number and prints the

last four digits. This is an intentional explicit flow, though most taint analysis frameworks

would mark it as a security violation. The following policy requires that all paths from the

credit card number to the output go through the return value of method lastFour.

let ccNum = ... in
let output = pgm.formalsOf(‘‘output’’) in
let lastFourRet = pgm.returnsOf(‘‘lastFour’’) in
pgm.declassifies(lastFourRet, ccNum, output)

Recall that pgm.declassifies(lastFourRet, ccNum, output) (defined in Section 4.2) removes

the nodes lastFourRet from graph pgm, and asserts that in the resulting graph there are no

paths from ccNum to output.

This policy treats method lastFour as a trusted declassifier [42]: information is allowed

to flow from ccNum to output provided it goes through the return value of lastFour be-

cause lastFour is trusted to release only limited information about credit card numbers.

Determining whether lastFour is in fact trustworthy is beyond the scope of this work.

Trustworthiness of lastFour could, for example, be achieved through a code review, or

through formal verificationof its correctness.Nonetheless, this PidginQLpolicy provides

a strong security guarantee, and reduces the question of correct information flow in the en-

tire program to the trustworthiness of one specific method.

Describe conditions for information flow In some cases it is important to know

not just the flows fromsensitive sources todangerous sinks, but also underwhat conditions

101

1 if (checkPassword(pwd))
2 if (user.isAdmin())
3 output(getSecret());

(a)Access control program
RETURN:

checkPassword

PC1

PC2

TRUE

RETURN: isAdmin TRUE

FORMAL:
msg

COPY
CD

outputACTUAL: msg
MERGE

RETURN: getSecret

(b)Relevant fragment of PDG

Figure 4.3:Access control example

these flows occur. Using PDGs, we can extract this information by considering control

dependencies of nodes within a path. This is difficult for most existing information-flow

analyses, as the conditions under which a flow occurs are not properties of the paths from

sources to sinks.

For example, consider the program in Figure 4.3a, which is a simple model of an access

control check guarding information flow. Secret information is output at line 3, but only if

the user provided the correct password (line 1) and the user is the administrator (line 2).

If we look at the relevant fragment of the PDG for this program (Figure 4.3b) we see that

there is a single path from a sensitive source (the double-circled node for the return from

the getSecret function) to a dangerous sink (the bold node representing the formal argu-

ment to output). By examining the control dependencies for one of the nodes on this path,

we can determine that this flow happens only if both access control checks pass. That is,

all paths from the sensitive source to the dangerous sink are control dependent on both

102

“checkPassword” and “isAdmin” returning true.

We can describe this with the policy:

1 let sec = pgm.returnsOf(‘‘getSecret’’) in
2 let out = pgm.formalsOf(‘‘output’’) in
3 let isPassRet = pgm.returnsOf(‘‘checkPassword’’) in
4 let isAdRet = pgm.returnsOf(‘‘isAdmin’’) in
5 let guards = pgm.findPCNodes(isPassRet, TRUE) ∩
6 pgm.findPCNodes(isAdRet, TRUE) in
7 pgm.removeControlDeps(guards).between(sec, out)
8 is empty

Lines 1 and 2 find the appropriate PDG nodes for the secret and output functions, respec-

tively. The expressions on lines 5 and 6 finds any program counter nodes in the PDG cor-

responding to programpoints that can be reached onlywhen checkPassword and isAdmin

return true. The primitive removeControlDeps(E) removes nodes from the graph that are

control dependent on any program counter node in E. Intuitively, the graph computed by

pgm.removeControlDeps(guards) is the result of removing all nodes that are reachable only

when the password is correct and the user is the admin.The following policy function cap-

tures this pattern:

let flowAccessControlled(G, checks, srcs, sinks) =
G.removeControlDeps(checks).between(srcs, sinks)
is empty

In the example above, access control checks protect information flow from a confiden-

tial source to a public output. A simpler pattern is when access control checks guard ex-

ecution of a sensitive operation. The following policy function asserts that execution of

sensitiveOps (representing some sensitive operation, such as calls to a dangerous proce-

dure) occurs only when access control checks represented by checks succeed:

let accessControlled(G, checks, sensitiveOps) =
G.removeControlDeps(checks) ∩ sensitiveOps
is empty

103

Query Q ::= F Q | E

Policy P ::= F P | E is empty | p(A , …, An)

Function F ::= let f(x , …, xn) = E;
Definition | let p(x , …, xn) = E is empty;

Expression E ::= pgm | E.PE | E ∪ E | E ∩ E
| let x = E in E | x | f(A , …, An)

Argument A ::= E | EdgeType | NodeType
| JavaExpression | ProcedureName

Primitive Expression PE ::= forwardSlice(E) | backwardSlice(E)
| shortestPath(E , E)
| removeNodes(E) | removeEdges(E)
| selectEdges(EdgeType)
| selectNodes(NodeType)
| forExpression(JavaExpression)
| forProcedure(ProcedureName)
| findPCNodes(E, EdgeType)
| removeControlDeps(E)

EdgeType ::= CD | MERGE | COPY | EXP | TRUE | FALSE | …
NodeType ::= PC | ENTRY_PC | FORMAL | ABSTRACT_LOC | …

Figure 4.4: PidginQL grammar

4.4 Querying PDGswith PidginQL

We have developed PidginQL, a domain-specific language that allows a developer to

explore information flows in a program, and to specify security policies that restrict infor-

mation flows. PidginQL is a graph query language, specialized to express readable and

intuitive queries relevant to information security.The grammar for PidginQL is shown in

Figure 4.4.Thegrammar includes let statements, functions, graph composition operations,

and primitives that are useful for expressing information security conditions.

104

Queries and expressions AqueryQ is a sequence of function definitions followed by

a single expression. Expressions evaluate to graphs. There is a single constant expression,

pgm (short forprogram),which always evaluates to theoriginal programdependencegraph

for the program under consideration. A primitive expression PE is a function on a graph:

E .PE evaluates expression E to a graph G and then the primitive expression returns a

subgraph of G , computed according to the semantics of the specified operation (which

we describe in more detail below). Expression E ∪E evaluates E and E to graphsG and

G respectively and returns the union ofG andG . Similarly, E ∩E evaluates both E and

E and returns the intersectionof the results. Expressions also include let bindings, variable

uses, and invocations of user-defined functions.

Policies A policy P is a sequence of function definitions followed either by an asser-

tion that expression E evaluates to an empty graph (E is empty) or an invocation of a user-

defined policy function (which will assert that some expression evaluates to an empty

graph). As discussed in Sections 4.2 and 4.3, if a query, Q, considers all information flows

from sources to sinks, and removes only permitted flows, and Q results in an empty graph

when evaluated on a program’s PDG, the program contains only permitted information

flows. Evaluating a policy results in an error if the assertion fails, i.e., if the query does not

evaluate to an empty graph.

Queries are typically used when interactively exploring information flows, since non-

empty query results can be examined and further explored to understand the information

flows present in a program and discover security violations. Policies are useful for enforce-

ment and regression testing (i.e., determining whether a modified program still satisfies a

security guarantee).

105

Primitive expressions PidginQLcontains several primitive operations for exploring

information flows in programs and specifying restrictions on permitted information flows.

Some of these are described throughout this chapter; for completeness we describe them

all below.

Expression forwardSlice is useful for selecting everything influenced by sensitive sources

and backwardSlice for selecting everything that influences critical sinks. Both forwardSlice

and backwardSlice may take another argument (not shown in the grammar) that controls

the depth of the slice, for example to select immediate successors of a node.

For example, expression E .forwardSlice(E) evaluates the subexpressions to graphs G

and G and computes the subgraph of G that is reachable from any node in G . We im-

prove the precision of slicing by including only nodes of G that are reachable from a

node in G by a feasible path (i.e., a path where method calls and returns are appropriately

matched). The call graph we use to construct the PDG is necessarily a finite approxima-

tion of the actual control flow of the program. Removing infeasible paths from slices, an

example of CFL-reachability [90], greatly improves the precision of queries and policies,

as it helps mitigate the imprecision that arises from this finite approximation.³

Expression E .shortestPath(E ,E) is useful during exploration to find a simple (feasible)

path remaining after executing a query. This helps identify vulnerabilities or missing secu-

rity conditions.

Expression E .removeNodes(E) evaluates the subexpressions to graphs G and G and

returns the subgraph of G with all nodes in G removed (and all edges to or from these

nodes removed). Expression E .removeEdges(E) evaluates the subexpressions to graphs

³Faster, but less precise primitive expressions (not shown in the grammar) are also provided that com-
pute slices that may include infeasible paths.

106

G and G and returns a subgraph of G with all edges in G removed.

Operations selectEdges and selectNodes take, respectively, an edge type or node type,

and return the subgraph that contains all edges or nodes of that type.

Expression E .forExpression(JavaExpression) evaluates E to G and selects nodes in G

that correspond to the given Java expression. Expression E .forProcedure(ProcedureName)

evaluates to a graph containing the subgraphs representing the bodies of matching proce-

dures. For example, E .forProcedure(‘‘java.io.PrintStream.print*’’) finds the nodes in G for

all methods of the class java.io.PrintStreamwhose name beginswith print (e.g., print

and println).

Expression E .findPCNodes(E , EdgeType) is used to find program counter nodes in E

that correspond to control-flow decisions based on expressions in E . Edge type EdgeType

must be either TRUE or FALSE. If E and E evaluate to graphs G and G respectively,

E .findPCNodes(E , TRUE) evaluates to the program counter nodes in G that are reach-

able only by a TRUE edge from some expression node in G . That is, a program point cor-

responding to a program counter node in E .findPCNodes(E , TRUE) will be reached only

if some expression in G evaluates to true.

It is useful to combine the results of different findPCNodes queries. For example, query

pgm.findPCNodes(a, TRUE) ∩ pgm.findPCNodes(b, FALSE) will evaluate to the program

counter nodes for program points that are reached only when an expression denoted by a

evaluates to true and an expression denoted by b evaluates to false. We add syntactic sugar

to describe these combinations using boolean expressions in square brackets, simplifying

the example to pgm.[a && !b].

Expression E .removeControlDeps(E) can be used in combination with findPCNodes,

for removing nodes that are control dependent on a boolean expression. For example,

107

findPCNodes can find the program counter nodes that correspond to program points that

are reached only when a particular expression is true and removeControlDeps can remove

any nodes control dependent on those program counter nodes. These are the nodes that

represent expressions that only evaluate when program points represented by those pro-

gram counter nodes are reached. In this waywe can compute a graph that does not contain

any nodes that correspond to parts of the program that are only reached when a partic-

ular expression is true. In Section 4.3, we use removeControlDeps to define access con-

trol policies. Using the syntactic sugar defined in the previous paragraph together with

removeControlDeps makes it easy to define access control policies with complex access

requirements (for examples, see the policies presented in Section 4.7.2).

Any primitive expression that takes a ProcedureName or JavaExpression as an argument

will raise an error if it evaluates to an empty graph. This ensures that API changes, such as

changing amethod name, will trigger an error until a corresponding change is made to the

PidginQL policy.

User-defined functions PidginQL functions are defined with let f(x , . . . , xn) = E

and let p(x , . . . , xn) = E is empty. Function definitions are either graph functions (which

will evaluate to a graph) or policy functions (which assert that some expression evalu-

ates to an empty graph).⁴ Functions are invoked with syntax f(A , . . . ,An). We also support

A .f(A , . . . ,An) as alternative syntax to allow user-defined functions to be easily composed

with other operations.

Examples of user-defined functions in Sections 4.2 and 4.3 are between, formalsOf, and

⁴For presentation purposes, we syntactically distinguish graph and policy functions; in the implemen-
tation using a policy function where a graph function is expected will result in an evaluation error not a
parsing error.

108

returnsOf. For example, function entriesOf, which finds program-counter nodes represent-

ingmethod-entry programpoints in G for proceduresmatchingProcedureName, is defined

as:

let entriesOf(G, ProcedureName) =
G.forProcedure(ProcedureName).selectNodes(ENTRYPC)

User-defined functions are a powerful tool for building complex queries and policies.

We have identified useful (non-primitive) operations and defined them as functions. In

our query evaluation tool, these definitions are included by default, providing a rich library

of useful query and policy functions, including between, formalsOf, returnsOf, entriesOf,

declassifies, noExplicitFlows, and flowAccessControlled.

4.5 Implementation

Pidgin has two distinct components. The first component analyzes Java bytecode, in-

cluding the JDK (up to 1.6) and library code, and produces PDGs.The second component

evaluates queries against a PDG, and can be used either interactively or in “batch mode.”

Interactive mode displays results of queries in a variety of formats and is useful to explore

the information flows in a program, for example to explore security guarantees in legacy

programs or to find information flows that violate a given policy. The ability to interac-

tively query a program to discover and describe information flows is a novel contribution

of this work. Batch mode simply evaluates PidginQL queries and policies and is useful

for checking that a program enforces a previously specified policy (e.g., as part of a nightly

build process).

PDG construction Our implementation, which uses the WALA framework [13], is

approximately 15,720 lines of code, not including the flow-insensitive points-to analyses

109

described in Chapter 2. A scalable points-to analysis is key to the scalability of Pidgin.

As we saw in Section 2.4, the flow-insensitive multi-threaded engine significantly outper-

formsWALA’s points-to analysis.The remaining code implements the PDG construction,

including various dataflow analyses to improve the precision of the PDG.

After the points-to analysis we run a non-null analysis, which determines which fields

and variables may be null at a particular program point. The results of the non-null and

points-to analyses are then used to determine the precise types of exceptions that can be

thrown. The precise-exception results are used to improve control-flow analysis allowing

the PDG to be computed using a more precise control-flow graph.

Weconstruct aPDGfor all code reachable froma specifiedmainmethodvia an interpro-

cedural dataflow analysis. We use a (flow-insensitive) type-sensitive points-to analysis (a

2-type-sensitive analysis with a 1-type-sensitive heap [100]). We use additional precision

for Java standard library container classes (3-type-sensitive with a 2-type-sensitive heap)

and stringbuilders (1-full-object-sensitive [76, 100]) to reduce false dependencies in these

commonly used classes.This custom analysis is simple to implement using the abstraction

described in Section 2.1.3.

The PDG construction analysis is context-sensitive, object-sensitive, field-sensitive, but

flow-insensitive (we discuss flow sensitivity below) just like the points-to analysis we use.

Context sensitivity and object sensitivity, in particular, is essential in order to create a PDG

with enough precision to limit false failures of Pidgin policies. Context sensitivity allows

us todifferentiate calls to the samemethod. If a particularmethod is calledwhenprocessing

sensitive and non-sensitive information, it is important to differentiate the two uses. For

example, without context sensitivity every call to add in java.util.HashSetwould result

in a path to the same abstract heap location and every call to get would have a path from

110

that same location. This means that if sensitive information were stored in a HashSet, one

of the most commonly used classes in Java applications, we would not be able to precisely

reason about how it is handled upon retrieval.This simple example elucidates the need for

a precise context-sensitive points-to analysis. The more precise the points-to analysis the

less false paths arise in the PDG and the more likely a security guarantee that is provided

by an application can be enforced using Pidgin.

We handle all Java language features except reflection.ThePDGcaptures all control and

data dependencies, but not dependencies due to concurrent races. Because our analysis is

flow-insensitive for heap locations, all reads of a given heap location depend on all writes

to that location, which soundly approximates concurrent access to shared data.

As described in Section 2.3 we have the option in the points-to analysis to use a single

abstract object to represent all instances of certain common types. For Pidgin, in order

to scale we use a single abstract object to represent all java.lang.Strings. For increased

precision in the PDG, we (soundly) treat methods on String objects and objects of im-

mutable primitive wrapper classes (java.lang.Integer, etc.) as primitive operations by

replacing method calls with edges describing their effects. This is key to Pidgin’s scala-

bility and precision. Different Strings contain different information, and must be distin-

guished to enforce realistic security policies. Treating Strings like primitive values in the

PDG provides sufficient precision while permitting a scalable points-to analysis. In addi-

tion, we provide analysis result signatures for some native methods. For native methods

without signatures, we assume that the return values of the methods depend only on the

arguments and the receiver, and that themethods have no heap side effects.These assump-

tions are potential sources of unsoundness in our analysis.

111

Flow-sensitivity AlthoughPidginuses a flow-insensitive points-to analysis and con-

structs a flow-insensitive PDG, we saw in Section 3.4 that a flow-sensitive analysis can be

significantly more precise than a flow-insensitive analysis. The PDG analysis in particular

can benefit from flow sensitivity by ensuring that heap reads only depend on prior writes

(e.g., reads do not depend on writes to the same location that occur later in the program).

To implement aflow-sensitivePDGanalysis theprocedure summarynodesdescribed in

Section 4.3.1 would be expanded to include summaries representing the procedure-entry

value for heap locations that may be read by a procedure and the procedure-exit value for

heap locations that may be written by a procedure. In contrast, a flow-insensitive PDG

analysis can use a single PDGnode for each heap location.This nodewill dependon values

written to that location at any point in the program. This means that any read from that

location will depend on all writes regardless of where they occur.

For the applications and policies described in Section 4.6, our PDG analysis is flow in-

sensitive for heap locations, but achieve a form of flow sensitivity for local variables due to

WALA’s static single assignment representation [20].

PidginQLQueryEngine We implemented a customquery engine for PidginQL that

evaluates queries against PDGs. Although PidginQL could be implemented using an ex-

isting graph query language and engine (such as Cypher [82] or Gremlin [46]), we used a

custom engine for flexibility and fast prototyping.

The query evaluator is 8,700 lines of Java code. It implements call-by-need semantics

and caches subquery results. Call-by-need reduces the graph expressions thatmust be eval-

uated. Caching improves performance, particularly when used interactively, since parts of

queries are often reused. When exploring information flows with Pidgin, a user typically

112

submits a sequence of similar queries.

4.6 Case Studies

In this section we present the results of applying Pidgin. For three legacy applications

therewasnopredefined specification andweusedPidgin to explore the informationflows

and discover precise security policies that these applications satisfy. These were a web-

basedCourseManagement System (CMS); and two open-source applications, FreeChat-

Server (FreeCS) and Universal Password Manager (UPM). For a fourth legacy applica-

tion, the Apache Tomcat web server, we developed policies based on reported vulnerabil-

ities and confirmed that the policies hold after patching, but fail on the unpatched version.

We used our system to support simultaneous application and policy development for a

small tax application we wrote ourselves, PTax. The diversity and specificity of these poli-

cies demonstrate the flexibility and expressivity of PidginQL.

In Section 4.6.7 we apply Pidgin to the SecuriBench Micro benchmark [70], and in

Sections 4.7.1 and 4.7.2 we discuss using Pidgin both to explore security guarantees of a

legacy application and to specify and enforce policies during development of an applica-

tion.

4.6.1 Analysis performance

The first column of Table 4.1 presents the lines of code analyzed, i.e., lines reachable

from the specified mainmethod, including JDK 1.6 and library code. For eachTomcat vul-

nerability, we wrote a test harness that exercises the component(s) containing the vulner-

ability, and ran Pidgin on the harness. Pidgin thus analyzes all code reachable from the

test harness, which does not include all Tomcat components. Table 4.1 shows results for

113

Table 4.1: Program sizes and analysis results

Points-to Analysis PDGConstruction
Program Size Time (s) Nodes Edges Time (s) Nodes Edges

(LoC) Avg SD Avg SD
CMS 161,597 2.0 0.2 333,741 2,557,316 13.1 0.1 1,812,263 3,540,271
FreeCS 102,842 0.8 0.1 135,489 545,853 6.0 0.1 742,860 1,407,576
UPM 333,896 5.7 1.1 637,348 17,255,214 24.8 0.1 3,544,271 7,016,244
Tomcat 160,432 6.6 0.2 508,227 11,474,544 14.3 0.1 1,973,632 4,048,266
PTax 65,165 1.1 0.2 92,527 2,088,865 2.8 0.2 280,633 539,253

Table 4.2: Policy evaluation times

Program Policy Time (s) Policy
Mean SD LoC

CMS A1 5.5 0.06 3
A2 3.9 0.06 5

FreeCS B1 1.3 0.03 10
B2 4.2 0.13 31

UPM C1 11.7 0.12 7
C2 13.3 0.13 12

Tomcat D1 <0.1 <0.01 4
D2 5.9 0.12 10
D3 0.1 <0.01 3
D4 5.9 0.03 4

PTax E1 0.4 <0.01 4
E2 1.3 0.01 14

only the largest harness.

Table 4.1 also presents the performance of the flow-insensitive points-to analysis and

PDG construction analyses for each program, giving the mean and standard deviation

(SD) of ten runs. For the programs and policies in this section the precision of the flow-

insensitive points-to analysis was sufficient when combined with the custom context sen-

sitivity described in Section 4.5. Analyses were performed on a 16 vCPU Amazon EC2

instance using Intel Xeon E5-2666 processors with 30GB of RAM.

114

Table 4.2 summarizes policy evaluation times for all policies discussed in this section,

based on ten evaluations. Policy times are reported for a cold cache (i.e., with no previously

cached results for subqueries). All policies evaluated in under 14 seconds.The last column

in Table 4.2 gives the number of lines for each policy.

4.6.2 Course Management System (CMS)

CMS [10] is a J2EE web application for course management that has been used at Cor-

nell University since 2005. We used a version of CMS that replaces the relational database

backend with an in-memory object database.This version has previously been used to test

performance of a distributed computing system [67]. CMS uses the model/view/con-

troller design pattern. We examined the security of the model and controller logic; views

simply display the final computed results.

Policy A1. Only CMS administrators can send a message to all CMS users.

This is a typical access control policy, ensuring that the function used to send messages

to all users, is called only when the current user is an administrator.

let addNotice = pgm.entriesOf(‘‘addNotice”) in
let isAdmin = pgm.returnsOf(‘‘isCMSAdmin”) in
let isAdminTrue = pgm.findPCNodes(isAdmin,TRUE) in
pgm.accessControlled(isAdminTrue, addNotice)

Policy A2. Only users with correct privileges can add students to a course.

This five line policy is similar to Policy A1.

4.6.3 Free Chat-Server

Free Chat-Server is an open-source Java chat server that has been downloaded nearly

100,000 times.⁵ Once the chat server has started, users can sendmessages, maintain friend

⁵http://sourceforge.net/projects/freecs/

115

lists, create, join and manage group chat sessions, etc. Administrators can ban, kick, and

punish misbehaving users.

Policy B1. Only superusers can send broadcast messages.

Weused Pidgin to confirm that the ability to sendmessages to all users is available only

to users with the right ROLE_GOD. This can be described with an access control policy sim-

ilar to Policy A1. However, while exploring the information flows present in this program,

we realized that our initial definition of what constituted a “broadcastmessage”was impre-

cise. Pidgin enabled us to quickly find this apparent violation of the policy and refine our

security policy appropriately.

Policy B2. Punished users may perform limited actions.

Misbehaving users can be disciplined by setting a punished flag in the object represent-

ing the user. In the PDG for FreeChat-Server, there are 357 sites where actions can be per-

formed, all of which are invocations of the same method. We developed a PidginQL pol-

icy that precisely describeswhich actions a punished usermay performby using Pidgin to

interactively explore information flows, focusing on calls to the “perform action” method

that were not access controlled by the punished flag.The final policy is the largest we have

developed, 31 lines of PidginQL.

4.6.4 Universal Password Manager (UPM)

UPM is an open-source password manager. Users store encrypted account and pass-

word information in the application’s database and decrypt them by entering a single mas-

116

ter password. It has been downloaded over 90,000 times.⁶

Policy C1. The user’s master password entry does not explicitly flow to the GUI, console, or

network except through trusted cryptographic operations.

When we consider only the data dependencies in the program, the user’s master pass-

word entry flows to public outputs only via the encryption and decryption operations in

the trusted Bouncy Castle cryptography library.

Policy C2. The user’s master password entry does not influence the GUI, console, or network

inappropriately.

When we consider control dependencies, we find that the user’s master password entry

may influence public outputs, but only in appropriate ways (through trusted declassifiers).

For example, an incorrect or invalid password triggers an error dialog box, and our policy

accounts for this flow.

4.6.5 Apache Tomcat

Apache Tomcat⁷ is a popular open source web server. Tomcat provides application de-

velopers with Java Servlet and Java Server Pages APIs, anHTTP server, and tools andman-

agement interfaces for server administrators. For several reported Tomcat vulnerabilities

from theCVEdatabase,⁸wedevelopedPidginQLpolicies and confirmed that the policies

fail to hold on vulnerable versions of Tomcat, and successfully hold on patched versions.

Note that the use of Pidginon a test harness provides stronger guarantees than a simple

test case. Most importantly, Pidgin can test information-flow properties (such as nonin-

⁶http://upm.sourceforge.net/

⁷http://tomcat.apache.org/

⁸http://cve.mitre.org/

117

terference) which are not testable by a single test case. In addition, a single PidginQLpol-

icy on a test harness provides guarantees onmany possible executions. For theTomcat test

harnesses, we effectively test all possible parameters of server requests, because PidginQL

policies and the PDG construction do not examine specific string values.

PolicyD1. CVE-2010-1157: The BASIC and DIGEST authentication HTTP headers do not

leak the local host name or IP address of the machine running Tomcat.

ThePidginQL policy asserts that there are no paths from the sources of the host name

and IP address to the authentication headers.This is a standard noninterference policy and

ensures the completeness of the fix.

PolicyD2. CVE-2011-0013:Datafromwebapplications are be properly sanitizedbefore being

displayed in the HTML Manager.

It shouldnotbepossible for clientwebapplications to runarbitrary scripts in theHTML

Manager, a component for use by Tomcat administrators.This vulnerability arose because

some data from client web applications was not properly sanitized. The PidginQL policy

identifies the sanitization functions and asserts that all data from client applications that is

displayed by theHTMLmanager passes through a sanitization function.Note that the pol-

icy does not ensure the proper implementation of the sanitization functions, but identifies

them as trusted code that needs to be inspected.

Policy D3. CVE-2011-2204: A user’s password does not flow into an exception which gets

written to the log file.

The PidginQL policy is a noninterference policy asserting that the password does not

influence the arguments to any exceptionmethod.This includes the creation of exceptions

that leaked the password prior to the fix for CVE-2011-2204, but also ensures that there

118

were no similar leaks elsewhere in the code.

Policy D4. CVE-2014-0033: Session IDs provided in the URL are be ignored when URL

rewriting is disabled.

The session ID from the request should not be used if URL rewriting is explicitly dis-

abled.ThePidginQLpolicy is a flowaccess controlled policy asserting that, ifURL rewrit-

ing is disabled, then the session ID in the URL does not influence the session to which a

request is associated.

4.6.6 PTax

PTax is a toy tax computation application that we wrote. PTax supports multiple users

who login with a username and password and input their tax information. This sensitive

information is stored in a file to be accessed later by the user, provided the user supplies

the correct password. Before development, we defined a number of PidginQL policies

we expected to hold. As development progressed, the policies were iteratively refined to

reflect implementation choices (e.g., names of methods, signature of the authentication

module), although the intent of the policies remained the same.

Policy E1. Public outputs do not depend on a user’s password, unless it has been cryptograph-

ically hashed.

This can be expressed as the PidginQL policy:

let passwords = pgm.returnsOf(‘‘getPassword’’) in
let outputs = pgm.formalsOf(‘‘writeToStorage’’) ∪ pgm.formalsOf(‘‘print’’) in
let hashFormals = pgm.formalsOf(‘‘computeHash’’) in
pgm.declassifies(hashFormals, passwords, outputs)

This is a trusted-declassification policy. The declassifies function ensures that the only

information flows from the user’s password to public outputs are through the argument to

119

Table 4.3: SecuriBenchMicro results

Test Group Detected False Positives
Aliasing 12/12 0
Arrays 9/9 5
Basic 63/63 0
Collections 14/14 5
Data Structures 5/5 0
Factories 3/3 0
Inter 16/16 0
Pred 5/5 2
Reflection 1/4 0
Sanitizers 3/4 0
Session 3/3 1
Strong Update 1/1 2
Total 159/163 15

the hash function.

Policy E2. Tax information is encrypted before being written to disk and decrypted only when

the user’s password is entered correctly.

Policy E2 is a combined declassification policy and access control policy, whose exact

statement depends on the specification of the userLogin method, which allows for users

to a limited number of guesses and returns the credentials upon successful login and null

otherwise.

4.6.7 Micro-benchmark Results

To compare with other Java analysis tools, we evaluated Pidgin using the SecuriBench

Micro [70] 1.08 suite of 123 small test cases that embody various types of vulnerabilities

that can be used to test the effectiveness and breath of security tools.We present the results

in Table 4.3. We developed Pidgin policies for each test and detect 159 out of a total of

163 vulnerabilities. We do not detect vulnerabilities due to reflection. We also miss an in-

120

correctly written sanitization function, though our policy marks it as a trusted declassifier,

and thus indicates it should be inspected or otherwise verified.

For many tests the policy is a simply noninterference, requiring that sensitive values

from an HTTP request do not affect public output. For some tests there is an allowed

implicit flow, and we developed appropriate policies. Some tests require domain-specific

policies (e.g., the Sanitizers tests required application-specific declassification policies).

False positives (i.e., cases where Pidgin mistakenly declares a program insecure) were

caused by known limitations of our tool, including imprecise reasoning about individual

array elements, dead code elimination that required arithmetic reasoning (Pred), and flow-

insensitive tracking of heap locations (Strong Update).

4.7 Using Pidgin

Pidgin is a flexible tool. In this section we discuss two Pidgin use cases inmore depth.

We describe the exploration of information flows in a legacy application, detailing the pol-

icy discovery process for one of the policies discussed in Section 4.6. In addition, we de-

scribe using Pidgin throughout the development of a new application and how Pidgin

can be used as a security regression testing tool during development.

4.7.1 Legacy applications

The interactivity of Pidgin was essential to understanding the security guarantees pro-

videdby legacy case-study programs andwriting queries that describe these guarantees. As

we did not write these programs, we first familiarized ourselves with the source code, and

then attempted to develop queries that described security guarantees that the programs of-

fered.Wewereoccasionally surprisedwhena relatively simplepolicy failed.Wewould then

inspect the paths that remained (often with the shortestPath operation), which helped us

121

to understand the information flows in the program and refine the query until we had a

policy that the program satisfied.

In this section, we illustrate the interactive query and policy generation process by de-

scribing how we developed Policy C1 for Universal Password Manager (UPM). This pol-

icy states that: The user’s master password entry does not explicitly flow to the GUI, console, or

network except through trusted cryptographic operations.

Generate a programdependence graph Before querying, we first generated a pro-

gram dependence graph for UPM. As discussed in Section 4.6, this took less than six sec-

onds for the points-to analysis and 25 seconds to construct the PDG. We do this analysis

once, serialize the PDG to disk, and use the same PDG for many queries.

Find sources and sinks UPM protects a user’s passwords by encrypting them with

a single master password. The application prompts the user for the master password, and

then uses this to decrypt the database containing the user’s passwords. If the master pass-

word is incorrect, the decryption will fail.

We decided to investigate confidentiality guarantees regarding themaster password that

is entered by the user. Inspecting the application code, we found that the master password

is returned from the askUserForPassword method. The return values of this method are

sources.

let sources = pgm.returnsOf(‘‘askUserForPassword’’) in ...

Note that we chose to regard the return values of thismethod as sensitive sources. In do-

ing so,we are trusting the implementationofaskUserForPassword to correctly handledata

received from the input: a Java Swing widget. We could use Pidgin to learn more about

122

how the password is handled by this method, but askUserForPassword is 11 lines of code

anduses standard Java SwingAPI calls to create a dialog boxwith a passwordfield, sowe in-

spected it by hand.We also trust the Swing library.This is a commonway to use Pidgin: to

reduce trust in an entire application to trust inwell-designed andwell-maintained libraries,

and a small amount of application code.

We identified three different places that data may leave the application: 1) the GUI (via

the Swing API); 2) the console (via java.io.PrintStream); and 3) the network (via a

custom java.net.HTTPTransport class). Formal arguments to methods in these three lo-

cations are sinks.

let sinks = pgm.formalsOf(‘‘javax.swing.*’’)
∪ pgm.formalsOf(‘‘sun.swing’’)
∪ pgm.formalsOf(‘‘PrintStream.print.*’’)
∪ pgm.formalsOf(‘‘.*HTTPTransport.*’’) in ...

Try simple queries We first checked if there are any paths between the sources and

sinks with:

let ... // define sources and sinks
pgm.between(sources, sinks)

This results in a subgraph of about 3,000,000 nodes, more than three quarters of the

original PDG.Unsurprisingly, most of the interesting work is done by the application after

asking for a password andbefore presenting or sending results. (When graphs are too large,

the PidginQLuser interface automatically presents a textual summary of the graph, rather

than a more data-rich presentation.)

We narrowed our focus to just data dependencies, and tried another simple query.

let ... // define sources and sinks
pgm.noExplicitFlows(sources, sinks)

123

Investigatecounterexamples This policy failed, revealing that there are somepaths

via only data dependencies. We investigated the graph by excluding control dependencies

with the standard library function:

let ... // define sources and sinks
let explicit(G) = G.removeEdges(pgm.selectEdges(CD)) in
pgm.explicit.between(sources, sinks)

The resulting graph is smaller, around 700,000 nodes, but still too large to inspect by

hand. We wanted to find a strong policy explaining how the data dependencies allow in-

formation about the master password to leak from the application. To begin this process,

we found a counterexample by using the shortestPath operation:

let ... // define sources and sinks
pgm.explicit.shortestPath(sources, sinks)

The resulting path converts the password to bytes and uses those bytes in a decryption

function in the Bouncy Castle cryptography library to decrypt the password database. An

entry from this database is then used to form an HTTP request. This is expected behav-

ior. The password manager constructs these requests in order to allow users to easily lo-

gin into websites using passwords stored in its encrypted database. Bouncy Castle⁹ is one

of the most widely used open source Java cryptography libraries and is clearly trusted by

the UPM code. Therefore we can trust the password to not leak (except via cryptographic

computations) once it enters the Bouncy Castle decryption function. Updating our query

gives:

let ... // define sources and sinks
let decrypt = pgm.forProcedure(‘‘CBCBlockCipher.decryptBlock’’) in
pgm.explicit.removeNodes(decrypt).shortestPath(sources, sinks)

⁹https://www.bouncycastle.org/

124

let sources = pgm.returnsOf(‘‘askUserForPassword’’) in
let sinks = pgm.formalsOf(‘‘javax.swing*’’)

∪ pgm.formalsOf(‘‘sun.swing’’)
∪ pgm.formalsOf(‘‘PrintStream.print*’’)
∪ pgm.formalsOf(‘‘HTTPTransport*’’) in

let declassifiers =
// Bouncy Castle encryption and decryption functions
pgm.forProcedure(‘‘CBCBlockCipher.decryptBlock’’)
∪ pgm.forProcedure(‘‘AESEngine.encryptBlock’’)
∪ pgm.forProcedure(‘‘AESEngine.decryptBlock’’)
// AES byte packing function
∪ pgm.forProcedure(‘‘AESEngine.packBlock’’) in

pgm.explicit.declassifies(declassifiers, sources, sinks)

Figure 4.5: PidginQL policy expressing Policy C2

This resulted in a very similar path into one of the Bouncy Castle encryption functions.

Repeating the same process revealed paths through another decryption function and a

byte-packing function only called within Bouncy Castle.

Create a PidginQL policy The final policy is shown in Figure 4.5. This policy was

developed incrementally and interactively. Whereas the informal description of Policy C1

is vague, the PidginQL policy is a strong, precise, checkable policy that clarifies which

data flows from the master password to public output are appropriate.

4.7.2 New development

Oftennewdevelopment beginswith an incomplete and imprecise security specification

that evolves as development progresses. Pidgin policies are flexible and, because they are

not embedded in the program text, can be easily modified along with the informal secu-

rity specification and the code itself. Pidgin policies can be used for regression testing to

ensure that changes to the code do not cause policy violations.

125

We illustrate this process by describing the use of Pidgin throughout the development

of a conference management system that we wrote, PChair. PChair is a toy conference

management system that handles the submission, revision, and reviewing of papers.There

are five user roles: author, reviewer, program committee member, program chair, and sys-

tem administrator. A user may have multiple roles. We analyzed only the backend which

maintains and controls access to the review and paper databases.

Access control policies in conference management systems can be intricate and com-

plex. For example, several information leaks have been found andfixed inHotCRP [54]. In

the endwedeveloped fourteen separatePidgin security policies for PChair.Thesepolicies

either restrict access to sensitive data (author names, paper content, reviews, etc.) or en-

sure proper permissions for sensitive operations (e.g., accepting a paper or moving a dead-

line), along with a single trusted declassification policy (PC members can learn whether

they have a conflict even if they cannot see the conflicting paper). This exposition focuses

on Policy F1, seen below, which specifies when information about paper reviews may be

revealed.

Policy F1. A review can be viewed only by an authorized user.

Define an informal policy. Before beginning development wewrote down the poli-

cies we desired informally. Policy F1 was initially: Only authors of a paper, reviewers of a

paper, and PC members can see a paper’s reviews.

Implement initial version of the application and Pidgin policy. We imple-

mented PChair using role-based access control, as this closelymirrored our informal spec-

ification.We used simple functions to check whether the current user has a particular role,

and then referred to these functions in our policies. Thus, our policies rely on the correct-

126

ness of these functions, which were deliberately designed to be simple and easy to verify.

For the initial versionofPolicyF1weused syntactic sugar seen inSection4.4 allowingus

to find program-counter nodes for program points that are reached only when a particular

boolean expression holds. Using this short hand, the initial version of the policy directly

implements the informal specification.

... // output = errors or responses sent to the client
let isAuthorOf = pgm.returnsOf(‘‘isAuthorOf’’) in
let isPC = pgm.returnsOf(‘‘isPCMember’’) in
let isReviewer = pgm.returnsOf(‘‘isReviewer’’) in
let getReview = pgm.returnsOf(‘‘getReview’’) in
let check = pgm.[isAuthor || isPC || isReviewer] in
pgm.flowAccessControlled(check, getReview, output)

Recall that user-defined function flowAccessControlled is defined as follows:

let flowAccessControlled(G, checks, sources, sinks) =
G.removeControlDeps(checks).between(sources, sinks)
is empty

We first gather the possible outputs, messages sent to the client. Then find the return

values for the access checks and ensure that at least one of them is true on all flows from

getReview to the client. The only way to access a review is by calling getReview (a simple

Pidgin policy ensures that this is the case).

Update policies when the specification is modified. We iteratively added new

features toPChair during development. As the functionality of the application evolved, the

security policies also evolved. For example, we added a system administrator role. System

administrators have superuser-like abilities, which required changes to many of our infor-

mal specifications and Pidgin policies: the informal specification for Policy F1 became:

Only authors of a paper, reviewers of a paper, PC members, and systems administrators can see

a paper’s reviews. The access control check in the PidginQL policy added isAdmin as an

127

acceptable condition.

Because Pidgin policies are not spread out throughout the code base (as, e.g., security-

type annotations) updating the policies was straightforward, and accomplished easily.

Regression testing security policies. We used Pidgin to check enforcement of

security policies whenever new codewas committed to our source repository.The commit

would fail unless all security policy checks succeeded. Thus, as functionality evolved, the

PidginQL policies were required to evolve with them.

This automated regression testing of security policies was useful several times. In one

case, due to incorrect refactoring of a security-relevant piece of functionality (a missing

negation), a security policy failed. Timely notification of the security policy failure allowed

us to easily identify and fix the security violation. In another case, changing the name of

a method in the code but not the security policy caused a security policy to fail with an

evaluation error (when a returnsOf operation evaluated to an empty graph), requiring us

to ensure that the security policy was up to date with respect to the code.

The final PidginQL policy for Policy F1 is shown below, and accounts for additional

functionality added to the application, including notification deadlines and recording re-

viewer/paper conflicts.

... // output = errors or responses sent to the client
let isAuthorOf = pgm.returnsOf(‘‘isAuthorOf’’) in
let isPC = pgm.returnsOf(‘‘isPCMember’’) in
let isReviewerOf = pgm.returnsOf(‘‘isReviewerOf’’) in
let isAdmin = pgm.returnsOf(‘‘isAdmin’’) in
let notifyDeadlinePast = pgm.returnsOf(‘‘notifyDeadlinePassed’’) in
let reviewDeadlinePast = pgm.returnsOf(‘‘reviewDeadlinePassed’’) in
let hasConflict = pgm.returnsOf(‘‘hasConflict’’) in
let getReview = pgm.entriesOf(‘‘getReview’’) in
let check = pgm.[isAdmin ||

(isAuthorOf && notifyDeadlinePast) ||
(isPC && reviewDeadlinePast && !hasConflict ||

128

isReviewerOf)] in
pgm.flowAccessControlled(check, getReview, output)

An interesting failure happened for another of our PChair policies, Policy F2, shown

below.

Policy F2. A paper’s acceptance status can be released only to an author of the paper after the

notification deadline, or to PC members without conflicts.

The following Pidgin policy ensures that all flows from return values of isAccepted to

the client are protected by the correct access check.

... // output = errors or responses sent to the client

... // define deadline, role, and conflict checks
let isAccepted = pgm.returnsOf(‘‘isAccepted’’) in
let check = pgm.[(isAuthorOf && notifyDeadlinePast) || (isPC && !hasConflict)] in
pgm.flowAccessControlled(check, isAccepted, output)

During development, we discovered that this policy was not enforced. After the notifi-

cation deadline, only accepted papers can be updated. If a user tries to update a rejected

paper or update a paper before the deadline, an errormessage is displayed.However, which

errormessagewasdisplayed revealed information aboutwhether or not thepaper hadbeen

accepted. This implicit information flow leaked information about the paper’s acceptance

status. Pidgin provided enough information to identify this subtle violation and find the

bug, which was easily fixed by checking the notification deadline before checking accep-

tance status.

4.8 Relatedwork

PDGs for security In a series of papers, Snelting and Hammer (and collaborators)

argue for the use of PDGs for information-flow control, due to the precision and scala-

bility of PDGs. They have developed JOANA [30], an object sensitive and context sensi-

129

tive tool for checking noninterference in Java bytecode [35], shown their techniques to be

sound [115], and considered information flow in concurrent programs [102]. They also

use path conditions to improve precision by ruling out impossible paths [108]. Hammer

et al. [36] consider enforcement of a form of where declassification [94].

The key differences between our work and previous work using PDGs for information-

flow control is that (1) our query language allows for expressive, application-specific poli-

cies that are separate from code, whereas JOANA requires program annotations and sup-

ports a limited class of policies; (2)we seek touse thePDGto enable explorationof security

guarantees of programs in addition to enforcement of explicitly specified security guaran-

tees; and (3) Pidgin scales to larger programs. The largest reported use of JOANA is on a

program with about 63,000 lines of code (excluding the JDK 1.4 library, which is approx-

imately 100k lines of code total) for a scalability test where no security policy is specified.

For this example JOANA is only able to generate a context-insensitive PDG and this takes

about a day [33, 102].

Program dependence graphs were introduced by Ferrante et al. [29], along with an al-

gorithm to produce them. PDGswere presented as an ideal data structure for certain intra-

procedural optimizations. Program slicing for an interprocedural extension to PDGs is in-

troduced byHorwitz et al. [47] andmademore precise by Reps [90] usingCFL reachabil-

ity. Program slicing is useful for describing security guarantees and is built into PidginQL

as primitive expressions forwardSlice and backwardSlice. Reps and Rosay [91] define pro-

gram chopping, of which the PidginQL function between, defined in Section 4.2, is an

example. Abadi et al. [1] develop a core calculus of dependency. Although they do not

directly consider program dependence graphs, they show that program slicing and infor-

mation flow type systems can be translated to this calculus. Cartwright and Felleisen [12]

130

give a denotational semantics toPDGsderived from the semantics of the original program.

Bergeretti andCarré [8] use structures similar to PDGs to automatically find bugs inwhile

programs and increase program understanding.

Yamaguchi et al. [118] use intraprocedural PDGs together with abstract syntax trees to

detect vulnerabilities in C code. Vulnerabilities (e.g., buffer overflows) are identified using

graph traversals, which are similar to some of our graph queries. Unlike Pidgin, the vulner-

abilities their tool found were each contained within a single function, and their tool does

not support whole program security policies. Furthermore, they consider only properties

of a single program execution rather than application-specific information-flow properties

such as those described in Sections 4.3 and 4.6. As common with bug-finding tools, their

tool does not attempt to guarantee the absence of vulnerabilities even if none are found.

Kashyap andHardekopf [51] use PDGs to infer security signatures describing how infor-

mation flows within small (under 5k lines) JavaScript browser add-ons. These signatures

can then by used by an auditor to decide whether an add-on should be accepted. Pidgin

is similarly focused on increasing program understanding. Unlike our work, where poli-

cies can be application specific, they use a predefined set of sources and sinks. In addition

to distinguishing control and data dependencies, their PDG edges contain annotations to

indicate which edges may be more likely to carry relevant information. These additional

annotations could also benefit Pidgin, for example to help prioritize potential policy vio-

lations to present to the user.

Legacy applications and policy inference Pidgin supports discovery of infor-

mation security guarantees for legacy applications. Rocha et al. [92] present a framework

that allows declassification policies to be specified for legacy applications. Policies are sep-

131

arate from code and enforcement of policies is checked using expression graphs, which, like

PDGs, capturedata andcontrol dependencies. Policies are specified as graphs that describe

which expression graphs can be declassified. Unlike the framework of Rocha et al., Pidgin

supports a rich class of policies and allows developers to explore the information flows in

an application, and thus provides support for decidingwhat policy is appropriate for an ap-

plication. By contrast, Rocha et al. only discuss declassification and do not consider how

developers produce policies. Moreover, we have implemented our approach for Java byte-

code; to the best of our knowledge, Rocha et al. do not implement their framework, nor

consider how to extend to a full-fledged programming language.

Other work seeks to infer security policies for existing programs. Vaughan and Chong

[113]use adata-flowanalysis to infer expressive information security policies that describe

what sensitive informationmaybe revealed by a program.King et al. [53], Pottier andCon-

chon [86], Smith andThober [101], and the Jif compiler [77, 78] all performvarious forms

of type inference for security-typed languages. Mastroeni and Banerjee [73] use refine-

ment to derive a program’s semantic declassification policy. We do not currently support

automatic inference of security policies from a PDG. We instead provide the developer

with tools and abstractions to help them explore the information flows in a program.

Several analyses infer explicit information flows (e.g., [68, 69, 71]). While efficient and

practical, these analysesdonot track implicit flows andmaybe inadequate in settingswhere

strong information security is required. As described in Section 4.3, Pidgin also supports

exploration of explicit information flows, and policies for explicit information flows.

Enforcement of expressive policies Many tools and techniques seek to enforce ex-

pressive and strong information security policies. Security-type systems (e.g., [78, 98])

132

are the main technique used to enforce such policies. The survey by Sabelfeld and Myers

[93] provides an overviewof these security policies and enforcement techniques.More re-

cently, Banerjee et al. [7] combine security-types with an expressive logic for describing a

program’s declassification policy and Nanevski et al. [80] use an expressive type-theoretic

verification framework to specify and enforce rich information-flow properties. The secu-

rity guarantees we consider in Section 4.3.2 are related to the security policies considered

in these previous works.The absence of paths from sources to sinks corresponds to nonin-

terference. Requiring all paths to go through certain nodes (such as the formal argument

of a sanitization function) is a form of trusted declassification (e.g. [42, 72]). Reasoning

about the conditions underwhich potentially dangerous information flows occur is similar

to reasoning aboutwhendeclassification is permitted [19, 94]. Restricting attention to only

explicit information flows is equivalent to a static taint analysis (e.g., [3, 68, 69, 71, 111]).

133

5
Conclusion

We have developed a tool, Pidgin, that uses state-of-the-art static analysis techniques to

help developers reason about the application-specific security guarantees their programs

provide.

The precision, scalability, and utility of Pidgin andmany other static analyses depends

onapoints-to analysis.Wehavedesignedand implementedamultithreadedpoints-to anal-

ysis that scales to large applications and makes it easy to specify the point in the preci-

sion/performance trade-off space required by client analyses.

One of the points-to analysis trade-offs that is most difficult to scale is flow sensitivity.

We have developed a flow-sensitive analysis for object-oriented programs that is specifi-

cally designed to enable strong update in client analyses. We have shown that this analy-

sis is scalable and produces better results than a flow-insensitive analysis. Since it enables

strong update during object construction, it is particular useful for client analyses that ben-

efit from precise reasoning about object invariants established during object construction.

Using the results of our flow-insensitive points-to analysis and several intermediate anal-

yses, Pidgin generates a programdependence graph (PDG). Programdependence graphs

precisely capture the information flows within programs.

Pidgin combines program dependence graphs with an expressive query language. Be-

cause individual paths within a PDG correspond to particular information flows within

134

a program, queries on PDGs offer a unified approach for the exploration, specification,

and enforcement of security guarantees. By using the query language to describe paths in

the PDG, developers can understand how information flowswithin a program and express

precise, application-specific security guarantees including noninterference, trusted declas-

sification, and access-controlled information flows.

Pidgin is a practical tool. We have used Pidgin to explore the information security of

legacy applications, to specify and enforce information security during development, and

to extract policies from known vulnerabilities. Pidgin scales to Java applications with over

300k lines.Our case studies demonstrate that Pidgin can express (and verify enforcement

of) interesting application-specific security policies, some of which are difficult or impos-

sible to express using existing tools and techniques.

135

References
[1] MartínAbadi, AnindyaBanerjee,NevinHeintze, and JonG.Riecke. A core calculus

of dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1999.

[2] LarsOle Andersen. ProgramAnalysis and Specialization for the C Programming Lan-
guage. PhD thesis, University of Copenhagen, DIKU, 1994.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis forAn-
droid apps. In Proceedings of the ACM Conference on Program Language Design and
Implementation, 2014.

[4] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information
flow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security, 2009.

[5] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic informa-
tion flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2012.

[6] Gogul Balakrishnan and Thomas Reps. Recency-abstraction for heap-allocated
storage. In Proceedings of the 13th International Conference on Static Analysis, 2006.

[7] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive declassifi-
cation policies and modular static enforcement. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2008.

[8] Jean-Francois Bergeretti and Bernard A. Carré. Information-flow and data-flow
analysis of while-programs. ACM Transactions on Programming Languages and Sys-
tems, 1985.

[9] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B.Moss, A. Phansalkar,D. Stefanović, T.VanDrunen,D. vonDincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development
and analysis. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programing, Systems, Languages, and Applications, 2006.

136

[10] Chavdar Botev, Hubert Chao, Theodore Chao, Yim Cheng, Raymond Doyle,
Sergey Grankin, Jon Guarino, Saikat Guha, Pei-Chen Lee, Dan Perry, Christo-
pher Re, Ilya Rifkin, Tingyan Yuan, Dora Abdullah, Kathy Carpenter, David Gries,
Dexter Kozen, Andrew Myers, David Schwartz, and Jayavel Shanmugasundaram.
Supporting workflow in a course management system. In Proceedings of the 36th
SIGCSE technical symposium on Computer science education, 2005.

[11] Martin Bravenboer andYannis Smaragdakis. Strictly declarative specification of so-
phisticated points-to analyses. InProceedings of the 24thACMSIGPLANConference
on Object Oriented Programming, Systems, Languages, and Applications, 2009.

[12] Robert Cartwright and Mattias Felleisen. The semantics of program dependence.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, 1989.

[13] IBM T. J. Watson Research Center. T. J. WAtson Library for Analysis (WALA).
http://wala.sf.net, 2006-2015.

[14] Deepak Chandra and Michael Franz. Fine-grained information flow analysis and
enforcement in a Java virtual machine. In Proceedings of the 23rd Annual Computer
Security Applications Conference, 2007.

[15] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1990.

[16] Swarat Chaudhuri. Subcubic algorithms for recursive state machines. ACM SIG-
PLAN Notices, 43(1):159–169, 2008.

[17] Erika Chin and David Wagner. Efficient character-level taint tracking for Java. In
Proceedings of the ACM Workshop on Secure Web Services, 2009.

[18] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interpro-
cedural computationof pointer-induced aliases and side effects. InProceedings of the
20th ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1993.

[19] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In
Proceedings of the 11th ACM Conference on Computer and Communications Security,
2004.

[20] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and Systems, 1991.

137

http://wala.sf.net

[21] Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis for Java
with strong updates. In Proceedings of the 26th European Conference on Object-
Oriented Programming, 2012.

[22] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

[23] Dorothy E. Denning. A lattice model of secure information flow. Communications
of the ACM, 1976.

[24] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak
updates. In Proceedings of the 19th European Conference on Programming Languages
and Systems, 2010.

[25] Marcus Edvinsson, Jonas Lundberg, and Welf Löwe. Parallel points-to analysis for
multi-core machines. In Proceedings of the 6th International Conference on High Per-
formance and Embedded Architectures and Compilers, 2011.

[26] MaryamEmami, RakeshGhiya, and Laurie JHendren. Context-sensitive interpro-
cedural points-to analysis in the presence of function pointers. In ACM SIGPLAN
Notices, 1994.

[27] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. TaintDroid: an information-flow track-
ing system for realtime privacy monitoring on smartphones. In Proceedings of the
Usenix Conference on Operating Systems Design and Implementation, 2010.

[28] Christian Fecht and Helmut Seidl. Propagating differences: An efficient new fix-
point algorithm for distributive constraint systems. Nordic Journal of Computing,
1998.

[29] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 1987.

[30] Dennis Giffhorn and Christian Hammer. Precise analysis of Java programs using
JOANA (tool demonstration). In Proceedings of the 8th IEEE International Working
Conference on Source Code Analysis and Manipulation, 2008.

[31] Joseph A. Goguen and Jose Meseguer. Security policies and security models. In
Proceedings of the IEEE Symposium on Security and Privacy, 1982.

138

[32] Deepak Goyal. Transformational derivation of an improved alias analysis algo-
rithm. In Automatic Program Development. Springer Netherlands, 2008.

[33] Jürgen Graf. Speeding up context-, object- and field-sensitive SDG generation. In
Proceedings of the 10th IEEEWorking Conference on Source Code Analysis andManip-
ulation, 2010.

[34] Brian Hackett and Radu Rugina. Region-based shape analysis with tracked loca-
tions. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2005.

[35] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs.
International Journal of Information Security, 2009.

[36] Christian Hammer, Jens Krinke, and Frank Nodes. Intransitive noninterference in
dependence graphs. InProceedings of the 2nd International Symposium on Leveraging
Application of Formal Methods, Verification and Validation, 2006.

[37] ChristianHammer, Jens Krinke, andGregor Snelting. Information flow control for
Java based on path conditions in dependence graphs. In Proceedings of the IEEE
International Symposium on Secure Software Engineering, 2006.

[38] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: Fast and accurate
pointer analysis for millions of lines of code. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2007.

[39] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In
Proceedings of the 36th Annual ACMSIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2009.

[40] BenHardekopf andCalvin Lin. Flow-sensitive pointer analysis formillions of lines
of code. In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, 2011.

[41] Rebecca Hasti and SusanHorwitz. Using static single assignment form to improve
flow-insensitive pointer analysis. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 1998.

[42] Boniface Hicks, Dave King, Patrick McDaniel, andMichael Hicks. Trusted declas-
sification: high-level policy for a security-typed language. InProceedings of the ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security, 2006.

139

[43] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings
of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, 2001.

[44] MichaelHindandAnthonyPioli. Assessing the effectsof flow-sensitivityonpointer
alias analyses. In Proceedings of the 5th International Symposium on Static Analysis,
1998.

[45] Michael Hind and Anthony Pioli. Which pointer analysis should I use? SIGSOFT
Software Engineering Notes, 2000.

[46] FlorianHolzschuher andRenéPeinl. Performance of graphquery languages:Com-
parison of Cypher, Gremlin and native access in Neo4j. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops, 2013.

[47] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Not., 23(7):35–46, 1988.

[48] CatalinHritcu,Michael Greenberg, Ben Karel, Benjamin C. Pierce, andGregMor-
risett. All your IFCException are belong to us. InProceedings of the IEEESymposium
on Security and Privacy, 2013.

[49] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. Exploring and
enforcing security guarantees via program dependence graphs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation,
2015.

[50] Vineet Kahlon. Bootstrapping: A technique for scalable flow and context-sensitive
pointer alias analysis. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2008.

[51] Vineeth Kashyap and Ben Hardekopf. Security signature inference for JavaScript-
based browser addons. In Proceedings of Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, 2014.

[52] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-
to analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2013.

[53] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t
live with ’em, can’t live without ’em. In Proceedings of the International Conference on
Information Systems Security, 2008.

140

[54] Eddie Kohler. Hot Crap! In Proceedings Conference on Organizing Workshops, Con-
ferences, and Symposia for Computer Systems, 2008.

[55] WilliamLandi. Undecidability of static analysis. ACMLetters on Programming Lan-
guages and Systems, 1992.

[56] Chris Lattner andVikramAdve. LLVM:A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization, 2004.

[57] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Schmidt.
Automata-based confidentialitymonitoring. InProceedings of the 11thAnnual Asian
Computing Science Conference, 2006.

[58] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 conference
on Java Grande, 2000.

[59] Thomas Lenherr. Taxonomy and applications of alias analysis. PhD thesis, Eidgenös-
sische Technische Hochschule Zürich, Department of Computer Science, 2008.

[60] Ondrej Lhoták. Program analysis using binary decision diagrams. PhD thesis,McGill
University, 2006.

[61] Ondrej Lhoták. Post on the Soot mailing list. https://mailman.cs.mcgill.ca/
pipermail/soot-list/2012-March/004154.html, 2012.

[62] Ondrej Lhoták and Kwok-Chiang AndrewChung. Points-to analysis with efficient
strong updates. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 2011.

[63] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using SPARK.
In Proceedings of the 12th International Conference on Compiler Construction, 2003.

[64] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Transactions on Soft-
ware Engineering and Methodology, 2008.

[65] Du Li. Dynamic tainting for deployed Java programs. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming, Systems, Lan-
guages, and Applications, 2010.

[66] Lian Li, CristinaCifuentes, andNathanKeynes. Boosting the performance of flow-
sensitive points-to analysis using value flow. In Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software En-
gineering, 2011.

141

https://mailman.cs.mcgill.ca/pipermail/soot-list/2012-March/004154.html
https://mailman.cs.mcgill.ca/pipermail/soot-list/2012-March/004154.html

[67] Jed Liu,Michael D. George, K. Vikram, XinQi, LucasWaye, andAndrewC.Myers.
Fabric: a platform for secure distributed computation and storage. In Proceedings of
the ACM SIGOPS Symposium on Operating systems principles, 2009.

[68] Yin Liu andAnaMilanova. Static analysis for inference of explicit information flow.
In Proceedings of the 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, 2008.

[69] Yin Liu and AnaMilanova. Practical static analysis for inference of security-related
program properties. In Proceedings of the IEEE 17th International Conference on Pro-
gram Comprehension, 2009.

[70] Benjamin Livshits. SecuribenchMicro. http://suif.stanford.edu/~livshits/
work/securibench-micro/, 2006.

[71] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.
Merlin: Specification inference for explicit information flow problems. In Proceed-
ings of the ACM SIGPLAN 2009 Conference on Programming Language Design and
Implementation, 2009.

[72] Heiko Mantel and David Sands. Controlled Declassification based on Intransitive
Noninterference. In Proceedings of the 2nd ASIAN Symposium on Programming Lan-
guages and Systems, 2004.

[73] IsabellaMastroeni andAnindyaBanerjee. Modelling declassification policies using
abstract domain completeness. Mathematical Structures in Computer Science, 2011.

[74] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. Parallel inclusion-
based points-to analysis. In Proceedings of the ACM International Conference on Ob-
ject Oriented Programming Systems Languages and Applications, 2010.

[75] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU implementa-
tionof inclusion-basedpoints-to analysis. InProceedings of the 17thACMSIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2012.

[76] AnaMilanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensi-
tivity for points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology, 2005.

[77] AndrewC.Myers. Mostly-StaticDecentralized Information FlowControl. PhD thesis,
Massachusetts Institute of Technology, 1999.

142

http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/

[78] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, Nathaniel
Nystrom, Danfeng Zhang, Owen Arden, Jed Liu, and K. Vikram. Jif: Java informa-
tion flow. Software release. Located at http://www.cs.cornell.edu/jif, 2001-
2015.

[79] Vaivaswatha Nagaraj and R. Govindarajan. Parallel flow-sensitive pointer analysis
by graph-rewriting. In Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques, 2013.

[80] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Dependent type the-
ory for verification of information flow and access control policies. ACM Transac-
tions on Programming Languages and Systems, 2013.

[81] Rupesh Nasre. Time- and space-efficient flow-sensitive points-to analysis. ACM
Transactions on Architecture and Code Optimization, 2013.

[82] neo4j. Intro to Cypher. http://neo4j.com/developer/
cypher-query-language/, 2015.

[83] Nathaniel Nystrom, Michael Clarkson, and Andrew C. Myers. Polyglot: An exten-
sible compiler framework for Java. In Görel Hedin, editor, Proceedings of the 12th
international conference on Compiler construction, 2003.

[84] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online cycle detection and
difference propagation: Applications to pointer analysis. Software Quality Control,
2004.

[85] David J Pearce, Paul HJ Kelly, and Chris Hankin. Efficient field-sensitive pointer
analysis of C. ACM Transactions on Programming Languages and Systems, 2007.

[86] François Pottier and Sylvain Conchon. Information flow inference for free. In Pro-
ceedings of the 5th ACM SIGPLAN International Conference on Functional Program-
ming, 2000.

[87] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. EigenCFA:
Accelerating flow analysis with GPUs. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2011.

[88] Sandeep Putta and Rupesh Nasre. Parallel replication-based points-to analysis. In
Proceedings of the 21st international conference on Compiler Construction, 2012.

[89] Ganesan Ramalingam. The undecidability of aliasing. ACM Transactions on Pro-
gramming Languages and Systems, 1994.

143

http://www.cs.cornell.edu/jif
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/cypher-query-language/

[90] Thomas Reps. Program analysis via graph reachability. In Proceedings of the 1997
International Symposium on Logic Programming, 1997.

[91] Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. In Pro-
ceedings of the 3rd ACMSIGSOFT symposium on Foundations of software engineering,
1995.

[92] B.P.S. Rocha, S. Bandhakavi, J. den Hartog, W.H. Winsborough, and S. Etalle. To-
wards static flow-based declassification for legacy and untrusted programs. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, 2010.

[93] Andrei Sabelfeld andAndrewC.Myers. Language-based information-flowsecurity.
IEEE Journal on Selected Areas in Communications, 2003.

[94] Andrei Sabelfeld and David Sands. Dimensions and principles of declassification.
In Proceedings of the 18th IEEE Computer Security Foundations Workshop, 2005.

[95] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. ACM Transactions on Programming Languages and Systems, 2002.

[96] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow anal-
ysis. In Program Flow Analysis: Theory and Application. Prentice-Hall, 1981.

[97] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, 1991.

[98] Vincent Simonet. TheFlowCamlSystem:documentation anduser’smanual. Tech-
nical report, Institut National de Recherche en Informatique et en Automatique
(INRIA), 2003.

[99] Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations and
Trends in Programming Languages, 2015.

[100] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts
well: understanding object-sensitivity. In Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, 2011.

[101] Scott F. Smith and Mark Thober. Improving usability of information flow security
in Java. In Proceedings of the Workshop on Programming Languages and Analysis for
Security, 2007.

[102] Gregor Snelting,DennisGiffhorn, JürgenGraf, ChristianHammer,MartinHecker,
MartinMohr, andDanielWasserrab. Checking probabilistic noninterference using
JOANA. it - Information Technology, 2015.

144

[103] Manu Sridharan and Stephen J. Fink. The complexity of andersen’s analysis in prac-
tice. In Proceedings of the 16th International Symposium on Static Analysis, 2009.

[104] Stefan Staiger-Stöhr. Implementing sparse flow-sensitive andersen analysis. Tech-
nical report, Universität Stuttgart, 2009.

[105] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of programming languages,
1996.

[106] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible
dynamic information flow control in Haskell. In Proceedings of the 4th ACM Sym-
posium on Haskell, 2011.

[107] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. SPAS: scalable path-sensitive
pointer analysis on full-sparse SSA. In Proceedings of the 9th Asian Conference on
Programming Languages and Systems, 2011.

[108] Mana Taghdiri, Gregor Snelting, and Carsten Sinz. Information flow analysis via
path condition refinement. In Proceedings of the International Workshop on Formal
Aspects of Security and Trust, 2010.

[109] Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. Efficient flow-sensitive interpro-
cedural data-flow analysis in the presence of pointers. In Proceedings of the 15th
International Conference on Compiler Construction, 2006.

[110] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
TAJ: Effective taint analysis of web applications. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, 2009.

[111] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. ANDROMEDA: accurate and scalable security analysis of web appli-
cations. In Fundamental Approaches to Software Engineering, 2013.

[112] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a Java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced Studies on Collaborative Research,
1999.

[113] Jeffrey A. Vaughan and Stephen Chong. Inference of expressive declassification
policies. In Proceedings of the IEEE Symposium on Security and Privacy, 2011.

[114] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 1996.

145

[115] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On PDG-based noninter-
ference and its modular proof. In Proceedings of the ACM SIGPLAN Fourth Work-
shop on Programming Languages and Analysis for Security, 2009.

[116] John Whaley. Context-sensitive pointer analysis using binary decision diagrams. PhD
thesis, Stanford University, 2007.

[117] Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. Shape analysis. In Proceedings
of the 9th International Conference on Compiler Construction, 2000.

[118] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and dis-
covering vulnerabilities with code property graphs. In Proceedings of the IEEE Sym-
posium on Security and Privacy, 2014.

[119] Tuba Yavuz-Kahveci and Tevfik Bultan. Automated verification of concurrent
linked lists with counters. InProceedings of the 9th International Symposium on Static
Analysis, 2002.

[120] Sen Ye, Yulei Sui, and Jingling Xue. Region-based selective flow-sensitive pointer
analysis. In Proceedings of the 21th International Static Analysis Symposium, 2014.

[121] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. Level
by level:Making flow- and context-sensitive pointer analysis scalable formillions of
lines of code. In Proceedings of the 8th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, 2010.

[122] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wether-
all. TaintEraser: Protecting sensitive data leaks using application-level taint track-
ing. ACM Operating Systems Review, 2011.

146

