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Abstract

This dissertation studies the problem of causal inference for ordinal outcomes. Chapter 1

focuses on the sharp null hypothesis of no treatment e↵ect on all experimental units, and

develops a systematic procedure for closed-form construction of sequences of alternative

hypotheses in increasing orders of their departures from the sharp null hypothesis. The

resulted construction procedure helps assessing the powers of randomization tests with ordinal

outcomes. Chapter 2 proposes two new causal parameters, i.e., the probabilities that the

treatment is beneficial and strictly beneficial for the experimental units, and derives their

sharp bounds using only the marginal distributions, without imposing any assumptions on the

joint distribution of the potential outcomes. Chapter 3 generalizes the framework in Chapter

2 to address noncompliance.
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Chapter 1

Construction of Alternative Hypotheses

for Evaluating Randomization Tests with

Ordinal Outcomes

Assessing the powers of randomization tests for finite populations has been recognized as a

di�cult task by several researchers, because the construction of “alternative” finite populations

requires specification of a large number of potential outcomes that increases with the number

of experimental units and thus is often referred to as “a thankless task” by experts. For ordinal

outcomes, we develop a systematic procedure for closed-form construction of sequences of

alternative hypotheses in increasing orders of their departures from the sharp null hypothesis

of zero treatment e↵ect on each experimental unit. Our construction procedure helps assessing

the powers of randomization tests with ordinal data in randomized treatment-control studies

and facilitates the comparison of di↵erent test statistics. Also, the results, as extensions of

two by two tables, provide a way of quantifying the amount of information of association

contained in the marginal distributions of general contingency tables.
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Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

1.1 Introduction

Introduced by Fisher (1935), randomization tests are useful tools for causal inference, because

they assess the statistical significance of estimated treatment e↵ects without making any

assumptions about the underlying distributions of the data. Early theories on randomization

tests were developed by Pitman (1938), and Kempthorne (1952), which showed that many

statistical procedures can be viewed as approximations of randomization tests. To quote

Bradley (1968), “[a] corresponding parametric test is valid only to the extent that it results in

the same statistical decision [as the randomization test].” A crucial advantage of randomization

tests is their abilities to handle non-standard (e.g., ordinal) outcomes, however there appears

to be limited research on how to assess the powers of randomization tests for ordinal outcomes.

The potential outcomes framework (Neyman, 1923; Rubin, 1974) makes randomization

tests easy to interpret. However, it does not naturally permit the assessment of their powers,

which requires constructing alternatives to the sharp null hypothesis of zero treatment

e↵ect. The existing literature (e.g., Lehmann, 1975; Rosenbaum, 2010) accessed the powers

of randomization tests by invoking infinite-population models. However, under certain

circumstances we may prefer finite-population inference over infinite-population inference.

For example, sometimes we can not view the experimental units as a random sample of a

hypothetical infinite-population. For a comparison of finite-population and infinite-population

inference, see Reichardt and Gollob (1999). In this chapter, we first construct alternatives

to the sharp null hypothesis for ordinal outcomes within the finite-population framework,

and later discuss how to incorporate our methodology into the infinite-population framework.

However, constructing finite-population alternatives requires specifying the potential outcomes

for all experimental units, and is thus considered “a thankless task” by experts (Rosenbaum,

2010). We demonstrate that this task is feasible for ordinal outcomes, and our finite-population

construction procedure facilitates the study of the powers of randomization tests.

The chapter proceeds as follows. Section 1.2 reviews randomization tests of the sharp null

hypothesis for ordinal outcomes. Section 1.3 introduces two measures quantifying departures

from the sharp null hypothesis, discusses their relationship to the powers of randomization

2



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

tests, and proposes a systematic procedure to construct alternative hypotheses in closed

forms. Section 1.4 reports the results of a simulation study that demonstrates how to use

the proposed construction procedure to assess the powers of randomization tests. Section 1.6

concludes.

1.2 Randomization Tests for Ordinal Outcomes

1.2.1 Potential Outcomes, Sharp Null Hypothesis and Randomization Test

We consider a completely randomized experiment with N units, a binary treatment and an

ordinal outcome with J categories labeled as 0, . . . , J � 1, where 0 and J � 1 are the “worst”

and “best” categories respectively. Under the Stable Unit Treatment Value Assumption

(Rubin, 1980) that there is only one version of the treatment and no interference among units,

we define the pair {Yi(1), Yi(0)} as the potential outcomes of the ith unit under treatment

and control. Let

pkl = pr {Yi(1) = k, Yi(0) = l} = # {i : Yi(1) = k, Yi(0) = l} /N

be the joint probability of potential outcomes k and l, under treatment and control. The

probability “pr(·)” is defined for the finite-population. The J ⇥ J probability matrix P =

(pkl)0k,lJ�1 , which summarizes the joint distribution of the potential outcomes, plays a

crucial role in our later construction of the alternative hypotheses. Let

pk+ =
J�1X

l0=0

pkl0 , p+l =
J�1X

k0=0

pk0l (k, l = 0, 1, . . . , J � 1).

The vectors p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T characterize the marginal

distributions of the potential outcomes under treatment and control.

Using the potential outcomes, we express the sharp null hypothesis as Yi(0) = Yi(1) for all i.

Under the sharp null hypothesis, the probability matrix P is diagonal with pj+ = pjj = p+j , for

all j. To test the sharp null hypothesis, we use data from completely randomized experiments

with N1 units assigned to treatment. For the ith unit, we denote its treatment indicator as

3



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

Wi, and its observed outcome is consequently Y

obs
i = WiYi(1) + (1�Wi)Yi(0). For each j, let

n0j and n1j respectively represent the number of units exposed to control and treatment with

observed outcome j. Given the observed data, we first choose a suitable test statistic, typically

a “measure of extremeness” (Brillinger et al., 1978), and obtain a p-value by comparing the

test statistic’s observed value to its randomization distribution.

1.3 Characterization and Construction of Alternative Hypothe-

ses

To evaluate the powers of randomization tests, we need to construct alternatives to the sharp

null hypothesis. A probability matrix P can violate the sharp null hypothesis in the following

two distinct ways:

1. di↵erent marginal probabilities, i.e., p1 6= p0;

2. identical marginal probabilities and non-zero o↵-diagonal elements, that is, p1 = p0 and
P

j pjj < 1.

For example, consider the following probability matrices

P1 =

0

BBBB@

1
6

1
6

1
6

0 1
6

1
6

1
6 0 0

1

CCCCA
, P2 =

0

BBBB@

0 1
6

1
6

1
6 0 1

6

1
6

1
6 0

1

CCCCA
, P3 =

0

BBBB@

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1

CCCCA
, (1.1)

all of which violate the sharp null hypothesis. In particular, P1 has di↵erent marginal

probabilities, P2 and P3 have identical marginal probabilities and non-zero o↵-diagonal

elements. Inspired by the above observations, we construct alternative hypotheses following a

three-step procedure:

1. Invoke an assumption regarding the marginal probabilities to reduce the number of

possible alternative hypotheses;

2. Introduce two measures quantifying violations of the sharp null hypothesis;

4



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

3. Construct a sequence of alternative hypotheses by varying these measures.

1.3.1 Reducing the Number of Possible Alternative Hypotheses

To evaluate the powers of randomization tests, we create a sequence of probability matrices of

increasing violations from the sharp null hypothesis. However, we can violate the sharp null

hypothesis in many ways, making the problem intractable. To make it somewhat tractable we

impose the following restriction on P .

Assumption 1.1. (Stochastic Dominance) For all j = 1, . . . , J � 1,
PJ�1

k=j pk+ �
PJ�1

l=j p+l.

As an illustration, consider the three probability matrices in (1.1). The stochastic domi-

nance assumption excludes P1. Besides the advantage of reducing alternative hypotheses, in

applied research the stochastic dominance pattern occurs frequently (e.g., Bradley et al., 1962;

Bajorski and Petkau, 1999), because the treatment is often beneficial on the population level.

In fact, stochastic dominance is termed “positive distributional causal e↵ect” in Ju and Geng

(2010). Because of the aforementioned technical convenience and the practical importance, we

first focus on those marginal probabilities p1 and p0 that satisfies the stochastic dominance

assumption, and then discuss the general marginal probabilities.

1.3.2 Measures of Departures from the Sharp Null Hypothesis

In this section we introduce two measures quantifying violations of the sharp null hypothesis.

Because the sharp null hypothesis is violated when p1 6= p0, we use Hellinger distance ⌧HD

to quantify di↵erence of the marginal probabilities. Other choices include Kullback–Leibler

divergence and total variance distance. Under the sharp null hypothesis ⌧HD = 0, and

therefore large ⌧HD implies severe violations of the sharp null hypothesis. However, ⌧HD relies

solely on the marginal probabilities p1 and p0, implying the need of additional measures to

access the violations of the sharp null hypothesis. For example, the probability matrices P2

and P3 in (1.1) violate the sharp null hypothesis, albeit ⌧HD = 0. To address this issue we

5



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

use Cohen’s Kappa (Cohen, 1960):

 =
�
tr(P )� p

T
1 p0

 
/

�
1� p

T
1 p0

�
, (1.2)

where tr(·) is the trace function. Cohen’s kappa  relies on the probability matrix P , and

under the sharp null hypothesis  = 1 because P is diagonal.

1.3.3 Construction of Alternative Hypotheses

Having introduced the two measures, we construct a sequence of probability matrices with

di↵erent Hellinger distances and Cohen’s kappas, by the following two-step procedure:

1. construct a sequence of marginal probabilities, in increasing order of ⌧HD;

2. for each fixed marginal probabilities, construct a sequence of probability matrices in

increasing order of . Construction of such a sequence involves the following sub-steps:

(a) minimize and maximize  subject to the following constraints:

J�1X

k0=0

pk0l = p+l,

J�1X

l0=0

pkl0 = pk+, pkl � 0 (k, l = 0, 1, . . . , J � 1);

(b) use a convex combination of the minimizer and maximizer to construct probability

matrices with intermediate values of .

Step 1 accesses the impact of ⌧HD on the powers of randomization tests, and step 2 further

accesses the impact of  on the powers of randomization tests. For fixed marginal probabilities,

sub-step (a) studies the two extreme cases of “most” and “least” violations of the sharp null

hypothesis, and sub-step (b) addresses the “in between” cases. Therefore, this procedure

provides a relatively complete picture of violations of the sharp null hypothesis.

For given marginal probabilities p1 and p), the minimization problem in the above

procedure is somewhat intuitive. Consider the probability matrix PI with independent

potential outcomes, i.e., pkl = pk+p+l for all k, l. If we are not interested in distributions with

negatively associated potential outcomes, PI minimizes  as zero. The maximization problem

is, however, non-trivial. The following theorem provides the maximum value of , and the

6



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

maximizer itself. For simplicity we restrict the maximizer to be lower triangular, because

for any marginal probabilities satisfying the stochastic dominance assumption, there exists a

corresponding probability matrix that is lower triangular. This is a special case of Strassen’s

theorem (Strassen, 1965; Lindvall, 1992), and was utilized in Rosenbaum (2001).

Theorem 1.1. For any J � 2, given marginal probabilities p1 and p0 satisfying the stochastic

dominance assumption, there exists a lower triangular probability matrix P+ achieving the

upper bound of , i.e.,

 (P+) =

(
J�1X

k=0

min (pk+, p+k)� p

T
1 p0

)
/

�
1� p

T
1 p0

�
. (1.3)

Proof of Theorem 1.1. The proof consists of two parts. First, for all j = 0, . . . , J � 1, the

diagonal element pjj of the probability matrix P cannot be greater than either pj+ or p+j ,

i.e., pjj  min (pj+, p+j). Consequently,

tr(P ) 
J�1X

k=0

min (pk+, p+k) , (1.4)

substituting which in the right hand side of (1.2) yields the right hand side of (1.3). Therefore,

it is an upper bound of . Second, in Appendix A.1 we construct a lower triangular probability

matrix P+, with marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T
,

that attains the upper bound.

In the above proof of Theorem 1.1, we suggest one way to construct the maximizer P+.

Next we discuss the uniqueness of P+. By restricting P+ to be lower triangular and its

(j + 1)th diagonal element pjj to be min (pj+, p+j) , what remain to be determined are the

(J � 1)J/2 o↵-diagonal elements. Note that there are 2J � 3 constraints associated with them.

The equality

(J � 1)J

2
= 2J � 3

holds if and only if J = 2 or 3.

The case with J = 2 corresponds to binary outcomes, which occur frequently in both

methodology and applied research. For a recent discussion of finite population inference for

7
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binary data, see Ding and Dasgupta (2015). The following corollary provides the maximizer

under J = 2. Although it is a special case of Theorem 1.1, we provide a direct proof to

rigorously show the uniqueness of the maximizer.

Corollary 1.1. For J = 2, given marginal probabilities p1 and p0 that satisfy the stochastic

dominance assumption, the following matrix is the unique maximizer of :

P+ =

0

B@
p0+ 0

p1+ � p+1 p+1

1

CA . (1.5)

Proof of Corollary 1.1. Because p1 and p0 satisfy the stochastic dominance assumption, we

have p0+  p+0 and p1+ � p+1, implying that the diagonal elements of the maximizer are

p00 = p0+ and p11 = p+1. Because the row sums of the maximizer are p1, we uniquely

determine the entries of the maximizer, as shown in (1.5). The maximizer has nonnegative

entries because p1+ � p+1, and its column sums are p0 because p0+ + p1+ � p+1 = p+0. The

proof is complete.

The case with J = 3 corresponds to three-level outcomes, which is also important in practice.

For example, in a clinical trial we can describe the status of a patient as “deterioration,” “no

change” or “improvement” (Bajorski and Petkau, 1999). The following corollary provides the

maximizer for J = 3. Again, we provide a direct proof.

Corollary 1.2. For J = 3, given marginal probabilities p1 and p0 that satisfy the stochastic

dominance assumption, the following matrix is the unique maximizer of :

P+ =

0

BBBB@

p0+ 0 0

p1+ �min (p+1, p1+) min (p+1, p1+) 0

p2+ � p+2 � {p+1 �min (p+1, p1+)} p+1 �min (p+1, p1+) p+2

1

CCCCA
. (1.6)

Proof of Corollary 1.2. Because p1 and p0 satisfy the stochastic dominance assumption, we

have p0+  p+0 and p2+ � p+2, which implies that the diagonal elements of the maximizer

are p00 = p0+, p11 = min (p+1, p1+), and p22 = p+2. First, because the first row sum and

8
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third column sum are respectively p0+ and p+2, the maximizer is in the following form:

P+ =

0

BBBB@

p0+ 0 0

? min (p+1, p1+) 0

? ? p+2

1

CCCCA
,

where “?” denotes an entry yet to be determined. Second, because the second row sum and

column sum are respectively p1+ and p+1, the maximizer is in the following form:

P+ =

0

BBBB@

p0+ 0 0

p1+ �min (p+1, p1+) min (p+1, p1+) 0

? p·,1 �min (p+1, p1+) p+2

1

CCCCA
.

Third, because the third row sum is p2+, we uniquely determine the maximizer, as in (1.6).

Fourth, P+ has nonnegative entries, because

p2+ � p+2 � {p+1 �min (p+1, p1+)} = min (p2+ � p+2, p+0 � p0+) � 0.

Finally, P+ has row sums p1, and column sums p0, because

p0+ + p1+ �min (p+1, p1+) + p2+ � p+2 � {p+1 �min (p+1, p1+)} = p+0.

The proof is complete.

We end this section by discussing how to construct probability matrices with intermediate

values of . Given the minimizer PI and maximizer P+, let P� = �PI + (1� �)P+. We view

� 2 [0, 1] as a sensitivity parameter, because we cannot estimate it from the observed data.

The resulting probability matrices have the same marginal probabilities as PI and P+, and

subsequently the same Hellinger distances. However, they have di↵erent  depending on �

because (P�) = (1� �) (P+) . To complete the construction procedure, note that any entry

of a well-defined joint distribution matrix P should be multiples of 1/N . The marginals of P�

are multiples of 1/N by definition, but its entries pkl(�) may not be. We propose a calibration

9



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

step to address this issue. We define

p̃kl(�) =

8
>><

>>:

bNpkl(�)c
N if k 6= l,

p+l �
P

k0 6=l
bNpk0l(�)c

N if k = l,

where b·c is the floor function. By definition, the column sums of eP� are p0. Let ⇤ (p1,p0)

denote the set containing all �’s such that the row sums of eP� are p1, and our constructed

sequence of alternative hypotheses are therefore { eP�}�2⇤(p
1

,p
0

). In practice, we can use a grid

search to obtain an approximation of ⇤ (p1,p0).

1.4 A Simulation Study

We demonstrate how the above construction procedure facilitates the study the powers of

randomization tests. The test statistic we use is the squared Mann–Whitney U -statistic

(Agresti, 2002):

U

2 =
1

4N2
1 (N �N1)2

"
J�1X

k=0

J�1X

l=0

n1kn0l {I(k > l)� I(k < l)}
#2

.

Another commonly-used test statistic for categorical data is the �

2-statistic. However, we do

not use it here, because it does not utilize the order information and therefore is less powerful.

Although closed-form expressions of the powers of randomization test using the U2 statistic

are di�cult to obtain, numerical calculations by the Monte Carlo method are straightforward,

once we determine the alternative hypothesis P :

1. under P generate 2 ⇥ 105 independent treatment assignments and obtain the corre-

sponding observed data sets;

2. for each observed data set calculate the p-value of the randomization test using the

observed value of U2 and its simulated null distribution;

3. approximate the power of the U

2 statistic as the proportion of the p-values that are

smaller than the significance level ↵ = 0.05.

10



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

In this simulation study, we construct alternative hypotheses using the following four sets

of marginals, two with J = 2 and two with J = 3:

1. p1 = (3/10, 7/10)T, p0 = (3/5, 2/5)T, ⌧HD = 0.216;

2. p1 = (1/2, 1/2)T, p0 = (4/5, 1/5)T, ⌧HD = 0.227;

3. p1 = (1/4, 1/4, 1/2)T, p0 = (2/5, 2/5, 1/5)T, ⌧HD = 0.227;

4. p1 = (9/40, 9/40, 11/20)T, p0 = (2/5, 2/5, 1/5)T, ⌧HD = 0.261.

For each case, we let the sample sizes N = 120, 160, 240, and the sensitivity parameters

� = 0, 1/4, 1/2, 3/4, 1. We then construct the probability matrices, which share the same

marginals. For each probability matrix eP�, we use the aforementioned Monte Carlo procedure

to calculate the powers. On the one hand, di↵erent cases allow us to study the impact of

⌧HD on the powers. On the other hand, within each case we can study the impact of  on

the powers. The simulation results are summarized in Figure 1.1, from which we draw the

following conclusions. For all fixed sample sizes, the power functions of Case 2 dominate those

of Case 1, and the power functions of Case 4 dominate those of Case 3. Therefore, for fixed J

the power increases as the Hellinger distance increases. Furthermore, for fixed marginals and

sample size, the power increases as  decreases, or equivalently as � increases. However, this

dependence becomes weaker as the sample size increases, because the power converges to one.

We can use the demonstrated methodology to compare the power functions of di↵erent

test statistics, and also to determine sample sizes that guarantee a pre-specified power. For

instance, in Case 3, we cannot guarantee a power of 0.95 with a sample of size 120, but we

can with a sample of size 160.

In summary, for a finite population, the power of the randomization test using U

2 depends

on the marginal di↵erence of the potential outcomes as well as the association between them.

In particular, the power increases as the marginal di↵erence increases, and given the marginals

fixed, the power increases as the association decreases. Furthermore, the power converges to

one as the sample size increases, for any case with non-zero marginal di↵erence. The above

conclusions appear to confirm our intuition, because it should be easier to reject the sharp

11
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Figure 1.1: Statistical Powers of Randomization Tests Using U

2.
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Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

null hypothesis given larger di↵erences between the marginals, and given the marginals fixed,

it should be easier to reject the sharp null hypothesis given smaller associations between

the potential outcomes. Our findings conform to Plackett (1977)’s and Cherno↵ (2004)’s

results about the classical 2⇥ 2 tables: the marginals of the contingency tables contain limited

amount of information about the association with finite samples, which becomes negligible

asymptotically.

1.5 Sharp Bounds of the Proportion of Units with Zero Treat-

ment E↵ects

For any categorical outcomes, the proportion of units with zero treatment e↵ects is

⌘0 = pr{Yi(1) = Yi(0)} =
J�1X

j=0

pjj ,

In this section, we bound ⌘0 using only the marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T

and p0 = (p+0, . . . , p+,J�1)
T
. We first state a fundamental lemma, which not only plays a

central role in our later proof of the main theorem, but also is of independent interest.

Lemma 1.1. Assume (a1, . . . , an) and (b1, . . . , bn) are nonnegative constants such that

nX

k=1

ak =
nX

l=1

bl.

(a) There exists an n ⇥ n matrix Pn = (pkl)1k,ln with nonnegative elements and the

following row sums, column sums and diagonal elements:

nX

l0=1

pkl0 = ak,

nX

k0=1

pk0l = bl, pjj = min (aj , bj) (k, l, j = 1, . . . , n).

(b) If (a1, . . . , an) and (b1, . . . , bn) further satisfy the following condition:

aj + bj  1, (j = 0, . . . , J � 1),

then there exists an n⇥ n matrix Q = (qkl)1k,ln with nonnegative elements and the

13



Chapter 1. Construction of Alternative Hypotheses for Ordinal Outcomes

following row sums, column sums and diagonal elements:

nX

l0=1

qkl0 = ak,

nX

k0=1

qk0l = bl, qjj = 0 (k, l, j = 1, . . . , n).

The proof of Lemma 1.1 is in Appendix A.2. With the help of the Lemma, we derive the

sharp bounds of the probability of the sharp null hypothesis, and construct explicitly the

probability matrices that attain these bounds.

Theorem 1.2. The sharp bounds of ⌘0 are

J�1X

j=0

max(pj+ + p+j � 1, 0)  ⌘0 
J�1X

j=0

min(pj+, p+j).

Proof of Theorem 1.2. We first prove the lower bound, which follows directly from

pjj � max

0

@
pjj �

X

k 6=j

X

l 6=j

pkl, 0

1

A = max(pj+ + p+j � 1, 0).

We need to show that the above bound is indeed attainable, i.e., there exists a probability

matrix P satisfying the following two conditions:

(C1) the marginal probabilities are (p0+, p1+, . . . , pJ�1,+) and (p+0, p+1, . . . , p+,J�1);

(C2) the corresponding ⌘0 is equal to the lower bound.

Because we have
J�1X

i=0

(pj+ + p+j) =
J�1X

i=0

pj+ +
J�1X

i=0

p+j = 2,

there exists at most one j

⇤ such that pj⇤+ + p+j⇤ � 1 > 0. Therefore we discuss the following

two cases. If such j

⇤ exists, we construct the matrix PL as:

pkl =

8
>>>>>>>>>><

>>>>>>>>>>:

0, if k 6= j

⇤
, l 6= j

⇤
,

pk+, if k 6= j

⇤
, l = j

⇤
,

p+l, if k = j

⇤
, l 6= j

⇤
,

pj⇤+ + p+j⇤ � 1, if k = j

⇤
, l = j

⇤
.

14
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The resulting probability matrix PL for attaining the lower bound has none zero elements

only in the j

⇤-th column and j

⇤-th row. Otherwise, Lemma 1.1(b) allows us to construct a

probability matrix with the above marginal probabilities and zero diagonal elements.

We then prove the upper bound, which follows directly from pjj  min(pj+, p+j). Lemma

1.1(a) further guarantees that the upper bound is indeed attainable.

1.6 Discussions

We propose a method to construct sequences of finite populations of ordinal outcomes in

increasing orders of their departures from the sharp null hypothesis of no treatment e↵ect.

Such a construction is useful for a systematic evaluation of the powers of randomization

tests. The key idea is to introduce two measures quantifying departures from the sharp

null hypothesis and study the relationship between them, as well as their impact on the

powers of randomization tests. Our results show that we can retrieve only limited amount of

information regarding the association between the potential outcomes from their marginal

distributions, and therefore extend Plackett (1977)’s and Cherno↵ (2004)’s discussions on

2⇥ 2 tables by quantifying the information about association in the marginal distributions

of general contingency tables. Our methodology can easily be incorporated into the infinite-

population framework, by assuming that the potential outcomes {Yi(1), Yi(0)} are i.i.d. from

the constructed probability matrices.

There are multiple future directions based on our work. First, although we adopt a

numerical approach, it is possible to derive the distribution of the U

2 statistic under the

sharp null hypothesis using asymptotic theory. Second, we can derive the maximizer for

marginal probabilities that do not satisfy the stochastic dominance assumption. Third, we

can incorporate covariate information to further improve our current framework for ordinal

outcomes.
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Chapter 2

Sharp Bounds of Causal E↵ects on Ordinal

Outcomes

Under the potential outcomes framework, causal e↵ects are defined as comparisons between

the treatment and control potential outcomes. However, the average causal e↵ect, generally

the parameter of interest, is not well defined for ordinal outcomes. To address this problem,

we propose two new causal parameters, i.e., the probabilities that the treatment is beneficial

and strictly beneficial for the experimental units, which are well defined for any outcomes

and of particular interest for ordinal outcomes. These two new causal parameters, though of

scientific importance and interest, depend on the association between the potential outcomes

and therefore without any further assumptions are not identifiable from the observed data.

For ordinal outcomes, we derive sharp bounds of the two new causal parameters using only

the marginal distributions, without imposing any assumptions on the joint distribution of the

potential outcomes.

16
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2.1 Introduction

The potential outcomes framework (Neyman, 1923; Rubin, 1974) permits defining causal

e↵ects as comparisons between the potential outcomes under treatment and control. The

average causal e↵ect, generally the parameter of interest ever since the seminal work of

Neyman (1923), is not applicable to ordinal outcomes, because average outcomes themselves

are not well defined. Ordinal outcomes are common in applied research, but discussions about

them in the causal inference literature are very limited. Rosenbaum (2001) discussed causal

inference for ordinal outcomes under the monotonicity assumption that the treatment is

beneficial for all units. Cheng (2009) and Agresti (2010) discussed various causal parameters

under the assumption of independent potential outcomes. Volfovsky et al. (2015) exploited a

Bayesian strategy, which involved a full parametric model on the joint values of the potential

outcomes.

For ordinal outcomes, we propose two new causal parameters measuring the probabilities

that the treatment is beneficial and strictly beneficial for the experimental units, which

play important roles in decision and policy making for randomized evaluations with ordinal

outcomes. Because these two causal parameters depend on the association between the

treatment and control potential outcomes, they are generally not identifiable from the observed

data. Without imposing any assumptions about the underlying distributions or the association

between the potential outcomes, we sharply bound them by using the marginal distributions

of the potential outcomes. We sharpen the bounds when covariates are available, and further

demonstrate that our nonparametric bounds on causal e↵ects can be incorporated into existing

parametric modeling frameworks.

The chapter proceeds as follows. Section 3.2 sets up the theoretical framework of causal

inference for ordinal outcomes, and propose two causal parameters that are better measures

of causal e↵ects and are of practical importance. Section 2.3 shows the sharp bounds of the

causal parameters. Section 2.4 presents some numerical and real examples to demonstrate the

advantages of our theoretical results. In Section 2.5, we further sharpen the bounds by using

pretreatment covariates, and derive sharp bounds for another causal measure. We conclude
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with a discussion in Section 2.6, and provide the technical details in Appendix B.

2.2 Causal Inference for Ordinal Outcomes

2.2.1 Potential Outcomes

We consider a finite population with N units, a binary treatment, and an ordinal outcome

with J categories labeled 0, . . . , J � 1, where 0 and J � 1 respectively represent the worst

and best categories. Under the Stable Unit Treatment Value Assumption (Rubin, 1980) that

there is only one version of the treatment and no interference among units, we define the

pair {Yi(1), Yi(0)} as the potential outcomes of the ith unit under treatment and control,

respectively. We let

pkl = pr {Yi(1) = k, Yi(0) = l} (k, l = 0, . . . , J � 1)

denote the proportion of units whose potential outcome is k under treatment and l under

control. Here, the probability “pr(·)” can be defined for either a finite population of N units,

or for a super population. The J ⇥ J probability matrix P = (pkl)0k,lJ�1 summarizes the

joint distribution of the potential outcomes. We let the row and column sums of P be

pk+ =
J�1X

l0=0

pkl0 , p+l =
J�1X

k0=0

pk0l (k, l = 0, 1, . . . , J � 1)

The vectors p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T characterize the marginal

distributions of the potential outcomes under treatment and control, respectively.

2.2.2 Causal Parameters for Ordinal Outcomes

Any causal parameter is a function of the probability matrix P . Unfortunately, the average

causal e↵ect is not well defined for ordinal outcomes. Instead, we can use the distributional

causal e↵ects (cf. Ju and Geng, 2010)

�j = Pr {Yi(1) � j}� Pr {Yi(0) � j} =
X

k�j

pk+ �
X

l�j

p+l (j = 0, . . . , J � 1) (2.1)
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to measure the di↵erence between the marginal distributions of potential outcomes at di↵erent

levels of j. However, unless �j ’s have the same sign for all j, it is di�cult to decide whether

the treatment or the control is preferable based only on the distributional causal e↵ects.

Example 2.1. Let p1 = (1/5, 3/5, 1/5)T and p0 = (2/5, 1/5, 2/5)T , with �0 = 0, �1 = 1/5

and �2 = �1/5. The treatment is beneficial at level 1, but not at level 2. In this case,

distributional causal e↵ects do not provide straightforward guidance for decision making.

Volfovsky et al. (2015) studied the conditional medians

mj = med {Yi(1) | Yi(0) = j} (j = 0, . . . , J � 1), (2.2)

which is a set containing all values of k such that

kX

k0=0

pk0j �
p+j

2
,

J�1X

k0=k

pk0j �
p+j

2
.

Therefore, the conditional medians may not be unique, and they are only well defined for j

with p+j > 0. Moreover, they are not direct measures of the treatment e↵ect itself.

We propose two new causal parameters that measure the probabilities that the treatment

is beneficial and strictly beneficial for the experimental units:

⌧ = Pr {Yi(1) � Yi(0)} =
XX

k�l

pkl, ⌘ = Pr {Yi(1) > Yi(0)} =
XX

k>l

pkl. (2.3)

The causal parameters ⌧ and ⌘ are measures of causal e↵ects that are well defined for any

types of outcomes and of particular interest to ordinal outcomes.

Example 2.2. Consider the following probability matrix:

P =

0

BBBB@

0 1
6

1
6

0 1
6 0

0 1
3

1
6

1

CCCCA
.

In this case, m0 is not well defined, m1 is 1, and m2 = {0, 1, 2}. However, we have ⌧ = 2/3

and ⌘ = 1/3, i.e., 2/3 of the population benefit from the treatment, and 1/3 strictly benefit.
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2.3 Sharp Bounds on Causal E↵ects for Ordinal Outcomes

The definitions of ⌧ and ⌘ involve the association between the individual potential outcomes

Yi(1) and Yi(0). Because we can never jointly measure them, any observed data do not

provide full information about their association, rendering the causal parameters ⌧ and ⌘ not

identifiable. To partially circumvent this di�culty, we focus on the sharp bounds of ⌧ and ⌘,

which are the minimal and maximal values of ⌧ and ⌘ under the constraints of the following

marginal distributions:

J�1X

l0=0

pkl0 = pk+,

J�1X

k0=0

pk0l = p+l, pkl � 0 (k, l = 0, . . . , J � 1). (2.4)

Therefore, the sharp bounds depend only on the marginal distributions, but not on the joint

distribution of potential outcomes. Finding the sharp bounds is equivalent to solving linear

programming problems, because the objective functions in (2.3) and the constraints in (2.4)

are all linear. Fortunately, through some rigorous mathematical arguments, we can derive

closed-form solutions of the above linear programming problems. We first state a fundamental

lemma, which plays a central role in our later proofs and is also of independent interest.

Lemma 2.1. Assume that (x0, . . . , xn�1) and (y0, . . . , yn�1) are nonnegative constants.

(a) If
Pn�1

r=s xr �
Pn�1

r=s yr for all s = 0, . . . , n � 1, there exists an n ⇥ n lower triangular

matrix An = (akl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

akl0  xk,

n�1X

k0=0

ak0l = yl (k, l = 0, . . . , n� 1). (2.5)

(b) If
Pn�1

r=s xr 
Pn�1

r=s yr for all s = 0, . . . , n � 1, there exists an n ⇥ n upper triangular

matrix Bn = (bkl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

bkl0 = xk,

n�1X

k0=0

bk0l  yl (k, l = 0, . . . , n� 1). (2.6)

(c) If
Ps

r=0 xr 
Ps

r=0 yr for all s = 0, . . . , n � 1, there exists an n ⇥ n lower triangular
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matrix Cn = (ckl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

ckl0 = xk,

n�1X

k0=0

ck0l  yl (k, l = 0, . . . , n� 1). (2.7)

(d) If
Ps

r=0 xr �
Ps

r=0 yr for all s = 0, . . . , n � 1, there exists an n ⇥ n upper triangular

matrix Dn = (dkl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

dkl0  xk,

n�1X

k0=0

dk0l = yl (k, l = 0, . . . , n� 1). (2.8)

(e) If we further assume
Pn�1

r=0 yr =
Pn�1

r=0 xr, the above inequalities in (2.5)–(2.8) all

reduce to equalities, i.e., the matrices An, Bn, Cn and Dn have (x0, . . . , xn�1) and

(y0, . . . , yn�1) as their row and column sums.

The proof of Lemma 2.1 is in Appendix B.1. With the help of the lemma, we derive the

sharp bounds of the causal parameters of interest, and construct explicitly the probability

matrices that attain these bounds. First we state a theorem on the sharp bounds of ⌧, which

is the foundation for the remaining theorems and corollaries.

Theorem 2.1. Fix marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T
,

(a) the sharp upper bound of ⌧ is ⌧U = 1 + min
0jJ�1

�j .

(b) the sharp lower bound of ⌧ is ⌧L = max
0jJ�1

(p+j +�j) ,

Proof of Theorem 2.1(a). For j = 0, 1, . . . , J � 1, we can bound ⌧ from above by

⌧ =
XX

k�l

pkl = 1�
XX

k<l

pkl

 1�
X

k<j

X

l�j

pkl = 1�

0

@
J�1X

k=0

X

l�j

pkl �
X

k�j

X

l�j

pkl

1

A (2.9)

 1�

0

@
J�1X

k=0

X

l�j

pkl �
X

k�j

J�1X

l=1

pkl

1

A = 1�

0

@
X

l�j

p+l �
X

k�j

pk+

1

A (2.10)

= 1 +�j .
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Because the above inequality holds for all j, we can bound ⌧ from above by

⌧  1 + min
0jJ�1

�j . (2.11)

In Appendix B.2.1 we construct a probability matrix with row sums p1 and column sums

p0, that attains the upper bound in (2.11).

Proof of Theorem 2.1(b). For j = 0, 1, . . . , J � 1, we can bound ⌧ from below by

⌧ =
XX

k�l

pkl

�
X

k�j

X

lj

pkl =
X

k�j

J�1X

l=0

pkl �
X

k�j

X

l>j

pkl (2.12)

�
X

k�j

J�1X

l=0

pkl �
J�1X

k=0

X

l>j

pkl =
X

k�j

pk+ �
X

l>j

p+l (2.13)

= p+j +�j .

Because the above inequality hold for all j, we can bound ⌧ from below by

⌧ � max
0jJ�1

(p+j +�j). (2.14)

In Appendix B.2.2 we construct a probability matrix with row sums p1 and column sums

p0, that attains the lower bound in (2.14).

The bounds in Theorem 2.1 are very closely related to the distributional causal e↵ects in

(2.1), and we can respectively interpret them as conservative and optimistic estimates of the

probability that the treatment is beneficial. Furthermore, the following corollary demonstrates

that the sharp upper bound ⌧U is related to the stochastic dominance assumption, i.e., �j � 0

for all j.

Corollary 2.1. The causal parameter ⌧U = 1, if and only if the marginal probabilities p1

and p0 satisfy the stochastic dominance assumption.

Proof of Corollary 2.1. By Theorem 2.1, ⌧ = 1 if and only if min0jJ�1�j = 0. Because
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�0 = 0, this is equivalent to

�j � 0 (j = 0, . . . , J � 1),

i.e., the stochastic dominance assumption holds.

The above Corollary 2.1 implies that for any marginal distributions (p0+, . . . , pJ�1,+)

and (p+0, . . . , p+,J�1) satisfying the stochastic dominance assumption, there exists a lower

triangular probability matrix P that corresponds to a population satisfying the monotonicity

assumption, i.e., Yi(1) � Yi(0) for all i. Strassen (1965) and Rosenbaum (2001) demonstrated

this result, and Theorem 2.1 extends it without imposing the stochastic dominance assumption.

Moreover, Theorem 2.1 also justifies using min0jJ�1�j as a measure of the deviation from

the stochastic dominance assumption (Scharfstein et al., 2004).

Next we consider the sharp bounds of ⌘. Recognizing the equivalent form

⌘ = pr {Yi(1) > Yi(0)} = 1� pr {Yi(0) � Yi(1)} ,

we can derive bounds for pr {Yi(0) � Yi(1)} by switching the treatment and control labels

and applying Theorem 2.1.

Theorem 2.2. The sharp lower and upper bounds of ⌘ are

⌘L = max
0jJ�1

�j , ⌘U = 1 + min
0jJ�1

(�j � pj+) . (2.15)

Proof of Theorem 2.2. Because ⌘ = 1� pr {Yi(0) � Yi(1)} , its lower bound is one minus the

upper bound of pr {Yi(0) � Yi(1)} . By switching the treatment and control labels, we can

bound pr {Yi(0) � Yi(1)} from the above by

pr {Yi(0) � Yi(1)}  1� max
0jJ�1

�j ,

which implies that ⌘L = max0jJ�1�j .

Similarly, the upper bound of ⌘ is one minus the lower bound of pr {Yi(0) � Yi(1)} . By
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switching the treatment and control labels, we can bound pr {Yi(0) � Yi(1)} from below by

pr {Yi(0) � Yi(1)} � max
0jJ�1

(pj+ ��j) ,

which implies that ⌘U = 1 +min0jJ�1 (�j � pj+) .

In the proofs of Theorem 2.1 and 2.2, we construct the joint distributions that achieve the

lower and upper bounds of ⌧ and ⌘ respectively, which correspond to negatively associated

and positively associated potential outcomes. They are both extreme scenarios. In practice,

we may also be interested in the case with independent potential outcomes (Rubin, 1978;

Cheng, 2009; Agresti, 2010; Ding and Dasgupta, 2015), i.e., pkl = pk+p+l for all k and l. With

independent potential outcomes, we can identify ⌧ and ⌘ by the marginal distributions.

Theorem 2.3. With independent potential outcomes,

⌧I =
XX

k�l

pk+p+l, ⌘I =
XX

k>l

pk+p+l.

Furthermore, ⌧L  ⌧I  ⌧U and ⌘L  ⌘I  ⌘U .

Proof of Theorem 2.3. With independent potential outcomes, the probability matrix P has

elements pkl = pk+p+l for k and l. We obtain ⌧I and ⌘I by their definitions. Obviously, they

are between their lower and upper bounds, i.e., ⌧L  ⌧I  ⌧U and ⌘L  ⌘I  ⌘U .

To further demonstrate the results in Theorems 2.1 and 2.2, we consider two special cases

with J = 2 and 3. As mentioned in Chapter 1, they are important cases in both methodology

and applied research.

Corollary 2.2. When J = 2, the sharp lower and upper bounds of ⌧ are

⌧L = max (p+0, p1+) , ⌧U = min (1, p0+ + p+1) ,

and the sharp lower and upper bounds of ⌘ are

⌘L = max (0, p1+ � p+1) , ⌘U = min (p1+, p+0) .
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The above Corollary 2.2 agrees with our intuitions. Because ⌧ = p00 + p10 + p11, it is

not smaller than the first column sum and the second row sum of the probability matrix P.

Similarly, because ⌘ = p10, it is not larger than the second row sum or first column sum of

the probability matrix P.

Corollary 2.3. When J = 3, the sharp lower and upper bounds of ⌧ are

⌧L = max (p+0, 1� p0+ � p+2, p2+) , ⌧U = min (1, p+0 + p1+ + p2+, p+0 + p+1 + p2+) ,

and the sharp lower and upper bounds of ⌘ are

⌘L = max (0, p+0 � p0+, p2+ � p+2) , ⌘U = min (p1+ + p2+, p+0 + p2+, p+0 + p+1) .

Example 2.3. The marginal probabilities p1 = (1/5, 3/5, 1/5)T and p0 = (2/5, 1/5, 2/5)T do

not satisfy the stochastic dominance assumption, because �0 = 0, �1 = 1/5 and �2 = �1/5.

By Theorems 2.1 and 2.3, we have ⌧L = 2/5, ⌧I = 16/25, and ⌧U = 4/5. The joint distributions

corresponding to negatively associated, independent, and positively associated potential

outcomes achieving these values are respectively

P

⌧
L =

0

BBBB@

0 1
5 0

1
5 0 2

5

2
5 0 0

1

CCCCA
, P

⌧
I =

0

BBBB@

2
25

1
25

2
25

6
25

3
25

6
25

2
25

1
25

2
25

1

CCCCA
, P

⌧
U =

0

BBBB@

1
5 0 0

1
5

1
5

1
5

0 0 1
5

1

CCCCA
. (2.16)

Similarly, by Theorems 2.2 and 2.3, we have ⌘L = 1/5, ⌘I = 9/25, and ⌘U = 3/5.

Example 2.4. The marginal probabilities p1 = (1/5, 1/5, 3/5)T and p0 = (3/5, 1/5, 1/5)T

satisfy the stochastic dominance assumption, because �0 = 0, �1 = 2/5 and �2 = 2/5. By

Theorems 2.1 and 2.3, we have ⌧L = 3/5, ⌧I = 22/25, and ⌧U = 1. The joint distributions

corresponding to negatively associated, independent, and positively associated potential

outcomes achieving these values are respectively

P

⌧
L =

0

BBBB@

0 1
5 0

0 0 1
5

3
5 0 0

1

CCCCA
, P

⌧
I =

0

BBBB@

3
25

1
25

1
25

3
25

1
25

1
25

9
25

3
25

3
25

1

CCCCA
, P

⌧
U =

0

BBBB@

1
5 0 0

0 1
5 0

2
5 0 1

5

1

CCCCA
. (2.17)
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Similarly, by Theorems 2.2 and 2.3, we have ⌘L = 2/5, ⌘I = 3/5, and ⌘U = 4/5.

2.4 Simulated and Real Examples

2.4.1 Simulated Examples

We obtain point estimators of the bounds on ⌧ and ⌘ based on data from completely randomized

experiments by replacing pk+, p+l, and �j with their sample analogues. We use the bootstrap

method in Horowitz and Manski (2000) to obtain a confidence interval for the bounds. For

computational details of some other bootstrap methods, see Cheng and Small (2006) and

Yang and Small (2015).

To save space in the main text, we focus only on ⌧ and its bounds in Theorem 2.1. We

choose the sample size to be 200, and consider four cases with di↵erent probability matrices.

Cases 1 and 2 correspond to the independent and positively associated potential outcomes in

(2.16), which share the same marginal distribution but do not satisfy the stochastic dominance

assumption. Cases 3 and 4 correspond to the independent and positively associated potential

outcomes in (2.17), which share the same marginal distribution and satisfy the stochastic

dominance assumption. Columns 2–4 of Table 3.3 summarize the true values of ⌧, ⌧L and

⌧U , for all four cases. For cases 1 and 3 with independent potential outcomes, we have

⌧L < ⌧ < ⌧U . For cases 2 and 4 with positively associated potential outcomes, we have ⌧ = ⌧U .

For each case, we independently draw 5000 treatment assignments from a balanced

completely randomized experiment. For each observed data set, we calculate point estimates

of ⌧L and ⌧U , and construct a confidence interval for the bounds (⌧L, ⌧U ) that covers the

bounds themselves at least 95% times. In columns 5–8 of Table 3.3, we report the biases and

standard errors of the point estimators b⌧L and b⌧U ; in columns 9 and 10 of Table 3.3, we report

the coverage rates of the intervals on the bounds (⌧L, ⌧U ) and the true parameter ⌧. Table 3.3

shows that the point estimators have small biases and standard errors, and the confidence

intervals achieve reasonable coverage rates on the bounds (⌧L, ⌧U ) although they over-cover

the true parameter ⌧.
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Table 2.1: Numerical Examples

case ⌧ ⌧L ⌧U bias(b⌧L) se(b⌧L) bias(b⌧U ) se(b⌧U ) coverage of (⌧L, ⌧U ) coverage of ⌧
1 0.640 0.400 0.800 0.016 0.037 0.000 0.045 0.987 1.000
2 0.800 0.400 0.800 0.013 0.043 -0.001 0.057 0.957 0.974
3 0.880 0.600 1.000 0.026 0.030 0.000 0.000 0.967 1.000
4 1.000 0.600 1.000 0.025 0.031 0.000 0.000 0.960 1.000

2.4.2 Real Example

We use the taste-testing experiment data in Bradley et al. (1962) to demonstrate the estimation

of bounds of our new causal parameters and the subsequent inferences drawn. In this

experiment, the outcome of interest Y is ordinal, taking values from terrible with Y = 0 to

excellent with Y = 4. The treatment has five unordered levels, labeled A, B, C, D and E,

respectively. We summarize the data in Table 2.2.

Table 2.2: A Taste-Testing Experiment

Outcome Categories

Treatment 0 1 2 3 4 row sum
A 9 5 9 13 4 40
B 7 3 10 20 4 44
C 14 13 6 7 0 40
D 11 15 3 5 8 42
E 0 2 10 30 2 44

For illustration purpose, we consider only treatment E versus treatment C, and treatment

E versus treatment D, and summarize the results in Table 2.3. They lead to several conclusions.

First, treatment E stochastically dominates treatment C. Furthermore, the estimated lower

bound of ⌧ is 0.779 and the estimated lower bound of ⌘ is 0.630, suggesting that treatment E

is indeed better than treatment C. Second, treatment E and treatment D do not stochastically

dominate each other. However, the estimated lower bound of ⌧ is 0.645 and the estimated lower

bound of ⌘ is 0.574, suggesting that treatment E is better than treatment D. Therefore, our

new causal parameters ⌧ and ⌘ are useful for decision making, especially when the stochastic

dominance assumption does not hold.
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Table 2.3: Comparisons of three treatments

b⌧L b⌧I b⌧U CI for (⌧L, ⌧U ) b⌘L b⌘I b⌘U CI for (⌘L, ⌘U )
E vs C 0.779 0.945 1.000 (0.673, 1.000) 0.630 0.777 0.870 (0.480 1.000)
E vs D 0.645 0.782 0.855 (0.495, 1.000) 0.574 0.660 0.736 (0.423, 0.886)

2.5 Extensions

2.5.1 Tighter Bounds by Using Covariates

With covariates, we can further sharpen the bounds on the causal pamameters (Lee, 2009;

Long and Hudgens, 2013; Mealli and Pacini, 2013). Without loss of generality, we focus only

on the bounds of the causal parameter ⌧. Within each level of the pretreatment covariates

X = x, we can define the conditional probability that the treatment is beneficial, i.e.,

⌧ (x) = pr{Yi(1) � Yi(0) | Xi = x},

and obtain its conditional sharp upper and lower bounds ⌧L (x) and ⌧U (x) . If we average

the conditional bounds over the distributions of the covariates F (x) , then the bounds for

⌧ =
R
⌧ (x)F (dx) become

⌧

0
L =

Z
⌧L (x)F (dx) , ⌧

0
U =

Z
⌧U (x)F (dx) . (2.18)

Theorem 2.4. The adjusted bounds are tighter than the unadjusted ones.

Proof of Theorem 2.4. The proof follows the same logic as Lee (2009). Because any value of

⌧ within the covariate adjusted bounds [⌧ 0L, ⌧
0
U ] must be compatible with the distributions

of {Y (1),X} and {Y (0),X} , it must also be compatible with the distributions of Y (1) and

Y (0) by discarding X. Therefore, any value of ⌧ within the adjusted bounds [⌧ 0L, ⌧
0
U ] must

also be within the unadjusted bounds [⌧L, ⌧U ]. Consequently, the adjusted bounds are tighter,

i.e., [⌧ 0L, ⌧
0
U ] ⇢ [⌧L, ⌧U ].

Example 2.5. Consider a population consisting of two sub-populations of equal sizes, labeled

by a binary covariate X 2 {0, 1}. Assume that the potential outcomes of sub-populations

X = 1 and X = 0 are the independent potential outcomes in Example 2.3 and 2.4. Some
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simple algebra gives the following probability matrix

P =

0

BBBB@

1
10

1
25

3
50

9
50

2
25

7
50

11
50

2
25

1
10

1

CCCCA
,

and consequently ⌧ = 19/25. Moreover, the corresponding marginal probabilities are p1 =

(1/5, 2/5, 2/5)T and p0 = (1/2, 1/5, 3/10)T. Therefore, if we apply Theorem 2.1 using only

the above marginal distributions, we obtain that ⌧L = 1/2 and ⌧U = 1. However, if we first

obtain the bounds for the two sub-populations and then average over them, we obtain the

following sharper covariate adjusted bounds:

⌧

0
L =

1

2
⌧L(1) +

1

2
⌧L(0) =

1

2
, ⌧

0
U =

1

2
⌧U (1) +

1

2
⌧U (0) =

9

10
.

2.5.2 Sharp Bounds of the Conditional Medians

In spite of the limitations mentioned earlier, the conditional medians in (2.2) provide useful

information about the causal e↵ects on ordinal outcomes. The following theorem presents

their sharp bounds.

Theorem 2.5. If p+j > 0, the sharp lower and upper bounds of mj are the minimum and

maximum values of the following set:

Mj =

8
<

:0  k  J � 1 :
X

k0k

pk0+ � p+j

2
,

X

k0�k

pk0+ � p+j

2

9
=

; .

If we further assume monotonicity, i.e., Yi(1) � Yi(0) for all i, the sharp lower and upper

bounds of mj are the minimum and maximum values of the set Mj \ {j, j + 1, . . . , J � 1}.

Proof of Theorem 2.5. To make sure that the theorem is meaningful, we first prove that Mj

is not empty for all j = 0, 1, . . . , J � 1. We let

kmin = min

8
<

:k :
X

k0k

pk0+ � 1

2

9
=

;

be the minimum value of the medians of Yi(1)’s. Clearly kmin is well defined, and satisfies the
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condition that
X

k0k
min

pk0+ � 1

2
� p+j

2
.

We prove that
P

k0�k
min

pk0+ � 1/2. If not, we must have that

X

k0k
min

�1

pk0+ = 1�
X

k0�k
min

pk0+ > 1� 1

2
=

1

2
,

which contradicts the definition of kmin. Therefore, kmin must satisfy

X

k0�k
min

pk0+ � 1

2
� p+j

2
.

We conclude that kmin 2 Mj , and therefore Mj is not empty.

Now we prove Theorem 2.5 itself. For any number k 2 Mj , we prove that there exists

a probability matrix P , with fixed marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and p0 =

(p+0, . . . , p+,J�1)
T
, such that the conditional median mj can be k. Let Cj = (p0j , ..., pJ�1,j)T

be the jth column of the probability matrix P . We first construct Cj , with nonnegative

elements, such that the sum of its elements is p+j , and

X

k0k

pk0j �
p+j

2
,

X

k0�k

pk0j �
p+j

2
. (2.19)

Because
P

k0k pk0+ �
P

k0k pk0j and
P

k0�k pk0+ �
P

k0�k pk0j , a necessary condition for the

existence of such Cj is
X

k0k

pk0+ � p+j

2
,

X

k0�k

pk0+ � p+j

2
. (2.20)

We now show that (2.20) is also su�cient for the existence of such Cj . To do this, we discuss

the following four cases according to the values of
P

k0k pk0+ and
P

k0�k pk0+ :

(1)
P

k0k pk0+ < 1/2 and
P

k0�k pk0+ < 1/2. This is a impossible scenario, because

X

k0k

pk0+ +
X

k0�k

pk0+ �
J�1X

k0=0

pk0+ = 1.

(2)
P

k0k pk0+ � 1/2 and
P

k0�k pk0+ � 1/2. We construct Cj by letting

pk0j = pk0+p+j (k0 = 0, . . . , J � 1),
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and (2.19) holds trivially.

(3)
P

k0k pk0+ � 1/2 and
P

k0�k pk+ < 1/2. We construct Cj in the following way:

(a) If k0 < k, let pk0j = pk0+p+j

.�
2
P

k0<k pk0+

�
.

(b) If k0 � k, let pk0j = pk0+p+j

.⇣
2
P

k0�k pk0+

⌘
.

Clearly Cj has nonnegative entries, and their sum is p+j , because

J�1X

k0=0

pk0j =
X

k0<k

pk0j +
X

k0�k

pk0j =
p+j

2
+

p+j

2
= p+j .

Furthermore, (2.19) holds, because

X

k0k

pk0j �
X

k0<k

pk0j =
p+j

2
,

X

k0�k

pk0j =
p+j

2
.

(4)
P

k0k pk0+ < 1/2 and
P

k0�k pk0+ � 1/2. Similar to case ((3)) above, we construct Cj

in the following way:

(a) If k0  k, let pk0j = pk0+p+j

.⇣
2
P

k0k pk0+

⌘
.

(b) If k0 > k, let pk0+p+j

.�
2
P

k0>k pk0+

�
.

To summarize, we have constructed the jth column of P that satisfies (2.19). To finish the

construction of the probability matrix P , we let

pk0l = (pk0+ � pk0j)⇥
p+l

1� p+j
� 0 (l 6= j).

It is obvious that the constructed probability matrix P has marginal probabilities p1 =

(p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T
. By the construction of Cj , mj can be k for

any k 2 Mj .

Example 2.6. First, if p1 = (1/2, 1/4, 1/4)T and p0 = (2/3, 1/6, 1/6)T , then the bounds of

m1 are 0  m1  2. Therefore, the marginal distributions provide no information for m1.

Second, if p1 = (1/6, 1/6, 2/3)T and p0 = (1/4, 1/2, 1/4)T , then the bounds of m1 are

1  m1  2. Therefore, the marginal distributions provide partial information for m1.
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Third, if p1 = (1/6, 2/3, 1/6)T and p0 = (1/4, 1/2, 1/4)T , then the bounds of m1 shrink

to a point m1 = 1. Therefore, the marginal distributions completely determine m1.

In the first case, the marginal distributions satisfy the stochastic dominance assumption.

If we further assume monotonicity, we can improve the bounds of m1 by 1  m1  2.

2.6 Discussions

For ordinal outcomes, we have discussed various causal parameters and their sharp bounds by

using only the marginal distributions of the potential outcomes. Our causal parameters ⌧ and

⌘ are closely related to the relative treatment e↵ect previously studied under the assumption

of independent potential outcomes (Agresti, 2010):

↵ = pr {Yi(1) > Yi(0)}+
1

2
pr {Yi(1) = Yi(0)} .

This relative treatment e↵ect ↵ and our new ones have a simple algebraic relationship, i.e.,

↵ = (⌧ + ⌘)/2. Therefore, our newly proposed causal parameters ⌧ and ⌘ determine ↵, and

consequently our bounds also provide information for ↵.

Example 2.5 has illustrated the role of a binary covariate in improving bounds on the

causal parameters. In practice, with general and high dimensional covariates, we can invoke

parametric or nonparametric models for ordinal outcomes (Agresti, 2010) to estimate the

marginal distributions of the potential outcomes, and then apply the formulas for bounds

on the causal e↵ects. Our theoretical results are closely related to the probability structure

of the potential outcomes, and thus can be incorporated into di↵erent statistical inference

frameworks and statistical models.

We have discussed causal inference for ordinal outcomes with a single treatment. For

factorial experiments, Dasgupta et al. (2015) discussed causal inference of average treatment

e↵ects for continuous outcomes. In the future, we will explore factorial experiments with

ordinal outcomes.
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Chapter 3

Causal Inference of Ordinal Outcomes with

Noncompliance

Noncompliance is an important issue in both methodology and applied causal inference

research. The principal stratification framework addresses this issue by defining subgroup

causal e↵ects, based on the joint value of the potential outcomes of treatment received. In this

chapter, we extend the results in Chapter 2, by studying the probabilities that the treatment

is beneficial and strictly beneficial for compliers, i.e., the experimental units complying to

whichever treatment assigned. For ordinal outcomes, we derive the sharp bounds of these

two causal parameters using the marginal distributions of potential outcomes for compliers.

To identify such marginal distributions, we invoke two classical assumptions in the causal

inference literature, namely monotonicity and exclusion restriction. We tighten the bounds

using pretreatment covariates, and demonstrate our results by numerical and real examples.
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3.1 Introduction

Under the potential outcomes framework (Neyman, 1923; Rubin, 1974), we can define causal

e↵ects as comparisons between the potential outcomes under treatment and control. In applied

research ordinal outcomes are common (e.g., Bruce et al., 2004). However, average outcomes

themselves are not well defined for ordinal outcomes, rendering the average causal e↵ect,

generally the parameter of interest, not applicable. Realizing this salient feature of ordinal

outcomes, Chapter 2 proposed two new causal parameters measuring the probabilities that

the treatment is beneficial and strictly beneficial for the experimental units. These two causal

parameters are well defined for any outcomes, and of particular interest for ordinal outcomes.

Unfortunately, however, Chapter 2 did not address the noncompliance issue, which is also

common in applied research. For instance, in clinical trials some patients may not comply

with their assigned treatment, due to fear of potential side e↵ects. Although noncompliance

itself has been extensively studied (e.g., Sommer and Zeger, 1991; Baker and Lindeman,

1994; Robins and Greenland, 1994; Angrist et al., 1996; Hirano et al., 2000; Frangakis and

Rubin, 2002), there appears to be very limited discussions about causal inference of ordinal

outcomes in the presence of noncompliance, to our best knowledge. Cheng (2009) discussed

various causal parameters under the assumptions of one-sided noncompliance and independent

potential outcomes, and Baker (2011) generalized her results to two-sided noncompliance.

In this chapter, we generalize the framework in Chapter 2 to address noncompliance. We

invoke the principal stratification framework (Angrist et al., 1996; Frangakis and Rubin, 2002),

which permits defining subgroup causal e↵ects based on the principal stratification variable,

i.e., the joint value of the potential outcomes of treatment received. Because the principal

stratification variable is una↵ected by the treatment, inference conditioning on it yields valid

causal interpretations. For ordinal outcomes, we study the probabilities that the treatment

is beneficial and strictly beneficial for the principal strata, i.e., subgroups defined by the

principal stratification variable. Under the classical monotonicity and exclusion restriction

assumptions (Angrist et al., 1996), we can either pointly identify or derive sharp bound for

our desired causal parameters using the marginal distributions of the potential outcomes
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for the principal strata. We further tighten the bounds when pretreatment covariates are

available, and propose an EM algorithm to estimate the tighter bounds in practice.

The chapter proceeds as follows. Section 3.2 sets up the theoretical framework of causal

inference for ordinal outcomes with noncompliance, and introduces the causal parameters

of interest. Section 3.3 derives the sharp bounds of the causal parameters, and Section 3.4

discusses the inference of the bounds. Sections 3.5 and 3.6 present some numerical and real

examples to demonstrate the advantages of our theoretical results. Section 3.7 concludes.

Web Appendix A provides the proofs of the lemmas, theorems and corollaries in Section 3.3,

and Web Appendix B provides the technical details in Section 3.4.

3.2 Basic Framework

3.2.1 Potential Outcomes and Principal Stratification

We consider a completely randomized experiment with N units drawn independently from a

hypothetical super-population, and a binary treatment. For the ith unit, we let Xi be the

pretreatment covariates, Zi be the treatment assignment indicator with Zi = 1 for active

treatment and Zi = 0 for control, Dobs
i be the treatment receipt indicator with D

obs
i = 1 for

active treatment and D

obs
i = 0 for control, and Y

obs
i be the outcome of interest that is ordinal,

with J categories labeled 0, . . . , J � 1, where 0 and J � 1 respectively represent the worst and

best categories. Noncompliance occurs when there exists i such that Zi 6= D

obs
i .

We invoke the potential outcomes framework to define causal e↵ects. Under the Stable

Unit Treatment Value Assumption (Rubin, 1980), there is only one version of the treatment

and no interference among units. For the ith unit, we define the pair {Di(1), Di(0)} as the

potential values of treatment received and {Yi(1), Yi(0)} as the potential values of outcome

of interest, under treatment and control respectively. We adopt the principal stratification

framework (Angrist et al., 1996; Frangakis and Rubin, 2002). For the ith unit, we define the

principal stratification variable Ui as the joint value of {Di(1), Di(0)}. To be specific,

• let Ui = a, if Di(1) = 1 and Di(0) = 1;
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• let Ui = c, if Di(1) = 1 and Di(0) = 0;

• let Ui = d, if Di(1) = 0 and Di(0) = 1;

• let Ui = n, if Di(1) = 0 and Di(0) = 0.

The four principal strata, i.e., subgroups defined by U, are sometimes referred to as “always-

takers,” “compliers,” “defiers” and “never-takers” (Angrist et al., 1996). For principal

stratum u, let ⇡u = pr (U = u) represent the probabilities of the principal strata, and

ukl = pr {Y (1) = k, Y (0) = l | U = u} denote the probability of having potential outcome

k under treatment and potential outcome l under control. The J ⇥ J probability matrix

{ukl}0k,lJ�1 summarizes the joint distribution of the potential outcomes for principal

stratum u. We let

uk+ =
J�1X

l0=0

ukl0 , u+l =
J�1X

k0=0

uk0l (k, l = 0, 1, . . . , J � 1).

The vectors (u0+, . . . , uJ�1,+) and (u+0, . . . , u+,J�1) characterize the marginal distributions

of the potential outcomes under treatment and control. By law of total probability, let

pkl =
X

u

⇡uukl, pk+ =
X

u

⇡uuk+, p+l =
X

u

⇡uu+l,

characterize the joint and marginal distributions of the potential outcomes under treatment

and control, for the super-population.

3.2.2 Causal Parameters for Ordinal Outcomes

For ordinal outcomes, because the average itself is not well defined, Chapter 2 studied the

distributional causal e↵ects (cf. Ju and Geng, 2010)

�j = pr {Y (1) � j}� pr {Y (0) � j} =
X

k�j

pk+ �
X

l�j

p+l (j = 0, . . . , J � 1),
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and proposed two new causal parameters, i.e., the probabilities that the treatment is beneficial

and strictly beneficial for the population:

⌧ = pr {Yi(1) � Yi(0)} =
XX

k�l

pkl, ⌘ = pr {Yi(1) > Yi(0)} =
XX

k>l

pkl. (3.1)

With noncompliance, because the principal stratification variable is una↵ected by the

treatment, inference conditioning on it yields valid causal interpretations. Therefore, in this

chapter focus on the “principal stratification counterparts” of the above causal parameters,

i.e., the distributional causal e↵ects for principal stratum u :

�u,j = pr {Y (1) � j | U = u}� pr {Y (0) � j | U = u} =
X

k�j

uk+ �
X

l�j

u+l,

as well as the probabilities that the treatment is beneficial and strictly beneficial for principal

stratum u :

⌧u = pr {Yi(1) � Yi(0) | U = u} =
XX

k�l

ukl, ⌘u = pr {Yi(1) > Yi(0) | U = u} =
XX

k>l

ukl.

Under the monotonicity and exclusion restriction assumptions which we formally define

later, we can either pointly identify or bound the above causal parameters. The definition

of point identification is that, given the distribution of (X, Z,D

obs
, Y

obs), we can uniquely

determine the value of the parameter of interest.

3.3 Sharp Bounds on Causal E↵ects among Compliers

3.3.1 Main Results

The definitions of the causal parameters ⌧ and ⌘ involve the association between the potential

outcomes {Yi(1), Yi(0)} , and those of ⌧u and ⌘u further involve the principal stratification

variable Ui, which is defined by {Di(1), Di(0)} . Unfortunately, we can never jointly measure

{Yi(1), Yi(0)} or {Di(1), Di(0)} , rendering the causal parameters unidentifiable. To partially

circumvent this di�culty, Chapter 2 derived the sharp bounds of ⌧ and ⌘, which are defined

as the minimal and maximal values of the objective functions (3.1) under the constraints of
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the marginal probabilities:

J�1X

l0=0

pkl0 = pk+,

J�1X

k0=0

pk0l = p+l, pkl � 0 (k, l = 0, . . . , J � 1).

To recall, we summarize their main results in the following lemma.

Lemma 3.1. The sharp lower and upper bounds of ⌧ are

⌧L = max
0jJ�1

{p+j +�j} , ⌧U = 1 + min
0jJ�1

�j ,

and the sharp lower and upper bounds of ⌘ are

⌘L = max
0jJ�1

�j , ⌘U = 1 + min
0jJ�1

{�j � pj+} .

If the marginal probabilities of potential outcomes for principal stratum u are identifiable,

we can accordingly sharply bound the causal parameters ⌧u and ⌘u in the same way. To make

the desired marginal probabilities identifiable, we make the following assumptions.

Assumption 3.1 (Monotonicity). Di(1) � Di(0) for all i = 1, . . . , N.

The monotonicity assumption rules out defiers. Within the treatment group, those receiving

treatment are compliers or always-takers, and those receiving control are never-takers. Within

the control group, those receiving treatment are always-takers, and those receiving control are

compliers or never-takers. We can identify the probabilities of all principal strata as

⇡a = pr(Dobs = 1 | Z = 0), ⇡n = pr(Dobs = 0 | Z = 1), ⇡c = 1� ⇡a � ⇡n. (3.2)

Assumption 3.2 (Exclusion Restriction). Yi(1) = Yi(0) for all i such that Ui = a or n.

Under the monotonicity and exclusion restriction assumptions, from the distribution of

(Z,Dobs
, Y

obs), we can identify the marginal probabilities of potential outcomes for all the

principal strata. First, for the always-takers, under the monotonicity assumption we have

a+j = pr {Y (0) = j | U = a}

= pr{Y obs = j | Z = 0, Dobs = 1}, (3.3)
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and under the exclusion restriction assumption we have

aj+ = pr {Y (1) = j | U = a}

= pr {Y (0) = j | U = a} = a+j . (3.4)

Second, for the never-takers, under the monotonicity assumption we have

nj+ = pr {Y (1) = j | U = n}

= pr{Y obs = j | Z = 1, Dobs = 0}, (3.5)

and under the exclusion restriction assumption we have

n+j = pr {Y (0) = j | U = n}

= pr {Y (1) = j | U = n} = nj+. (3.6)

Third, by the law of total probability, we have

pk+ = pr {Y (1) = k}

=
X

u=a,c,n

pr {U = u} pr {Y (1) = k | U = u}

= ⇡aak+ + ⇡cck+ + ⇡nnk+

and

p+l = pr {Y (0) = l}

=
X

u=a,c,n

pr {U = u} pr {Y (0) = l | U = u}

= ⇡aa+l + ⇡cc+l + ⇡nn+l

Therefore, for the compliers we have

ck+ = pr {Y (1) = k | U = c}

= (pk+ � ak+⇡a � nk+⇡n) /⇡c, (3.7)
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and

c+l = pr {Y (0) = l | U = c}

= (p+l � a+l⇡a � n+l⇡n) /⇡c. (3.8)

Furthermore, under the monotonicity and exclusion assumptions, we can pointly identify

or sharply bound the causal parameters ⌧u and ⌘u. To be more specific, for the always-takers

and never-takers we have ⌧u = 1 and ⌘u = 0. For the compliers, we can identify ⌧u and ⌘u

using the marginal probabilities for the compliers, which are identifiable by (3.7) and (3.8).

Theorem 3.1. The sharp lower and upper bounds of ⌧c are

⌧c,L = max
0jJ�1

(c+j +�c,j) , ⌧c,U = 1 + min
0jJ�1

�c,j , (3.9)

and the sharp lower and upper bounds of ⌘c are

⌘c,L = max
0jJ�1

�c,j , ⌘c,U = 1 + min
0jJ�1

(�c,j � cj+) . (3.10)

Additionally, we can establish the following relationships between the causal parameters ⌧

and ⌧c, and between ⌘ and ⌘c.

Lemma 3.2. The following equalities holds:

⌧c = ⌧/⇡c � (1� ⇡c) /⇡c, ⌘c = ⌘/⇡c.

Theorem 3.1 and Lemma 3.2 imply two sets of new bounds for ⌧c and ⌘c, which do not

involve the marginal probabilities of potential outcomes for compliers, and therefore easy to

compute.

Corollary 3.1. We can bound ⌧c from below and above using

⌧

N
c,L = ⌧L/⇡c � (1� ⇡c) /⇡c, ⌧

N
c,U = ⌧U/⇡c � (1� ⇡c) /⇡c,

and bound ⌘c from below and above using

⌘

N
c,L = ⌘L/⇡c, ⌘

N
c,U = ⌘U/⇡c.
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Moreover, these new bounds and those in Theorem 3.1 satisfy the following:

⌧c,L � ⌧

N
c,L, ⌧c,U = ⌧

N
c,U ; ⌘c,L = ⌘

N
c,L, ⌘c,U  ⌘

N
c,U .

Theorem 3.1 and Lemma 3.2 also imply two new sets of bounds for ⌧ and ⌘, tighter than

those in Lemma 3.1.

Corollary 3.2. We can bound ⌧ from below and above using

⌧

PS
L = ⇡c⌧c,L + 1� ⇡c, ⌧

PS
U = ⇡c⌧c,U + 1� ⇡c,

and bound ⌘ from below and above using

⌘

PS
L = ⇡c⌘c,L, ⌘

PS
U = ⇡c⌘c,U .

Moreover, these new bounds and those in Lemma 3.1 satisfy the following:

⌧L  ⌧

PS
L , ⌧U = ⌧

PS
U ; ⌘L = ⌘

PS
L , ⌘U � ⌘

PS
U .

There are two reasons that we can obtain tighter bounds. First, we use the principal

stratification variable U as a pretreatment variable. Second, the monotonicity and exclusion

restriction assumptions further restrict the probability structure of the potential outcomes.

It is worth noting that the new lower bound of ⌧c is larger than the old lower bound, but

the two upper bounds are identical. Similarly, the new upper bound of ⌘c is larger than

the old upper bound, but the two lower bounds are identical. This “partial improvement”

phenomenon is observed in Grilli and Mealli (2008) and later pointed out and explained in

Long and Hudgens (2013). We use the following example to further compare the “principal

stratification” adjusted bounds and the unadjusted bounds in Corollary 3.2.

Example 3.1. Consider a balanced completely randomized experiment with a binary treat-

ment and a three-level outcome. For the distribution of the observed data (Z,Dobs
, Y

obs),

first assume that

pr(Dobs = 1 | Z = 1) = 3/4, pr(Dobs = 1 | Z = 0) = 1/4.
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Next, we report the distribution of Y obs given (Z,Dobs) in column 4 of Table 3.1.

Having specified the distribution of the observed data (Z,Dobs
, Y

obs), we use it to identify

the probabilities of all the principal strata, and the marginal probabilities of potential outcomes

for the whole population and all the principal strata. First, by (3.2) we can identify the

probabilities of the principal strata as

⇡a = 1/4, ⇡n = 1/4, ⇡c = 1/2.

Second, by law of total probability we can identify the marginal probabilities of potential

outcomes for the whole population. To be more specific,

pr {Y (z) = j} = pr(Y obs = j | Z = z)

=
1X

d=0

pr(Dobs = d | Z = z)pr(Y obs = j | Z = z,D

obs = d)

for z = 0 and 1. We report the marginal probabilities of potential outcomes for the whole

population, in column 5 of Table 3.1. Third, by (3.7) and (3.8) we recover the marginal

probabilities of potential outcomes for compliers, and we report them in column 7 of Table 3.1.

With the above identification results, we can obtain the adjusted and unadjusted bounds.

To save space for the main text, we only focus on ⌧. On the one hand, using the marginal

probabilities of potential outcomes for compliers, we obtain the sharp bounds of ⌧c, which by

Corollary 3.2 imply the “principal stratification” adjusted bounds of ⌧. We report them in

columns 8–9 of Table 3.1. On the other hand, using the marginal probabilities of potential

outcomes for the whole population, by Lemma 3.1 we obtain the unadjusted bounds of ⌧. We

report them in columns 10–11 of Table 3.1. The unadjusted upper bound is identical to the

adjusted one, and the adjusted lower bound improves upon the unadjusted one.

Analogous to Chapter 2, the probability distributions that achieve the lower and upper

bounds in (3.9) and (3.10) correspond to negatively associated and positively associated

potential outcomes for compliers. In practice, we may also be interested in the case with

independent potential outcomes (Rubin, 1978; Agresti, 2010), where ckl = ck+c+l for all

k, l. For instance, Cheng (2009) implicitly assumed independent potential outcomes when
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discussing various causal parameters. With independent potential outcomes, we can identify

⌧c and ⌘c by the marginal probabilities of potential outcomes for compliers.

Theorem 3.2. With independent potential outcomes for compliers,

⌧c,I =
XX

k�l

ck+c+l, ⌘c,I =
XX

k>l

ck+c+l.

Furthermore, ⌧c,L  ⌧c,I  ⌧c,U and ⌘c,L  ⌘c,I  ⌘c,U .

3.3.2 Tighter Bounds by Covariate Adjustment

With pretreatment covariates, we can further sharpen the unadjusted bounds, i.e., the bounds

that do not utilize the pretreatment covariate information. In the existing literature, a few

examples are Lee (2009); Long and Hudgens (2013); Mealli and Pacini (2013). To save space

for the main text, we focus only on ⌧c. Within each level of the pretreatment covariates

X = x, we can define let the probabilities of the principal strata as

⇡u (x) = pr (U = u | X = x) (u = a, c, n); (3.11)

the marginal probabilities of the potential outcomes for principal strata u as

uk+ (x) = pr {Y (1) = k | U = u,X = x} , u+l (x) = pr {Y (0) = l | U = u,X = x} ;

(3.12)

and the probability that the treatment is beneficial for a complier as

⌧c (x) = pr{Y (1) � Y (0) | U = c,X = x}.

Let Fc (x) and F (x) respectively denote the cumulative distribution functions of the covariates

for compliers and the whole population, respectively. By Bayes rule, we have

dFc (x) =
⇡c (x) dF (x)R
⇡c (x) dF (x)

,

which implies that

⌧c =

Z
⌧c (x) dFc (x) =

R
⌧c (x)⇡c (x) dF (x)R

⇡c (x) dF (x)
.
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Consequently, if we obtain the sharp upper and lower bounds of ⌧c (x) , denoted as ⌧c,L (x)

and ⌧c,U (x) respectively, the bounds for ⌧c become

⌧

0
c,L =

R
⌧c,L (x)⇡c (x) dF (x)R

⇡c (x) dF (x)
, ⌧

0
c,U =

R
⌧c,U (x)⇡c (x) dF (x)R

⇡c (x) dF (x)
. (3.13)

Theorem 3.3. For any pretreatment covariates X, the covariate adjusted bounds in (3.13)

are tighter than the unadjusted bounds in (3.9).

Example 3.2. Consider a three-level outcome of interest Y

obs 2 {0, 1, 2}, a population

consisting of two equal-sized sub-populations labeled by a binary covariate X 2 {0, 1}, and a

balanced completely randomized experiment. For the treatment received D

obs
, assume that

for x = 0, 1 we have

pr(Dobs = 1 | Z = 1,X = x) = 2/3, pr(Dobs = 1 | Z = 0,X = x) = 1/3.

We consider four cases with di↵erent conditional distributions of the observed outcome Y

obs

given (X, Z,D

obs), in column 5 of Table 3.2. For fixed distribution of the observed data

(X, Z,D

obs
, Y

obs), under the monotonicity and exclusion restriction assumptions we can

recover the latent distributions of potential outcomes within principal strata. To be more

specific, first by (3.2) we have for x = 0, 1

⇡a (x) = 1/3, ⇡c (x) = 1/3, ⇡n (x) = 1/3.

Next, for all four cases and x = 0, 1, by (3.3) and (3.4) we have

a0+ (x) = a+0 (x) = 2/5, a1+ (x) = a+1 (x) = 2/5, a2+ (x) = a+2 (x) = 1/5.

Then, by (3.6) and (3.5) we have for all four cases

n0+ (x) = n+0 (x) = 1/5, n1+ (x) = n+1 (x) = 2/5, n2+ (x) = n+2 (x) = 2/5.

Finally, by (3.7) and (3.8) we recover the distributions of potential outcomes for compliers

within the two sub-populations in column 6 of Table 3.2.

Using the above identification results, we obtain the unadjusted and covariate adjusted
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bounds of ⌧c in columns 7–10 of Table 3.2. For all four cases, the covariate adjusted bounds are

tighter than the unadjusted ones. In Case A both the lower and upper bounds are improved

by covariate adjustment; in Case B only the lower bound is improved; in Case C only the

upper bound is improved; in Case D both covariate adjusted bounds are the same as the

unadjusted ones.

3.4 Inference of the Bounds

In practice, we can never measure the true values of the marginal probabilities for compliers,

and therefore need to estimate them and the bounds on ⌧c and ⌘c. In this section we discuss

the inference of the bounds for completely randomized experiments. We first summarize the

observed data {Xi, Zi, D
obs
i , Y

obs
i }Ni=1 by letting

n

obs
zdj = #{i : Zi = z,D

obs
i = d, Y

obs
i = j} (z, d = 0, 1; j = 0, . . . , J � 1)

be the number of units with observed outcome Y

obs
i = j, that are assigned to treatment arm

z and receive d. Furthermore, let

nzd+ =
J�1X

j=0

n

obs
zdj , n

obs
++j =

1X

z=0

1X

d=0

n

obs
zdj ,

be the number of units that are assigned to treatment z and receive d; and the number of

units with observed outcome Y

obs
i = j, respectively.

3.4.1 Simple Moment Estimators

For the unadjusted bounds in (3.9) and (3.10), we first estimate the probability of compliers by

⇡̂c = 1�N01/N0 �N10/N1, and then obtain the point estimators of the bounds by estimating

the marginal probabilities of potential outcomes for the compliers:

ĉk+ = (nobs
11k/N1 � n

obs
01k/N0)/⇡̂c, ĉ+l = (nobs

00l /N0 � n

obs
10l /N1)/⇡̂c.
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Or more e�ciently, we can use the EM algorithm (Dempster et al., 1977) to estimate ⇡c, ck+

and c+l. For the relevant computation details see Baker (2011).

3.4.2 Covariate Adjusted Estimators

For the covariate adjusted bounds in (3.13), we obtain their point estimators by invoking para-

metric models for the principal stratification (parameters denoted as ✓PS), and the marginal

probabilities of the potential outcomes (parameters denoted as ✓PO). Given the maximum

likelihood estimates of the modeling parameters ✓ = (✓PS,✓PO) , first we plug them in (3.11)

and (3.12), and for each unit estimate its probability of being a complier, and its marginal

probabilities of potential outcomes given that it is a complier. We denote those probabili-

ties as b⇡c (xi) , bck+ (xi) and bc+l (xi) , respectively. Next, we use {bc0+ (xi) , . . . ,bcJ�1,+ (xi)}

and {bc+0 (xi) , . . . ,bc+,J�1 (xi)} to estimate ⌧c,L (xi) and ⌧c,U (xi) , the sharp lower and upper

bounds of ⌧c (xi) . We denoted the estimates as b⌧c,L (xi) and b⌧c,U (xi) respectively. Finally,

we estimate ⌧

0
c,L and ⌧

0
c,U , the covariate adjusted bounds of ⌧c, by the finite sample analogous

of their expressions in (3.13):

b⌧ 0c,L =

PN
i=1 b⌧c,L (xi) b⇡c (xi)PN

i=1 b⇡c (xi)
, b⌧ 0c,U =

PN
i=1 b⌧c,U (xi) b⇡c (xi)PN

i=1 b⇡c (xi)
.

For the case where we model the principal stratification by multiple logistic regression and

the potential outcomes by proportional odds models, we propose an EM algorithm to obtain

the maximum likelihood estimates, which is a nontrivial generalization of Baker (2011). To

be specific, let Xi = xi, Zi = zi, D
obs
i = di and Y

obs
i = yi be the values of the pretreatment

covariates, treatment assigned, treatment received and observed outcome of the ith unit. We

treat the principal stratification variable Ui as missing data, and denote the realizations of (4)

and (5) for the ith unit when evaluated at the true parameter value ✓ as ⇡u (xi) , uk+ (xi)

and u+l (xi) , and those when evaluated at the tth iteration of the parameter estimate ✓

(t) as

⇡

(t)
u (xi) , u

(t)
k+ (xi) and u

(t)
+l (xi) . The EM algorithm proceeds as follows. Given the current

tth iteration of the parameter estimate ✓

(t)
, we obtain the updated (t+ 1)th iteration ✓

(t+1)

as follows:
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1. E-Step: obtain the conditional expectation of the complete-data log-likelihood, given ob-

served data and the current parameter estimate ✓(t)
, by finding the (current) conditional

probabilities of the principal stratum u, denoted as ⇡(t)
u,i :

• for all i such that zi = 1 and di = 1, let

⇡

(t)
n,i = 0; ⇡

(t)
a,i =

⇡

(t)
u (xi) a

(t)
yi,+

(xi)

⇡

(t)
a (xi) a

(t)
yi,+

(xi) + ⇡

(t)
c (xi) c

(t)
yi,+

(xi)
⇡

(t)
c,i = 1� ⇡

(t)
a,i;

• for all i such that zi = 1 and di = 0, let

⇡

(t)
a,i = 0, ⇡

(t)
c,i = 0, ⇡

(t)
n,i = 1;

• for all i such that zi = 0 and di = 1, let

⇡

(t)
a,i = 1, ⇡

(t)
c,i = 0, ⇡

(t)
n,i = 0;

• for all i such that zi = 0 and di = 0, let

⇡

(t)
a,i = 0; ⇡

(t)
c,i =

⇡

(t)
u (xi) c

(t)
+,yi

(xi)

⇡

(t)
c (xi) c

(t)
+,yi

(xi) + ⇡

(t)
n (xi)n

(t)
+,yi

(xi)
⇡

(t)
n,i = 1� ⇡

(t)
c,i .

2. M-Step: obtain the updated parameter estimate ✓

(t+1)
, by maximizing the conditional

expectation with respect to ✓. To do this, we adopt the following two-step procedure:

(a) Obtain ✓

(t+1)
PS , the updated estimates of the parameters in the model for the

principal strata, by fitting the following weighted multinomial logistic regression:

• for i such that zi = 1 and di = 1, create two new observations for the regression:

one always-taker with weight ⇡(t)
a,i and one complier with weight ⇡(t)

c,i ;

• for i such that zi = 0 and di = 0, create two new observations: one complier

with weight ⇡(t)
c,i and one never-taker with weight ⇡(t)

n,i;

• for i such that zi = 1 and di = 0, create one never-taker with weight 1;

• for i such that zi = 0 and di = 1, create one always-taker with weight 1.

(b) Similarly, obtain ✓

(t+1)
PO , the updated estimates of the parameters in the model for

the potential outcomes, by fitting weighted proportional odds models:
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• for u = a, use all i such that zi = 1 and di = 1 with weight ⇡(t)
a,i, and all i such

that zi = 0 and di = 1 with weight 1;

• for u = c, use all i such that zi = 1 and di = 1 and all i such that zi = 0 and

di = 0 with weight ⇡(t)
c,i ;

• for u = n, use all i such that zi = 1 and di = 0 with weight 1, and all i such

that zi = 0 and di = 0 with weight ⇡(t)
n,i.

3.4.3 Confidence Intervals

To quantify the uncertainty associated with the aforementioned point estimators, we can use

the bootstrap method in Horowitz and Manski (2000) to obtain the confidence intervals (CI)

for the unadjusted and covariate adjusted bounds. For computational details of some other

bootstrap methods, see Cheng and Small (2006) and Yang and Small (2015).

3.5 Simulation Studies

To demonstrate the estimators of our bounds and the inference drawn, especially the perfor-

mance of the EM algorithm in Section 3.4.2, we conduct simulation studies under di↵erent

model specifications. To save space, we focus only on the causal parameter ⌧c.

We consider six simulation cases. Cases 1–3 are indexed by the parameter � 2 {1, 1/2, 0},

and Cases 4–6 are indexed by the parameter ⌘ 2 {1, 1/2, 0}. We postpone the interpretation of

� and ⌘ until afterwards. For each case, let the pretreatment covariatesX = (1, X1, X2) , where

X1 ⇠ N(0, 1), and X2 ⇠ Bern (1/2) . For fixed X = x, generate the principal stratification

variable U from multiple logistic regression:

⇡u (x) =
exp(⌘T

ux)P
u0 exp(⌘T

u0x)
(u = a, c, n),

where ⌘c = 0, ⌘a = (1/2, 1, 0) and ⌘n = (�1/2, 1, 0) . Furthermore, we generate the potential

outcomes from proportional odds models.
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1. For always-takers, let Yi(1) = Yi(0), and their marginal distributions be

logit
X

kj

ak+ (x) = logit
X

lj

a+l (x) = ↵a,j � 2x1,

where ↵a,0 = �1/2 and ↵a,1 = 1.

2. For never-takers, let Yi(1) = Yi(0), and their marginal distributions be

logit
X

kj

nk+ (x) = logit
X

lj

n+l (x) = ↵n,j ,

where ↵a,0 = �3/2 and ↵a,1 = 0.

3. For compliers, let Yi(1) and Yi(0) be independent, ↵c,0 = �1, ↵c,1 = 1/2, �c,0 = 1/2 and

�c,1 = 2. For Cases 1–3, let the marginal distributions of the potential outcomes be

logit
X

kj

ck+ (x) = ↵c,j � 2�x1, logit
X

lj

c+l (x) = �c,j + �x1.

For Cases 4–6, let the marginals distributions of the potential outcomes be

logit
X

kj

ck+ (x) = ↵c,j � 2x1 � ⇠x2, logit
X

lj

c+l (x) = �c,j + x1 + ⇠x2.

For the above six cases, their true values of ⌧c, their unadjusted and adjusted bounds are

in columns 2, 3–4 and 5–6 of the first three rows of Table 3.3, respectively. For Cases 1–3, as

the association between the covariates and potential outcomes (quantified by �) decreases,

the covariate adjusted bounds become closer to the unadjusted bounds. For Cases 4–6, the

parameter ⇠ quantifies the association between the binary covariate X2 and the potential

outcomes of compliers.

We conduct inference of the bounds without the binary covariate X2, which does not a↵ect

Cases 1–3 because X2 is irrelevant in the data generating process, but does a↵ect Cases 4–6.

This is purposefully designed to examine the performance of our estimators under correct

and incorrect model specifications. For each case, we choose the sample size to be 1000, and

independently draw 1000 treatment assignments from a balanced completely randomized

experiment. For each observed data set, we first estimate the bounds ⌧c,L and ⌧c,U , and
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construct a confidence interval for (⌧c,L, ⌧c,U ) that covers the bounds themselves at least 95%

times; we then estimate the bounds ⌧

0
c,L and ⌧

0
c,U , and construct a confidence interval for

(⌧ 0c,L, ⌧
0
c,U ) that covers the bounds themselves at least 95% times.

We report the simulation results in Table 3.3, in which columns 7–10 include the biases of

the point estimators, and columns 11–14 include the average lengths and coverage rates of

the intervals on the bounds (⌧c,L, ⌧c,U ) and (⌧ 0c,L, ⌧
0
c,U ). The results lead to several conclusions.

First, the point estimators all have small biases. Second, when the pretreatment covariates

are associated with the potential outcomes, the confidence intervals of the bounds (⌧c,L, ⌧c,U )

are longer than those of (⌧ 0c,L, ⌧
0
c,U ), on average. Third, the confidence intervals for the

bounds (⌧c,L, ⌧c,U ) and (⌧ 0c,L, ⌧
0
c,U ) achieve reasonable coverage rates. Fourth, our proposed

EM algorithm is robust to the missing of the binary covariate.

3.6 Application

We use the data set from Prevention of Suicide in Primary Care Elderly Collaborative Trial

(PROSPECT; Bruce et al., 2004) to demonstrate the estimation of bounds of our new causal

parameters and the subsequent inferences drawn. In the PROSPECT study, 82 of the 167

patients were randomly assigned to the treatment arm with specialist, and the rest to control

with usual care. In the treatment group, 75 patients received treatment, among whom 23

developed major depression symptoms (labeled 0), 17 developed minor symptoms (labeled 1),

32 developed no symptoms (labeled 2); and 10 received control, among whom the numbers of

patients with outcome 0, 1 and 2 are respectively 3, 2 and 5. In the control group everyone

received control, and the numbers of patients with outcome 0, 1 and 2 are respectively 28, 19

and 38. For the original data set, see Baker (2011).

By design the monotonicity assumption holds, and Cheng (2009) verified the plausibility

of exclusion restriction assumption. We apply our framework to this data set. For ⌧c, its

estimated lower and upper bounds are b⌧c,L = 0.444 and b⌧c,U = 1.000, the 95% confidence

interval for the bounds (⌧c,L, ⌧c,U ) is (0.284, 1.000), and b⌧C,I = 0.683. For ⌘c, its estimated

lower and upper bounds are b⌘c,L = 0.014 and b⌘c,U = 0.560, the 95% confidence interval for the
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bounds (⌘c,L, ⌘c,U ) is (0.000, 0.729), and b⌘C,I = 0.328. Under the assumption of independent

potential outcomes, Cheng (2009) claimed that “the beneficial e↵ect of intervention on the

two multinomial depression outcomes is not significant,” implying a zero treatment e↵ect.

Our results suggest that, depending on the unknown probabilistic structure of the potential

outcomes, the treatment could either be worse or better than the control.

3.7 Discussions

By invoking the principal stratification framework to address noncompliance, for ordinal

outcomes we have discussed various causal parameters and their sharp bounds by using only

the marginal distributions of the potential outcomes for principal strata. Our theoretical

results can be conveniently incorporated into di↵erent statistical inference frameworks and

statistical models, including the case with pretreatment covariates.

We have discussed causal inference for ordinal outcomes with noncompliance to a binary

treatment only, because of its wide applications. For instance, Cheng and Small (2006) studied

the case with three-arm treatment and noncompliance, and Dasgupta et al. (2015) discussed

causal inference of average treatment e↵ects for continuous outcomes for factorial experiments.

We will explore these directions in the future.
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Table 3.2: Illustration of Tighter Bounds by Covariate Adjustment

Case X Z Dobs pr
�
Y obs | X, Z,Dobs

�
pr {Y (Z) | X, U = c} ⌧c,L ⌧c,U ⌧ 0

c,L ⌧ 0
c,U

A 0 0 0 (1/2, 1/4, 1/4) (4/5, 1/10, 1/10) 1/2 1 3/5 9/10
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (1/5, 1/5, 3/5)
1 (3/10, 3/10, 2/5)

1 0 0 (1/5, 9/20, 7/20) (1/5, 1/2, 3/10)
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (2/5, 1/5, 2/5)
1 (2/5, 3/10, 3/10)

B 0 0 0 (1/5, 1/2, 3/10) (1/5, 3/5, 1/5) 3/10 4/5 2/5 4/5
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (1/5, 2/5, 2/5)
1 (3/10, 2/5, 3/10)

1 0 0 (1/5, 2/5, 2/5) (1/5, 2/5, 2/5)
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (3/5, 1/5, 1/5)
1 (1/2, 3/10, 1/5)

C 0 0 0 (2/5, 3/10, 3/10) (3/5, 1/5, 1/5) 1/2 1 1/2 9/10
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (1/5, 1/5, 3/5)
1 (3/10, 3/10, 2/5)

1 0 0 (3/10, 3/10, 2/5) (2/5, 1/5, 2/5)
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (1/5, 3/5, 1/5)
1 (3/10, 1/2, 1/5)

D 0 0 0 (3/10, 3/10, 2/5) (2/5, 1/5, 2/5) 3/10 7/10 3/10 7/10
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (3/5, 1/5, 1/5)
1 (1/2, 3/10, 1/5)

1 0 0 (1/5, 3/10, 1/2) (1/5, 1/5, 3/5)
1 (2/5, 2/5, 1/5)

1 0 (1/5, 2/5, 2/5) (1/5, 3/5, 1/5)
1 (3/10, 1/2, 1/5)
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Appendix A

Supplementary Materials for Chapter 1

A.1 Construction of Maximizer in Theorem 1.1

To complete the proof of Theorem 1.1, we construct a lower triangular probability matrix

with fixed row rums p1 = (p0+, . . . , pJ�1,+)
T and column sums p0 = (p+0, . . . , p+,J�1)

T
, that

attains the upper bound of  in (1.3). We start with the last column and proceed backwards.

At any point in the construction, we denote any element in the matrix which we have already

filled by p̃kl and any we have not by pkl, in order to distinguish them.

First, for the last column with index J � 1, only the last entry needs to be filled, and

we set it equal to the corresponding column sum, i.e., p̃J�1,J�1 = p+,J�1. Next, for all

r = 1, . . . , J � 1, given all elements in the last r columns are already filled, we consider the

problem of filling in the elements of column with index l = J � r � 1, as shown in Table A.1.

At this point, the already filled elements in the matrix are p̃kl, where k = 0, . . . , J � 1 and

l = J � r, . . . , J � 1.

To fill the column with index l = J�r�1, note that all entries for k < J�r�1 will be equal

to zero. We set the diagonal element with row index k = l = J�r�1 equal to the minimum of

the corresponding row and column sums, i.e., p̃J�r�1,J�r�1 = min (pJ�r�1,+, p+,J�r�1) . Now

the di↵erence p+,J�r�1 �min(pJ�r�1,+, p+,J�r�1) needs to be distributed over the remaining

entries of the column. Note that this di↵erence is zero if min (pJ�r�1,+, p+,J�r�1) = p+,J�r�1.

Therefore, for all k = J � r, . . . , J � 1, we make the entry pk,J�r�1 proportional to the
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Table A.1: Filling in the column with index l = J � r � 1 when the last r columns are already filled

Row index Column index (l) Row Sum
(k) 0 · · · J � r � 1 J � r · · · J � 1 pk+
0 p

00

· · · 0 0 · · · 0 p
0+

...
...

...
...

...
...

...
...

J � r � 1 pJ�r�1,0 · · · min(pJ�r�1,+, p+,J�r�1

) 0 · · · 0 pJ�r�1,+

J � r pJ�r,0 · · · pJ�r,J�r�1

=? p̃J�r,J�r · · · 0 pJ�r,+

...
...

...
...

...
...

...
...

J � 1 pJ�1,0 · · · pJ�1,J�r�1

=? p̃J�1,J�r · · · p̃J�1,J�1

= p
+,J�1

pJ�1,+

Column sum p
+0

· · · p
+,J�r�1

p
+,J�r · · · p

+,J�1

1

“remaining balance” p+,J�r�1�min(pJ�r�1,+, p+,J�r�1), where we choose the proportionality

constant as PJ�r�1
l=0 pklP

k0�J�r

PJ�r�1
l=0 pk0l

, (A.1)

that is, the ratio of the sum of empty entries in the row with label k and the sum of empty

entries in all rows below the one labeled J � r � 1. Both the numerator and denominator of

(A.1) can be expressed in terms of the given marginal probabilities and the already filled-in

entries in the last r columns:

J�r�1X

l=0

pkl = pk+ �
X

l�J�r

p̃kl,

X

k0�J�r

J�r�1X

l=0

pk0l =
X

k0�J�r

0

@
pk0+ �

X

l�J�r

p̃k0l

1

A
, (A.2)

and hence can be computed uniquely. The construction method, (A.1) or (A.2), eventually

leads to the following iterative imputation equation for all k = J � r, . . . , J � 1 :

p̃k,J�r�1 =
pk+ �

P
l�J�r p̃kl

P
k0�J�r

⇣
pk0+ �

P
l�J�r p̃k0l

⌘ {p+,J�r�1 �min(pJ�r�1,+, p+,J�r�1)} . (A.3)
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Having constructed the matrix

P+ =

0

BBBBBBB@

p̃00 0 . . . 0

p̃10 p̃11 . . . 0
...

...
. . .

...

p̃J�1,0 p̃J�1,1 . . . p̃J�1,J�1

1

CCCCCCCA

,

we show that it indeed satisfies (i) p̃kl � 0 for all k, l = 0, . . . , J � 1, (ii) the equality in

condition (1.4), for which a su�cient condition is p̃kk = min (pk+, p+k) for all k = 0, . . . , J �1,

(iii) the vector of column sums is p0, i.e.,
PJ�1

k=0 p̃kl = p+l for all l = 0, . . . , J � 1, and (iv) the

vector of row sums is p1, i.e.,
PJ�1

l=0 p̃kl = pk+ for all k = 0, . . . , J � 1.

Among (i)–(iv) described above, (i)–(iii) follow directly by the construction of P+ described

above. We need only to prove that
PJ�1

l=0 p̃kl = pk+ for all k = 0, . . . , J � 1. To prove this, first

note that by Stochastic Dominance, we have p0+  p+0, implying that p̃00 = p0+. Therefore

the sum of the first row of P+ is p0+. Now for all k = 1, . . . , J � 1, we have from (A.3) by

substituting r = J � 1 (that is, filling up the first column given the last J � 1),

p̃k0 =
pk+ �

PJ�1
l=1 p̃kl

PJ�1
k=1

⇣
pk+ �

PJ�1
l=1 p̃kl

⌘ (p+0 � p0+)

=
pk+ �

PJ�1
l=1 p̃kl

(1� p0+)� (1� p̃00)
(p+0 � p0+)

=
pk+ �

PJ�1
l=1 p̃kl

p+0 � p0+
(p+0 � p0+)

= pk+ �
J�1X

l=1

p̃kl,

which implies that
PJ�1

l=0 p̃kl = pk+. The construction is thus complete.

A.2 Proof of Lemma 1.1

Proof of Lemma 1.1(a). We prove by induction. For n = 1, let P1 = (a1) and Lemma 1.1(a)

holds trivially. For n � 2, assume that Lemma 1.1(a) holds for n� 1, and we prove it holds for

n. The key idea is to first construct the first row and column of the n⇥ n matrix Pn, and use
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the assumption to construct a (n� 1)⇥ (n� 1) matrix Pn�1, which becomes the remaining

part of Pn. To construct the first row and column, we discuss the following two cases.

(1) If a1 = b1, we construct the first row and column of P by letting

p11 = a1; pk1 = p1l = 0 (k, l = 2, . . . , n).

Because
nX

k0=2

ak0 =
nX

l0=2

bl0 ,

we apply Lemma 1.1(a) to (a2, . . . , an) and (b2, . . . , bn) , and obtain a (n� 1)⇥ (n� 1)

matrix Pn�1 = (pkl)2k,ln with nonnegative elements such that

nX

l0=2

pkl0 = ak,

nX

k0=2

pk0l = bl, pjj = min (aj , bj) (k, l, j = 2, . . . , n),

Therefore, we let

Pn =

0

B@
p11 0T

0 Pn�1

1

CA .

(2) If a1 6= b1, by symmetry we only need to discuss the case where a1 > b1. In this case,

we construct the first column of P by letting

p11 = b1; pk1 = 0 (k = 2, . . . , n).

To construct the first row of P , note that

a1 � b1 =
nX

j=2

(bj � aj) =
nX

j=2

(bj � aj)+ �
nX

j=2

(bj � aj)� ,

where {x}+ = |x|I(x�0) and {x}� = |x|I(x0) are respectively the positive and negative

parts of x. By the above equality we have

nX

j=2

(bj � aj)+ � a1 � b1 > 0.

61



Appendix A. Supplementary Materials for Chapter 1

Consequently, We let

p1l =

(
(bl � al)⇥

a1 � b1Pn
j=2 (bj � aj)+

)

+

(l = 2, . . . , n). (A.4)

By (A.4) we have

p1l  (bl � al)+  bl (l = 2, . . . , n),

which implies that

min (al, bl) = min (al, bl � p1l) (l = 2, . . . , n).

Therefore, we apply Lemma 1.1(a) to (a2, . . . , an) and (b2 � p12, . . . , bn � p1n) , and

obtain a (n� 1)⇥ (n� 1) matrix Pn�1 = (pkl)2k,ln with nonnegative elements such

that
nX

l0=1

pkl0 = ak,

nX

k0=1

pk0l = bl � p1l (k, l = 2, . . . , n),

and

pjj = min (aj , bj � p1j) = min (aj , bj) (j = 2, . . . , n).

Therefore, we let p = (p12, . . . , p1n)
T and

Pn =

0

B@
p11 p

T

0 Pn�1

1

CA .

Therefore, Lemma 1.1(a) holds for n.

Proof of Lemma 1.1(b). We sequentially construct the n⇥ n matrix Q. First we let

qkl = qk+ ⇥ q+l (k, l = 1, . . . , n),

and {i1, . . . , in} be the permutation of {1, . . . , n} such that

qi
1

,i
1

 . . .  qin,in . (A.5)

Next, we propose a procedure to sequentially make the above diagonal elements zero, such

that at any point all elements of Q are nonnegative, and the row and column sums of Q are
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ak’s and bl’s. For all j = 1, . . . , n� 1, we change the following 2⇥ 2 sub-matrix in Q :

0

B@
qij ,ij qij ,ij+1

qij+1

,ij qij+1

,ij+1

1

CA ,

by subtracting qij ,ij from the two diagonal elements, and adding qij ,ij to the two o↵-diagonal

elements, resulting 0

B@
0 qij ,ij+1

+ qij ,ij

qij+1

,ij + qij ,ij qij+1

,ij+1

� qij ,ij

1

CA .

By (A.5), all elements of Q remain nonnegative after the above operation. Furthermore, a

diagonal element becomes zero. Therefore, eventually we have

qij ,ij = 0 (j = 1, . . . , n� 1); qin,in =
nX

j=1

(�1)n�j
aijbij � 0.

If qin,in = 0 in the above, we are done with the construction. If qin,in > 0, we need to adjust

qin,in to be zero, and preserve the row and column sums at the same time. The current

probability matrix has

n�1X

k=1

n�1X

l=1

qik,il = 1� ain � bin + qin,in � qin,in > 0,

but our final probability matrix should have qin,in = 0 and therefore

n�1X

k=1

n�1X

l=1

qik,il = 1� ain � bin � 0.

We multiply pkl by the factor (1 � ain � bin)/(1 � ain � bin + qin,in) 2 [0, 1) for k and

l = 1, . . . , n� 1, and make the following adjustments to the remaining elements on the final

row and column:

qik,in = aik �
n�1X

l0=1

qik,il0 (k = 1, . . . , n� 1); qin,il = bil �
n�1X

k0=1

qik0 ,il (l = 1, . . . , n� 1).
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B.1 Proof of Lemma 2.1

Proof of Lemma 2.1(a). We prove by induction. When n = 1, we let A1 = y0 � 0, and (2.5)

holds because y0  x0. When n � 2, suppose Lemma 2.1(a) holds for n� 1. In particular, for

any (x1, . . . , xn�1) and (y1, . . . , yn�1) such that
Pn�1

r=s xr �
Pn�1

r=s yr for all s = 1, . . . , n� 1,

there exists a lower triangular matrix An�1 = (akl)1k,ln�1 with nonnegative elements such

that
n�1X

l0=1

akl0  xk,

n�1X

k0=1

ak0l = yl (k, l = 1, . . . , n� 1). (B.1)

To prove that Lemma 2.1(a) holds for n, we let

An =

0

B@
a00 0T

a An�1

1

CA ,

where a00 and a = (a10, . . . , an�1,0)T are defined for two separate cases below.

(1) y0 < x0. We let a00 = y0, and ak0 = 0 for all k = 1, . . . , n � 1. Clearly, An has

nonnegative elements, and satisfies the row and column sum conditions in (2.5).

(2) y0 � x0. We let a00 = x0, and

ak0 = (y0 � a00)
xk �

Pn�1
l0=1 akl0Pn�1

k0=1

⇣
xk0 �

Pn�1
l0=1 ak0l0

⌘ � 0 (k = 1, . . . , n� 1). (B.2)
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This construction guarantees that the column sums of An are yl’s. We need to verify

the conditions for the row sums required by (2.5). Because An�1 satisfies (B.1), we have

n�1X

k0=1

 
xk0 �

n�1X

l0=1

ak0l0

!
=

n�1X

k0=1

xk0 �
n�1X

k0=1

n�1X

l0=1

ak0l0 =
n�1X

k0=1

xk0 �
n�1X

l0=1

n�1X

k0=1

ak0l0

=
n�1X

k0=1

xk0 �
n�1X

k0=1

yk0 � y0 � x0 = y0 � a00 > 0. (B.3)

Formulas (B.2) and (B.3) imply that ak0  xk�
Pn�1

l0=1 akl0 and therefore
Pn�1

l0=0 akl0  xk

for k = 1, . . . , n� 1.

Therefore Lemma 2.1(a) holds for n, and the proof is complete.

Proof of Lemma 2.1(b). By applying Lemma 2.1(a) to (y0, . . . , yn�1) and (x0, . . . , xn�1) , we

obtain a lower triangular matrix gBn = (b̃kl)0k,ln�1 with nonnegative elements such that

n�1X

k0=0

b̃k0l = xk,

n�1X

l0=0

b̃kl0  yk (k, l = 0, . . . , n� 1).

Let Bn =gBn
T
, and the proof is complete.

Proof of Lemma 2.1(c). By applying Lemma 2.1(a) to (yn�1, . . . , y0) and (xn�1, . . . , x0) , we

obtain a lower triangular matrix fCn = (c̃kl)0k,ln�1 with nonnegative elements such that

n�1X

k0=0

c̃k0l = xn�l�1,

n�1X

l0=0

c̃kl0  yn�k�1 (k, l = 0, . . . , n� 1).

Let Cn = (c̃n�l�1,n�k�1)0k,ln�1 , and the proof is complete.

Proof of Lemma 2.1(d). By applying Lemma 2.1(c) to (y0, . . . , yn�1) and (x0, . . . , xn�1) , we

obtain a lower triangular matrix gDn = (d̃kl)0k,ln�1 with nonnegative elements such that

kX

l0=0

d̃kl0 = yk,

n�1X

k0=l

d̃k0l  xk (k, l = 0, . . . , n� 1).

Let Dn = gDn
T
, and the proof is complete.

Proof of Lemma 2.1(e). In addition to the proof of Lemma 2.1(a), we further need to show
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that if
Pn�1

r=0 yr =
Pn�1

r=0 xr, the row sums of the constructed matrix An are xk’s. In the

induction of the proof of Lemma 2.1(a), if we have constructed matrix An�1, the case with

y0 < x0 would not happen. We consider only the case with y0 � x0. Because the lower

triangular matrix An�1 has the column sums yl’s, and
Pn�1

r=0 yr =
Pn�1

r=0 xr, we have

n�1X

k0=1

 
xk0 �

n�1X

l0=1

ak0l0

!
=

n�1X

k0=1

xk0 �
n�1X

k0=1

yk0 = y0 � x0 = y0 � a00 > 0.

The above formula, coupled with the construction of the first column of An in (B.2), gives

ak0 = xk �
Pn�1

l0=1 akl0 and thus
Pn�1

l0=0 akl0 = xk for all k.

This proof of Lemma 2.1 can also serve as a constructive proof of the result in Strassen

(1965), which was later utilized by Rosenbaum (2001).

B.2 Construction of Probability Matrices in Theorem 2.1

B.2.1 Probability Matrix for the Upper Bound of ⌧

To finish the proof of Theorem 2.1(a), we construct a probability matrix P , with fixed marginal

probabilities p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T
, to attain the bound in

(2.11). To do this, we let

j1 = min

⇢
0  j

0  J � 1 : �j0 = min
0jJ�1

�j

�

be the minimum index j that attains the minimum value of �j ’s. To attain the upper bound

(2.11), the equalities in (2.9) and (2.10) must hold, i.e.,

XX

k<l

pkl =
X

k<j
1

X

l�j
1

pkl,

X

k�j
1

X

l�j
1

pkl =
X

k�j
1

J�1X

l=1

pkl. (B.4)

If j1 = 0, min0jJ�1�j = �0 = 0, implying that �j =
PJ�1

k=j pk+ �
PJ�1

l=j p+l � 0 for all

j, i.e., the marginal probabilities satisfy the stochastic dominance assumption. According to

Lemma 2.1(e), there exists a lower triangular probability matrix P with marginal probabilities

p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T
. Correspondingly, ⌧ = 1 +�0 = 1.
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If j1 > 0, the constraints in (B.4) force some elements of the probability matrix to be

zeros. To be more specific, the constraints in (B.4) imply that the probability matrix has the

following block structure:

P =

0

B@
Ptl Ptr

0 Pbr

1

CA , (B.5)

where the j1 ⇥ j1 sub-matrix Ptl on top left and the (J � j1)⇥ (J � j1) sub-matrix Pbr on

bottom right are both lower triangular, and the j1 ⇥ (J � j1) sub-matrix Ptr on top right has

no restrictions.

Because �j
1

 �j for all j = 0, 1, . . . , J � 1, we have

j
1

�1X

k=j

pk+ �
j
1

�1X

l=j

p+l (j = 0, . . . , j1 � 1);
jX

k=j
1

pk+ 
jX

l=j
1

p+l (j = j1, . . . , J � 1).

Given the above two sets of constraints on the marginal probabilities, we construct the

probability matrix P in three steps.

(1) We apply Lemma 2.1(a) to (p0+, . . . , pj
1

�1,+) and (p+0, . . . , p+,j
1

�1) , and obtain a lower

triangular matrix Ptl = (pkl)0k,lj
1

�1 with nonnegative elements such that

j
1

�1X

l0=0

pkl0  pk+,

j
1

�1X

k0=0

pk0l = p+l (k, l = 0, . . . , j1 � 1).

(2) We apply Lemma 2.1(c) to (pj
1

+, . . . , pJ�1,+) and (p+j
1

, . . . , p+,J�1) , and obtain a lower

triangular matrix Pbr = (pkl)j
1

k,lJ�1 with nonnegative elements such that

J�1X

l0=j
1

pkl0 = pk+,

J�1X

k0=j
1

pk0l  p+l (k, l = j1, . . . , J � 1).

(3) We construct Ptr = (pkl)0kj
1

�1,j
1

lJ�1 by letting

pkl =

 
pk+ �

j
1

�1X

l0=0

pkl0

!0

@
p+l �

J�1X

k0=j
1

pk0l

1

A � 0 (k = 0, . . . , j1 � 1; l = j1, . . . , J � 1).

The constructed probability matrix P has marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and

p0 = (p+0, . . . , p+,J�1)
T
. What is more, by (B.5) the ⌧ of P is the sum of all the elements in
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Ptl and Pbr, which we construct in the above (1) and (2). Therefore, we have

⌧ =
j
1

�1X

l0=0

p+l0 +
J�1X

k0=j
1

pk0+ = 1 +�j
1

,

which implies that the probability matrix P attains the bound (2.11).

B.2.2 Probability Matrix for the Lower Bound of ⌧

To finish the proof of Theorem 2.1(b), we construct a probability matrix P , with fixed marginal

probabilities p1 = (p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T
, to attain the bound in

(2.14). To do this, we let

j2 = min

⇢
j

0 : p+j0 +�j0 = max
0jJ�1

(p+j +�j)

�

be the minimum index j that attains the maximum value of (p+j +�j)’s. To attain the lower

bound (2.14), the equalities in (2.12) and (2.13) must hold, i.e.,

XX

k�l

pkl =
X

k�j
2

X

lj
2

pkl,

X

k�j
2

X

l>j
2

pkl =
J�1X

k=0

X

l>j
2

pkl. (B.6)

If j2 = 0, from (B.6) we know that the elements in the lower triangular part but not in

the first column of the probability matrix P are all zeros, i.e.,

P =

0

B@
p Ptr

pJ�1,0 0T

1

CA , (B.7)

where p = (p0,0, . . . , pJ�2,0)
T
, and the (J � 1)⇥ (J � 1) sub-matrix Ptr on top right is upper

triangular. Because p+0 +�0 � p+j +�j for all j, we have

jX

k=0

pk+ �
jX

l=0

p+,l+1 (j = 0, . . . , J � 2).

Applying Lemma 2.1(d) to (p0+, . . . , pJ�2,+) and (p+1, . . . , p+,J�1) , we obtain an upper

triangular matrix Ptr = (pkl)0kJ�2,1lJ�1 with nonnegative elements such that

J�1X

l0=1

pkl0  pk+,

J�2X

k0=0

pk0l = p+l (k = 0, . . . , J � 2; l = 1, . . . , J � 1).
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To complete the construction, let pJ�1,0 = pJ�1,+, and

pk0 = pk+ �
J�1X

l0=1

pkl0 � 0 (k = 0, . . . , J � 2).

The constructed probability matrix P has marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and

p0 = (p+0, . . . , p+,J�1)
T
. Moreover, by (B.7) the ⌧ of P is the sum of all the elements in the

first column. Therefore ⌧ = p+0 = p+0 +�0, which implies that P attains the bound (2.14).

If j2 = J � 1, the proof is similar to the above case with j2 = 0.

If 0 < j2 < J � 1, because the first equality in (B.6) is equivalent to

X

k<j
2

X

lk

pkl +
X

k�j
2

X

lk

pkl =
X

k�j
2

X

lj
2

pkl,

the probability matrix P must satisfy the following constraints:

(C1) For all k = 0, . . . , j2 � 1, pkl = 0 for all l = 0, . . . , k.

(C2) For all k = j2 + 1, . . . , J � 1, pkl = 0 for all l = j2 + 1, . . . , k.

Similarly, because the second equality in (B.6) is equivalent to

X

k�j
2

X

l>j
2

pkl =
X

k�j
2

X

l>j
2

pkl +
X

k<j
2

X

l>j
2

pkl,

the probability matrix P must further satisfy the following constraint:

(C3) pkl = 0, for all k = 0, . . . , j2 � 1 and l = j2 + 1, . . . , J � 1.

The constraints in (C1), (C2) and (C3) imply that P must have the following block structure:

P =

0

BBBB@

(0,Ptl) 0

Pbl

0

B@
Pbr

0T

1

CA

1

CCCCA
(B.8)

where the j2 ⇥ j2 sub-matrix Ptl and the (J � j1 � 1)⇥ (J � j1 � 1) sub-matrix Pbr are both

upper triangular, and the (J � j2)⇥ (j2 +1) sub-matrix Pbl on bottom left has no restrictions.
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Because p+j
2

+�j
2

� p+j +�j for all j, we have

j
2

�1X

k=j

pk+ 
j
2

�1X

l=j

p+,l+1 (j = 0, . . . , j2 � 1);
sX

k=j
2

pk+ �
sX

l=j
2

p+,l+1 (j = j2, . . . , J � 2).

Given the above two sets of constraints for the marginal probabilities, we construct the

probability matrix P in three steps.

(1) We apply Lemma 2.1(b) to (p0+, . . . , pj
2

�1,+) and (p+1, . . . , p+,j
2

) , and obtain an upper

triangular matrix Ptl = (pkl)0kj
2

�1,1lj
2

with nonnegative elements such that

j
2X

l0=1

pkl0 = pk+,

j
2

�1X

k0=0

pk0l  p+l (k = 0, . . . , j2 � 1; l = 1, . . . , j2).

(2) We apply Lemma 2.1(d) to (pj
2

+, . . . , pJ�2,+) and (p+,j
2

+1, . . . , p+,J�1) , and obtain an

upper triangular matrix Pbr = (pkl)j
2

kJ�2,j
2

+1lJ�1 with nonnegative elements such

that

J�1X

l0=j
2

+1

pkl0  pk+,

J�2X

k0=j
2

pk0l = p+l (k = j2, . . . , J � 2; l = j2 + 1, . . . , J � 1).

(3) We construct Pbl = (pkl)j
2

kJ�1,0lj
2

by letting

pkl =

0

@
pk+ �

J�1X

l0=j
2

+1

pkl0

1

A
 
p+l �

j
2

�1X

k0=0

pk0l

!
� 0 (k = j2, . . . , J � 1; l = 0, . . . , j2).

The constructed probability matrix P has marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T

and p0 = (p+0, . . . , p+,J�1)
T
. Moreover, by (B.8) the corresponding ⌧ is the sum of all the

elements in Pbl, which we construct in the above (3). Therefore, we have

⌧ = 1�
j
2

�1X

k0=0

pk0+ �
J�1X

l0=j
2

+1

p+l0 =
J�1X

k0=j
2

pk0+ �
J�1X

l0=j
2

+1

p+l0 = p+j
2

+�j
2

,

which implies that P attains the lower bound (2.14).
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Proof of Theorem 3.1. The theorem follows by applying Lemma 3.1 on the marginal proba-

bilities of potential outcomes for compliers, i.e., {c0+, . . . , cJ�1,+} and {c+0, . . . , c+,J�1} .

Proof of Lemma 3.2. First we consider ⌧ . Under the monotonicity assumption, by law of total

probability we have ⌧ = ⇡c⌧c + ⇡a⌧a + ⇡n⌧n. Under the exclusion restriction assumption, we

have ⌧a = 1 and ⌧n = 1, yielding ⌧ = ⇡c⌧c+1�⇡c, which implies that ⌧c = ⌧/⇡c� (1� ⇡c) /⇡c.

Analogously, we have ⌘ = ⇡c⌘c + (1� ⇡c)⇥ 0 = ⇡c⌘c, which implies that ⌘c = ⌘/⇡c.

Proof of Corollary 3.1. First, the new bounds ⌧

N
c,L, ⌧

N
c,U , ⌘

N
c,L and ⌘

N
c,U follow directly from

Lemmas 1 and 2. Next, under the monotonicity assumption we have

�j = ⇡a�a,j + ⇡c�c,j + ⇡n�n,j (j = 0, . . . , J � 1).

Further under the exclusion restriction assumption, we have �a,j = 0 and �n,j = 0, and

therefore the above equalities reduce to�j = ⇡c�c,j .We use this fact to derive the relationships

between the old and new sets of bounds. We first discuss the bounds of ⌧c, and then the

bounds of ⌘c.
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1. For the upper bounds of ⌧c we have

⌧c,U = 1 +min
j

�c,j

=

⇢
⇡c +min

j
(⇡c�c,j)

�
/⇡c

=

⇢
1 + min

j
(⇡c�c,j)

�
/⇡c � (1� ⇡c) /⇡c

=

✓
1 + min

j
�j

◆
/⇡c � (1� ⇡c) /⇡c

= ⌧

N
c,U .

2. The inequality

a+j⇡a + n+j⇡n  ⇡a + ⇡n

implies that

p+j � 1 + ⇡c  c+j⇡c.

Consequently, for the lower bounds of ⌧c we have

⌧c,L = max
j

(c+j +�c,j)

� max
j

{(p+j + ⇡c�c,j � 1 + ⇡c) /⇡c}

=

⇢
max

j
(p+j +�j � 1 + ⇡c)

�
/⇡c

=

⇢
max

j
(p+j +�j)

�
/⇡c � (1� ⇡c) /⇡c

= ⌧

N
c,L.

The two bound are equal if and only if (1� a+j)⇡a = 0 and (1� n+j)⇡n = 0.

3. For the lower bound of ⌘c we have

⌘c,L = max
j

�c,j =

⇢
max

j
(⇡c�c,j)

�
/⇡c = max

j
�j/⇡c = ⌘

N
c,L,

4. The inequality

aj+⇡a + nj+⇡n  ⇡a + ⇡n.
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implies that

pj+ + ⇡c � 1  cj+⇡c.

Consequently, for the upper bound of ⌘c we have

⌘c,U = 1 +min
j

(�c,j � cj+)

=

⇢
min
j

(⇡c + ⇡c�c,j � cj+⇡c)

�
/⇡c

=

⇢
1 + min

j
(⇡c � 1 +�j � cj+⇡c)

�
/⇡c


⇢
1 + min

j
(�j � pj+)

�
/⇡c

= ⌘

N
c,U .

The two bounds are equal if and only if (1� aj+)⇡a = 0 and (1� nj+)⇡n = 0.

Proof of Corollary 3.2. The corollary follows directly from Corollary 3.1.

Proof of Theorem 3.2. With independent potential outcomes for the compleirs, the probability

matrix Pc has elements ckl = ck+c+l. We obtain ⌧c,I and ⌘c,I by their definitions, which are

between their lower and upper bounds.

Proof of Theorem 3.3. The proof follows the same logic as Lee (2009). Because any value of

⌧c within the covariate adjusted bounds [⌧ 0c,L, ⌧
0
c,U ] must be compatible with the conditional

distributions of {Y (1),X} and {Y (0),X} given that U = c, it must also be compatible with

the conditional distributions of Y (1) and Y (0) given U = c, by discarding X. Therefore, any

value of ⌧c within the adjusted bounds [⌧ 0c,L, ⌧
0
c,U ] must also be within the unadjusted bounds

[⌧c,L, ⌧c,U ]. Consequently, the adjusted bounds are tighter, i.e., [⌧ 0c,L, ⌧
0
c,U ] ⇢ [⌧c,L, ⌧c,U ].
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