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Abstract

The human body is composed of hundreds of specialized cell types, each fulfilling

distinct functions that are together essential for normal tissue homeostasis. This thesis is

aimed at  identifying genes that  contribute to to cell  type-specific  functions,  with major

projects focused on (1) a specialized epithelial transport pathway called transcytosis and

(2) the challenge of measuring cell type-specific gene expression. In both projects, we

applied high-throughput methods to narrow down from the ~25,000 protein coding genes

to distinguish the subset that contribute to specialized cellular functions. Common themes

include  the  development  of  enabling  technology  and  the  value  of  integrating  diverse

genomic datasets. The results described here implicate new genes in cell type-specific

processes and provide a starting place for subsequent investigation into the individual

genes and pathways.

In the first  project, we performed an RNA interference (RNAi) screen to identify

genes necessary for receptor-mediated transcytosis, a specialized endosomal pathway in

epithelial  cells.  We developed  high-throughput  assays  to  measure  the  transcytosis  of

immunoglobulin  G  (IgG)  across  cultured  epithelial  cells  in  conjunction  with  gene

knockdown.  Then  we  selected  a  set  of  582  candidate  genes  to  screen  using  a

combination  of  literature  review  and  integrated  high-throughput  evidence,  including
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expression data, proteomics, and domain annotation. We knocked-down each of these

candidates in parallel  and identified many reagents that interfered with transcytosis.  In

small-scale validation assays, we confirmed a reproducible decrease in transcytosis after

knocking down 7 genes with multiple independent reagents (7 confirmed out of 8 genes

tested). The validated hits included genes with an established role in related pathways,

such as  EXOC2 and  PARD6B, and genes that  have not  been implicated in epithelial

trafficking before, such as LEPROT, VPS13C, and ARMT.

In  the  second project,  we developed  an approach to  identify  genes  expressed

selectively in specific cell types, using a computational algorithm that searches thousands

of  microarrays  for  genes  with  a  similar  expression  profile  to  known cell  type-specific

markers. Our method, CellMapper, is accurate without the need for cell isolation and can

be applied to any cell type where at least one cell-specific marker gene is known. We

demonstrated  the  approach  for  30  diverse  cell  types,  many  of  which  have  not  been

isolated  for  expression  analysis  in  humans  before.  Furthermore,  we  explored  the

applicability  of  our  method  to  infer  causal  relationships  in  genome-wide  association

studies (GWAS) and to investigate the transcriptional identity of a poorly understood cell

type,  enteric  glia.  We  provided  a  user-friendly  R  implementation  that  will  enable

researchers from systems biology, molecular biology of disease, and population genetics

to identify  cellular  localization of  genes of  interest  or  to expand the catalog of  known

marker genes for difficult-to-isolate cell types.
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Preface
The Many Faces of Cellular Specialization

Preface

The Many Faces of Cellular Specialization

In each organ, the cells must have different characteristics, since such different

substances are secreted within them. ... One can scarcely conceive that such an

amazing diversity of products results from the activity of a single [structure] – the

cell.

Rene-Joachim-Henri Dutrochet, 1824

Even as biologists were just beginning to recognize the cell as the fundamental structural

unit in biology, many have been fascinated with cellular specialization. At the molecular

level, cellular specialization is driven by differences in gene expression and activity: while

nearly every cell in an individual contains the same genome, there is tremendous diversity

in gene expression across cell types. The modern toolbox of functional genomics provides

a powerful means to dissect cellular specialization because it allows thousands of genes

to be interrogated at once, and thus facilitates the discovery of genes that contribute to
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cell type-specific functions. This work is centered around two projects that apply functional

genomics to identify genes important for cellular specialization.

The  first  project  focused  on  a  specialized  pathway  called  receptor-mediated

transcytosis,  in which protein cargo is  transported across epithelial  cells  through the

endosomal system. The endosomes serve as a major hub for regulating the absorption

and secretion of many compounds, as well as the precise control of plasma membrane

composition.  This organelle provides a fascinating case study in cellular  specialization

because it fulfills unique functions in many different cell types (Fig 0.1). In epithelial cells,

the endosomes help to establish and maintain cell polarity, requiring additional endosomal

2

Figure  0.1: Examples  of  endosomal  specialization  in  human  cell  types.  Top  left,

synaptic  transmission  in  neurons;  top  right,  phagocytosis  of  invading  bacteria  by

macrophages;  bottom  left,  regulation  of  acid  secretion  in  parietal  cells  lining  the

stomach; bottom right, maintenance and establishment of cell polarity in epithelial cells.



compartments  and  sorting  mechanisms  not  found  in  other  cell  types1.  How  can  the

endosomes  be  reorganized  to  fulfill  specialized  functions  such  as  transcytosis?  The

mechanisms of endosomal specialization in epithelia are not well understood, and one

challenge  has  been  that  only  a  few genes  that  regulate  epithelial-specific  aspects  of

endosome trafficking are known. To help fill this gap, we conducted an RNA interference

(RNAi)  screen  for  genes  that  operate  in  receptor-mediated  transcytosis.  Our  screen

implicated several new genes in the process, expanding the catalog of genes that operate

in this specialized epithelial transport pathway.

As one source of candidate genes for our RNAi screen, we hypothesized that many

genes important for epithelial functions, such as polarized membrane trafficking, will be

expressed selectively in epithelial cells. Examples of epithelia-specific trafficking proteins

include  RAB25,  RAB17,  and the clathrin  adapter  subunit  AP1M2 –  all  of  which have

demonstrated  roles  in  polarized  membrane  transport1.  However,  there  is  currently  no

genome-scale database of genes expressed in many cell types, including epithelia. The

second project focused on methods to estimate cell type-specific gene expression. We

developed  a  new computational  tool,  called  CellMapper,  that  leverages  the  wealth  of

available microarray data to predict which genes are expressed in specific cell types. Our

approach was very successfully for epithelial cells, and we extended the analysis to many

other cell types. CellMapper is effective without the need for cell  isolation, and can be

applied to any cell type where at least one cell-specific marker gene is known. 

We then applied the CellMapper algorithm to other biological problems related to

cellular  specialization.  In  one  application,  we  used  the  cell-specificity  predictions  of

CellMapper  to  prioritize  candidate  genes  in  disease  loci  identified  by  genome-wide
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association  studies  (GWAS).  We  identified  several  candidate  disease  genes  that  are

selectively expressed in disease-relevant cell types, and therefore might contribute to cell

type-specific  functions  that  are  disrupted  during  disease  pathogenesis.  In  a  second

application,  we applied  CellMapper  in  parallel  with  RNA-Sequencing to  identify  genes

selectively expressed in the cell type, enteric glia. We found that the expression profile of

enteric glia is distinct from all other neural cell types, with some overlapping pathways but

also many differences. These results suggest that enteric glia cannot be regarded as a

close analog of  any other  cell  type,  and shed insight  into  the functions of  this  poorly

understood cell type.

This document is organized in two sections, with each focused on one of the two

major projects. In Part I, I describe the results of our RNAi screen for genes that function

in receptor-mediated transcytosis:  Chapter 1 provides background on transcytosis  and

endosomal  trafficking  and  Chapter  2  describes  the  development  and  results  of  the

reverse-genetic screen. Contributions include (i) the establishment of improved cell culture

assays for transcytosis and (ii) the identification of genes that are necessary for receptor-

mediated  transcytosis.  In  Part  II,  I  present  the  development  and  applications  of

CellMapper: Chapter 3 provides an overview of experimental and computational methods

to  estimate  cell  type-specific  gene  expression,  Chapter  4  describes  the  CellMapper

algorithm,  and  Chapter  5  discusses  two  biological  applications  of  CellMapper.

Contributions  include  (i)  the  creation  of  a  new  computational  tool  to  predict  genes

expressed selectively in different cell types, and the application of this tool to (ii) prioritize

candidate genes in human disease loci and (iii) reveal similarities and differences between

enteric glia and other neural cell types.
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I
An RNAi Screen for Factors that Regulate

Membrane Transport in Polarized Epithelia 
I. An RNAi Screen for Factors that Regulate Membrane Transport in Polarized Epithelia

In  the  late  1970s,  the  fundamental  question  of  how  epithelial  cells  establish  and

maintain their polarized phenotype became experimentally approachable.

Rodriguez-Boulan, et al. 2005

concerning the impact of
the MDCK cell model
on epithelial cell biology



1. Endosomal Specialization in Polarized Epithelia

1
Endosomal Specialization in Polarized Epithelia

This chapter provides an introduction to vesicular trafficking in the endolysosomal system,

with  particular  emphasis  on endosome specialization in  polarized epithelial  cells.  This

background information is relevant to the RNAi screen described in Chapter 2.

1.0 Introduction

Epithelial  cells  are  specialized  to  operate  at  the  interface  between  vastly  different

environments. This is particularly true in mucosal tissues such as the intestine, where the

epithelium separates a lumen saturated with microbes and microbial products from the

underlying sterile tissue. Several features of epithelial cells contribute to the ability to form

an effective barrier. For one,  tight junctions span the border between individual cells,

severely  restricting  the  paracellular  passage  of  microbes,  food  antigens,  and  other

substances. Thus, passage across the healthy epithelium occurs primarily by transcellular

routes that are tightly monitored and regulated2.  Second, epithelial  cells are polarized,
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possessing  separate  apical and  basolateral plasma membrane domains  with  distinct

protein  and  lipid  compositions.  Cell  polarity  enables  the  epithelium  to  respond

appropriately to signals from either surface and to transport molecules directionally across

the epithelial layer1.

For large molecules, for which no conducting channel exists, the primary route to

cross the epithelium is transcellular vesicular transport, or  transcytosis2. Many roles for

transcytosis have been documented in vivo. In addition to its physiological importance in

the selective absorption or secretion of protein cargo, viruses3 and bacterial toxins4 co-opt

the transcytotic  pathway to  traverse the epithelium and gain access to the underlying

tissue.  Transcytosis  is  also  an  essential  pathway  for  epithelial  cells  to  establish  and

maintain membrane polarity1. Despite the widespread importance of transcytosis in health

and  disease,  the  cellular  machinery  that  directs  membrane-protein  traffic  through  the

transcytotic pathway remains largely unknown.

1.1 FcRn-mediated transcytosis as a model system

The neonatal Fc receptor, FcRn, binds to immunoglobulin G (IgG) and escorts it across

the  mucosal  surfaces  of  the  gut,  lungs,  and  urogenital  tract,  where  IgG  operates  in

immune surveillance and host defense5. FcRn provides a valuable model for transcytosis

because it physiologically transports IgG in both directions across the cell6. Notably, FcRn

is the only established model of apical to basolateral (absorptive) transcytosis, a pathway

poorly  understood  but  significant  for  the  uptake  of  antigens,  microbial  products,  and

protein therapeutics.  In addition, many protocols and reagents are available to detect,
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purify, and label IgG, facilitating the development of cell culture-based assays of FcRn-

mediated IgG transport6.

The  extracellular  domain  of  FcRn  is  structurally  related  to  the  Class  I  major

histocompatibility  complex (MHC).  Like MHC class I,  FcRn is  an obligate heterodimer

composed of a heavy chain and tightly associated β2-microglobulin (β2m). FcRn binds

IgG in a pH dependent manner, with high affinity at low pH (< 6.5) but undetectable affinity

at a pH greater than 7. This pH dependence allows FcRn to bind IgG within the acidified

intracellular endosomes, and to release IgG at cell surfaces exposed to neutral pH5. FcRn

continually cycles between the plasma membrane and endosomes, and is strictly sorted

away from the lysosome6.

In addition to its role in IgG transcytosis, FcRn also protects IgG from degradation

in the blood stream. Fluid phase endocytosis,  followed by lysosomal degradation, is a

major  source  of  protein  turnover  for  soluble  serum proteins.  However,  FcRn rescues

internalized IgG from the lysosome by binding and recycling it back to the cell surface,

thereby providing IgG with the one of the longest serum half lives of any protein5. The

pharmaceutical industry has extensively studied the interaction between FcRn and IgG in

an effort to extend the half life of therapeutic antibodies7, leading to the identification of

mutations in IgG that increase the affinity for FcRn8,9. In Chapter 2, we take advantage of

one of these high affinity IgG mutants to develop more robust transcytosis assays.

1.2 Trafficking routes and sorting stations in polarized epithelia

The endosomes operate as a major sorting hub that connects the plasma membrane with
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other  membrane-bound intracellular  organelles,  such as  the  lysosome and  trans-golgi

network (TGN). After a protein is endocytosed from one surface, it can be recycled back to

the same surface, transcytosed to the opposite surface, sent to the TGN, or directed to the

lysosome for degradation. Protein cargo are routed to one of these possible destinations

through a series of sorting stations1 (Fig 1.1A). Newly internalized cargo first enters the

early  sorting  endosomes,  where  recycling  and  transcytotic  cargo  are  sorted  from

degradative  cargo10 and  directed  to  the recycling  endosomes  rather  than  the  late

endosome /  lysosome. There is  a distinct  population of  apical  and basolateral  sorting

endosomes for cargo internalized from each cell surface11, and the contents of these two

endosomal populations do not mix12.

Cargo  that  is  to  be  returned  to  the  cell  surface  moves  next  to  the  common

recycling endosome (CRE). Endocytic pathways from both sides of the cell merge in the

9

Figure  1.1: Endosome  compartments  and  sorting  stations.  (A)  Model  of

endosome compartments in polarized epithelial cells. (B) Model of endosome

compartments in non-polarized cells.



CRE13,14, and so this compartment serves as a key sorting hub where resident apical and

basolateral  membrane  proteins  are  distinguished,  and  the  recycling  and  transcytotic

pathways diverge14. Cargo directed to the apical surface also makes an additional stop at

the apical recycling endosome (ARE), which is either a separate compartment15,16 or a

distinct subdomain of the CRE17. The ARE is important for regulating access of membrane

proteins to the apical surface16, and can serve as a holding station for transmembrane

proteins  that  are  retained  inside  the  cell  until  an  appropriate  environmental  signal  is

received.

Several of the endosomal compartments described above are unique to polarized

epithelia and not found in other cell types (compare Fig 1.1A and Fig 1.1B). These extra

compartments are important for epithelial cells to accommodate the additional demands

imposed by cell polarity, but very little is known about what distinguishes epithelia-specific

endosomes from their analogs in other cell types. For instance, key regulators of sorting

endosomes in non-polarized cells – such as  RAB5,  EEA1,  and phosphatidylinositol  3-

phosphate (PI3P)  – are found on both apical  and basolateral  sorting endosomes and

cannot  differentiate these populations.  A major  problem in the field is  that  the cellular

machinery that leads to epithelial-specific organization and regulation of the endosomes is

largely unknown, and so it has been hard to dissect the pathway at a molecular level.

1.3 Molecular reactions in endosome trafficking

Numerous  cellular  factors  control  sorting  and  transport  through  the  endosomes.  Flux

between endosomal compartments is primarily conducted by membrane-bound carriers
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called vesicles. The formation and subsequent delivery of these carrier vesicles to their

correct  destination can be divided into  four  stages18:  budding,  transport,  docking,  and

fusion. In the first step, vesicle budding, a new vesicle is formed and pinched off from the

membrane.  Budding  is  mediated  by  a  large  complement  of  proteins,  including  coat

proteins (e.g.  clathrin)  and others (e.g.  caveolin,  sorting nexins) that  drive membrane

curvature,  adapter proteins that link specific cargo molecules to the coat complex (e.g.

AP-2, Epsins), regulatory proteins that initiate and control the timing of budding reactions

(e.g. ARF family GTPases),  and proteins that catalyze vesicle scission (e.g.  dynamin).

After a new vesicle is formed, it is then transported to its destination by motor proteins

(kinesins,  unconventional  myosins,  dynein)  that  travel  along the  cytoskeletal  filaments

tubulin  and  actin.  Next,  the  vesicle  is  recognized  by  tethering  factors (e.g.  EEA1,

Exocyst  complex)  which  capture  the  vesicle  and  direct  it  towards  the  destination

membrane, helping to insure the specificity of vesicle targeting. Finally, the vesicle docks

and fuses with the target membrane in a process catalyzed by the SNARE family proteins.

1.3.1 Control of endosome identity by Rabs and phosphoinositides

The timing and specificity  of  vesicular  transport  reactions are regulated by two major

classes  of  molecule:  the  Rab family  of  small  GTPases18 and  phosphoinositides19.

Different members of these classes are distributed on specific endosomal compartments,

serving as the primary molecular determinants of compartment identity. For instance, the

early sorting endosome is populated by  RAB5 and phosphoinositol 3-phosphate (PI3P).

RAB5 and PI3P together recruit and activate other proteins involved in vesicular transport,
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such as tethering and coat  proteins,  and thereby define the set  of  molecules that  are

present and active on the sorting endosome.

The localization of Rabs and phosphoinositides is controlled, in turn, by accessory

proteins. Rabs exist in two distinct forms, an active form that is bound to GTP and an

inactive form that is bound to GDP. Rab proteins are converted between the active and

inactive  states  by  proteins  called  guanine nucleotide  exchange factors  (GEFs),  which

activate the Rab by exchanging GDP for GTP, and GTPase-activating proteins (GAPs),

which inactivate the Rab by stimulating the hydrolysis of GTP. Rab proteins often recruit

their own GEFs, creating a positive feedback loop that allows a burgeoning endosomal

compartment to be rapidly populated by a specific Rab isoform18. Rab proteins can also

recruit GAPs and inactivate GEFs for other Rab isoforms, breaking a preexisting positive

feedback  loop  and  allowing  one  endosomal  compartment  to  mature  into  another  –  a

process called Rab conversion20. The situation is similar for phosphoinositides, as a series

of kinases and phosphatases are recruited to convert one phosphoinositide (e.g. PI3P) to

a  different  phosphoinositide  (e.g.  PI(3,5)P2),  changing  the  molecular  identity  of  the

membrane19. Thus, a network of positive and negative feedback loops insures the stability

of  mutually  exclusive  populations  of  Rabs  and phosphoinosites,  and therefore  distinct

endosomal compartments.

Rabs  and  phosphoinositides  are  important  for  establishing  the  specialized

endosomal  compartments  and  plasma  membrane  domains  in  polarized  epithelia.

Phosphoinositides  are  asymmetrically  distributed  between  the  apical  and  basolateral

surface domains, with PI(4,5)P2 enriched on the apical surface21 and PI(3,4,5)P3 on the

basolateral  surface22.  The  asymmetric  distribution  of  phosphoinositides  is  functionally
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important for cell polarity, as many proteins become mis-localized when the distribution of

these phosphoinositides is altered21,22. Several Rabs are located on specific endosomal

compartments;  RAB8,  RAB11,  RAB17,  and  RAB25 are  all  found  on  the  recycling

endosomes1,23, with several enriched on the ARE relative to the CRE15. Chronic knock-

down of  these Rabs disrupts  the trafficking  of  several  transmembrane receptors1.  For

FcRn,  transcytosis  is  inhibited  by knock-down of  RAB25 and basolateral  recycling  by

knock-down of RAB116.

1.3.2 Sorting signals and receptors in polarized epithelia

Epithelial cells continually sort apical and basolateral proteins from each other within the

secretory and endocytic pathways. Clathrin is important for sorting many single-spanning

transmembrane proteins to the basolateral surface. Indeed, some of the first basolateral

sorting signals to be discovered resemble the YXXΦ motif known to bind to the adaptin

(AP)  family  of  clathrin  adapters1,24.  Chronic  knock-down  of  the  clathrin  heavy  chain

resulted in the mislocalization of many basolateral proteins to the apical surface, while

apical  proteins  were  unaffected25.  The  function  of  clathrin  in  basolateral  polarity  is

mediated, in part, by the adaptin subunit  AP1M2. Adaptin mu subunits, such as AP1M2,

bind to YXXΦ motifs in the cytosolic tail of membrane proteins and link these proteins to

the clathrin coat. Several lines of evidence support a central role for AP1M2 in basolateral

sorting  in  epithelial  cells:  it  is  expressed  specifically  in  epithelia,  resides  on recycling

endosomes26, and is necessary for the basolateral polarity of transmembrane receptors

such as  LDLR and  TFRC27. However, much remains to be discovered. The factors that
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recruit  AP1M2 to recycling endosomes are not  known.  Furthermore,  additional  sorting

pathways must exist for proteins that do not depend on clathrin for basolateral targeting.

Sorting mechanisms for apical proteins are less well defined. Sorting signals have

been  been  identified  in  the  cytosolic,  transmembrane,  and  extracellular  domains  of

apically localized proteins28, but very few molecular factors that recognize these signals

are known. Some glycosylated apical proteins may be sorted by specific receptors, such

as the lectin  LGALS329. However, the identification of sorting receptors for many apical

proteins has been illusive. One idea is that these proteins are sorted by incorporation into

microdomains called  lipid rafts30.  The apical  membrane is enriched for components –

such as cholesterol, glycosphingolipid, and glycosylphosphatidyl inositol (GPI) anchored

proteins – which segregate into macroscopically visible domains in model lipid bilayers

and co-purify in a detergent resistant fraction of cell extracts31. The lipid raft hypothesis

proposes that these lipids and proteins also cluster together in cells and form microscopic

domains called 'rafts', which can then be incorporated together into apically bound carrier

vesicles.

Throughout  this  introduction,  I  have pointed out  several  gaps in our  knowledge

about endosome trafficking in polarized epithelia.  In the current era of biology, there is

significant power in knowing which genes operate in a pathway. Many tools are available

to alter the activity of a gene once its identity has been determined. Thus, if genes that act

in multiple stages of a pathway are identified, it is possible to interfere with each in turn

and dissect  how the pathway fits  together.  The overarching goal  of  my first  graduate

project has been to uncover genes that regulate protein transport across epithelial cells,

providing a foothold with which to dissect pathway structure.
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2. Identifying Genes that Direct IgG Transport Across Polarized Epithelial Cells

2
Identifying  Genes  that  Direct  IgG  Transport  Across
Polarized Epithelial Cells

This chapter describes a cell based RNA interference (RNAi) screen to identify genes that

act  in  receptor-mediated  transcytosis.  I  conceived  and  designed  this  project  in

collaboration  with  my  advisor  Wayne  Lencer,  and  carried  out  all  experiments  either

individually or with the support of Natasha Furtado Dalomba, a talented undergraduate

student, and Sean Johnston, a robotics specialist at the Institute of Chemistry and Cell

Biology, Longwood (ICCB-L).

2.0 Introduction

Large  (macromolecular)  cargo,  such  as  immunoglobulins  and  chaperone-dependent

nutrients, cross epithelial barriers in a receptor-mediated process known as transcytosis2.

A major  problem in  the  field  is  that  much of  the  cellular  machinery  that  orchestrates

transcytosis is not known, and so it has been hard to dissect the pathway at a molecular

level.  To fill  this gap, we conducted a targeted RNAi screen for genes that operate in
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FcRn-mediated IgG transcytosis. We identified many cases where the depletion of specific

genes caused a reproducible decrease in IgG transport, including seven subunits of the

exocyst complex, the polarity protein  PARD6B,  and several genes that have not been

linked  to  membrane  trafficking  in  polarized  epithelia  before,  such  as  LEPROT and

VPS13C.

2.1 Developing an assay of receptor-mediated transcytosis compatible

with high-throughput screening (HTS) 

The  Lencer  laboratory  has  previously  established

biochemical assays to measure IgG transport  using the

Madin-Darby Canine Kidney (MDCK) epithelial cell line. In

this experimental system, MDCK cells stably co-express

human β2m and the FcRn heavy chain tagged with the

hemaglutinin (HA) epitope at the N-terminus and EGFP at

the  C-terminus.  This  FcRn fusion  construct  is  correctly

localized to the early endosomes and can functionally bind IgG and transport it across the

cell6. To measure transcytosis, cells are grown on semipermeable support filters (Fig 2.1),

which provide independent experimental access to both the apical and basolateral sides

of the monolayer. Then IgG is added to one side of the monolayer at pH 6.0 (to facilitate

FcRn-dependent uptake), and the amount of IgG to pass through the filter after a period of

time is quantified by an enzyme-linked immunosorbent assay (ELISA). In preparation for

an RNAi screen, several modifications were made to the original MDCK model.
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Figure  2.1: Schematic  of  the

transwell experimental system for

epithelial transport assays.



2.1.1 Increasing assay sensitivity with Fc fusion proteins

One challenge of the original transcytosis protocol was that the ELISA used to measure

IgG concentration required a large amount of input material, and was not sensitive enough

to accurately measure concentration with the small sample volumes of a 96-well plate. To
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Figure 2.2: Increasing assay sensitivity with Fc fusion proteins. (A) Schematic of the hGLuc-Fc fusion

protein and the location of mutations that increase (FcMN) or abolish (FcIHH) binding affinity for FcRn.

(B) Purity of fusion proteins produced in CHO cells. (C) Log-log titration curves showing the dynamic

range of GLuc-Fc compared to the old IgG ELISA; sensitivity of the GLuc assay can be increased by

raising the luciferase substrate concentration. (D) Functional validation of the hGluc-Fc fusion proteins

in FcRn transport assays.



overcome this,  we constructed a  recombinant  protein  in  which  the  Fc  (FcRn-binding)

domain of IgG1 is linked to a humanized version of Gaussia luciferase (hGLuc; Fig 2.2A).

GLuc is the brightest known luciferase, and provides a convenient enzymatic reporter for

our transcytosis studies. The hGLuc-Fc fusions were produced in CHO cells, resulting in a

single strong band on an SDS-PAGE gel (Fig 2.2B). The new hGLuc-Fc fusion proteins

can be detected with 5-log greater sensitivity and at least a 4-fold greater dynamic range

than previous assays for full length IgG (Fig 2.2C). The hGluc-Fc fusion also simplifies the

assay because its concentration can be measured directly, alleviating the need for the

many  binding  and  washing  steps  of  an  ELISA.  These  advances  made  it  possible  to

measure protein concentration in a 96-well format.

In  addition  to  improving  the  ease of  detecting  FcRn-dependent  cargo,  we took

steps to increase the biological signal-to-noise of our transport assays. As mentioned in

Chapter 1, FcRn is responsible for the long serum half-life of IgG, and a significant amount

of  work  has  gone  into  modulating  FcRn-binding  affinity  to  increase  the  half-life  of

therapeutic antibodies. Several Fc mutants have been identified that bind to FcRn with

increased affinity at low pH, yet still release effectively at neutral pH. We reasoned that

such a mutant might exhibit higher FcRn-mediated transport in vitro, boosting the signal-

to-noise of our assays. To test this, we introduced an M428L/N434S double point mutation

in the FcRn binding site of our fusion proteins. This mutation has previously been shown

to  increase FcRn-binding  affinity  in  vitro  and  boost  FcRn-mediated transport  in  vivo9.

Indeed,  the  new mutant  –  which  we  designate  hGLuc-FcMN –  is  transported  across

MDCK monolayers 20 times more efficiently than wild type hGLuc-Fc (Fig. 2.2D).  For

comparison, an hGLuc-Fc fusion that contains inactivating mutations in the FcRn-binding
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site (I253A/H310A/H435A; designated hGLuc-FcIHH) is not transported efficiently across

MDCK monolayers (Fig. 2.2D, left). The FcIHH mutation abolishes binding affinity to FcRn

but  not  to other immune Fc receptors6,  and thus provides a clean measure of  FcRn-

independent permeability.

2.1.2 Protocols for robust gene knock down in MDCK cells

To prepare our MDCK model for a cell based RNAi screen, another challenge was the

need to develop protocols for consistent and efficient gene knock-down using the MDCK

cell line. We chose to use endoribonuclease-prepared siRNAs (esiRNAs) because they

are  inexpensive  to  prepare  and  have  been  shown  to  produce  robust  knock  down in

mammalian cell culture32. EsiRNAs are prepared enzymatically as follows (Fig. 2.3A): first,

primers are designed to amplify a 400-600 bp region of a target gene from a cDNA library,

appending T7 promoter sites to each end. Second, the PCR product is transcribed in vitro

to produce long double stranded RNA (dsRNA). Finally, the dsRNA is spliced into 21 bp

fragments by a bacterial RNase, creating a heterogeneous pool of siRNAs. The resulting

esiRNA reagent contains a diverse pool of sequences targeting the same gene, which has

been experimentally shown to produce more consistent knock down and less off target

effects than single, chemically synthesized siRNAs33.

To test the esiRNA strategy, we prepared esiRNAs targeting Gaussia luciferase (as

a negative control) and FcRn. The corresponding DNA fragments were amplified by PCR,

and esiRNAs were synthesized (Fig. 2.3B). We then optimized conditions for gene knock

down in MDCKs using the lipid based transfection reagent, lipofectamine RNAiMAX. With
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our optimized transfection protocol,  FcRn-GFP expression was reduced by ~85% with

esiRNAs  targeting  the  receptor  (Fig  2.3C,  right),  and  this  knock  down  produced  a

corresponding functional decrease in IgG transport (Fig 2.3C, left). This finding has been

reproduced  using  independent  preps  of  each  esiRNA,  demonstrating  that  both  the

synthesis and knock down are robust.

2.2 esiRNA library design and construction

2.2.1 Selecting candidate genes to target

To  select  candidate  genes  for  our  screen,  we  adopted  a  strategy  designed  to  take

advantage  of  known  biology  without  sacrificing  the  potential  to  discover  novel  genes
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Figure 2.3: Preparation and validation of esiRNAs for gene knock down in MDCK cells. (A) Flow chart

of the esiRNA synthesis protocol. (B) Products from each stage of synthesis were run on agarose gels;

a chemically synthesized 21 bp siRNA standard is shown in lane 4 of the bottom gel. (C) Functional

knock down of FcRn using esiRNAs. Left, apical to basolateral IgG transport assay after transfection

with a non-targeting esiRNA (Luc) or an esiRNA targeting FcRn. Right, qRT-PCR shows that FcRn was

knocked down by ~85% with the targeting esiRNA.



and/or  gene  families.  First,  we combed through several  major  reviews  on membrane

trafficking  in  epithelia1,23,31,34–39,  and  compiled  a  list  of  143  potentially  relevant  genes

mentioned by these reviews (the “Literature Curated Geneset”). Second, we searched for

genes implicated in epithelial endosomal trafficking by several high-throughput sources of

evidence:

• Location:  the  gene,  or  an  orthologous  yeast  gene,  has  been  localized  to  the

endosomal system by proteomics40–42 or GFP-tagging43

• Domain: the gene contains at least one protein domain (eg Rab GTPase, FYVE-

finger, BAR) related to membrane trafficking or targeting to endosomes

• Expression:  the  gene  was  classified  as  epithelia-expressed  by  our  cell  type

deconvolution algorithm CellMapper (described in Chapter 4 of this document)

• Phenotype: the gene was identified in either of two genome-wide RNAi screens for

regulators of endocytic trafficking44,45

Each  of  these  catagories  of  evidence  highlighted  a  significant  number  of  established

epithelial  trafficking  genes  (Figure 2.4A).  Of  the  categories,  “Location”  was  the  most

enriched for literature curated epithelial trafficking genes (12.3 fold more literature curated

genes  than expected by  chance),  and “Domain”  recovered the  highest  percentage of

literature curated genes (91.6%). We considered any gene highlighted by ≥2 categories of

evidence to be potential candidates for our screen. This multi-evidence strategy resulted

in a set of candidates that was 13.9 fold enriched in literature curated genes – more than

any single evidence category – and included 89 out of 143 literature curated genes (62%

coverage), second only to domain annotation. The strategy also highlighted many genes
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with unknown function, and so the high-throughput approach identified candidates that

would not have been predicted by literature review alone.

We  then  manually  curated  these  candidates,  removing  any  gene  if  the  high-

throughput  evidence could  be fully  explained  by  the  gene's  known function,  and  this

function  was unrelated to  regulating membrane transport.  We also included literature-

curated genes that were missed by the high-throughput evidence, resulting in a combined

list of 637 candidate genes, 22 of which were selected for a pilot screen and the remaining

615 for the full screen (Fig 2.4B).

2.2.2 esiRNA library construction

The starting  point  for  esiRNA synthesis  is  a  complementary  DNA (cDNA)  library.  We

constructed a cDNA library from polyA+ RNA purified from our MDCK cell line using the

'template-switching' cDNA synthesis protocol described by Pinto and Lindblad46, with the
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Figure 2.4: Selecting candidate genes for an RNAi screen. (A) Evaluating how effectively different high-

throughput categories of evidence recover a literature curated set of 143 epithelial trafficking genes,

showing both  % coverage and fold  enrichment.  (B)  Schematic  of  candidate  selection  and esiRNA

synthesis.



addition of Trehalose and Betaine to facilitate amplification of long transcripts47. This cDNA

synthesis  protocol  resulted  in  substantial  library  diversity,  with  ~2  x  109 total  cDNA

molecules  as  estimated  by  dilution  PCR  and  75%  of  clones  representing  full  length

transcripts.  The cDNA library  was  then  amplified  by  emulsion  PCR48 and provided to

Eupheria Biotech in Germany. Eupheria specializes in esiRNA synthesis, and produced

esiRNAs for all genes we chose to target in this screen. In total, esiRNA synthesis was

successful for 22 out of 22 genes selected for the pilot screen (100%) and 560 out of 615

genes selected for the full screen (91%).

2.3 RNAi screen

Our high throughput assays were conducted at the Institute of Chemistry and Chemical

Biology - Longwood (ICCB-L) screening facility. Both esiRNA transfection and transport

assay were performed with the aid of robotics, allowing for tight control of the timing of

each step.

2.3.1 Pilot screen

To validate the high throughput transcytosis assay, we performed a pilot screen against 24

genes. The pilot included a non-targeting control (Luciferase), off-target controls known to

affect general cell health (KIF11,  COPB1,  STX5), and negative controls that are located

on endosomes but are not expected to directly regulate transcytosis (TFRC,  MYD88). In

addition,  2  distinct  esiRNAs were  synthesized  against  five  genes  in  order  to  test  the

reproducible different reagents targeting the same gene.
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Figure 2.5: Results from the pilot screen, showing basolateral to apical transport

assays. The horizontal solid and dotted lines are mean and standard deviation of

the  negative  control  wells.  Red  indicates  a  statistically  significant  difference

compared to negative controls (two-tailed t-test adjusted for multiple hypothesese

by  holm's  method).  However,  there  was  noticeable  systematic  within-plate

variability (edge effects), and so statistical differences should be interpreted with

caution.



Results from the pilot are shown in  Figure 2.5. The two positive control esiRNAs

targeting FcRn-GFP (GFP, FcRn) produced a significant decrease in Gluc-Fc permeability,

demonstrating  our  ability  to  inhibit  the  FcRn-dependent  transport  pathway.  We  also

observed a clear decrease in  permeability  when targeting genes required for  clathrin-

mediated endocytosis (CLTC, AP2M1, DNM2), in conjunction with a redistribution of FcRn

to the cell surface (Fig 2.6A). On the other hand, esiRNAs against KIF11 and COPB1

produced a substantial  increase in permeability.  Both KIF11 and COPB1 are active in

essential cellular processes (mitosis and ER to golgi transport, respectively), and knocking

down these genes in our MDCK model severely disrupts cell health, preventing the cells

from establishing a confluent monolayer (Fig 2.6B).
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Figure 2.6: Microscopy on fixed wells from the pilot screen. (A) 40X view of FcRn-GFP in wells treated

with an esiRNA against Luciferase (non-targeting),  or esiRNAs against components of the clathrin-

mediated endocytosis machinery. (B) 10X view of FcRn-GFP in wells treated with an esiRNA against

Luciferase, or esiRNAs that strongly disrupted cell health. 

Luciferase AP2 CLTC1 DNM2

A

40X

Luciferase COPB1 KIF11

B

10X



To assess  knock down efficiency  under  screening conditions,  we lysed several

wells from the pilot screen and measured gene expression by qRT-PCR (Fig 2.7). For this

analysis, we selected the five genes targeted by multiple esiRNAs, comparing expression

in wells treated with each targeting esiRNA against those treated with the non-targeting

esiGLuc control. Knock down ranged from 60-90%, with every gene reduced ≥75% by at

least one esiRNA. There was a general tendency for the first targeting esiRNA to have a

larger effect than the second; this can be explained because the region targeted by the

esiRNAs was optimized by a computational algorithm, and so the first reagent against

each gene has been selected for the optimal nucleotide sequence for gene silencing.

In the pilot screen, we normalized each plate to negative control wells. However,

we found  that  the  6  negative  control  wells  included  in  the  pilot  were  not  enough for

accurate plate-wise normalization. We also observed a tendency for systematic variability,

such as edge effects, within a single plate. Therefore, in order to adjust for systematic

26

Figure 2.7: Quantitative reverse transcriptase PCR (qRT-PCR) of 5 genes in

MDCKs  treated  with  a  non-targeting  esiRNA (esiGLuc)  or  two  different

targeting esiRNAs. EsiRNAs against Gluc and FcRn were synthesized in the

Lencer lab, all other esiRNAs were synthesized by Eupheria.
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effects within and between plates, we increased the number of control wells in the full

screen, as discussed below.

2.3.2 Full screen

The entire esiRNA library was screened over a period of three sessions at ICCB-L. Similar

to what was observed in the pilot screen, the raw data displayed substantial systematic

variability such as batch and edge effects. However, several aspects of our experimental

design made it possible to control for this systematic variability and identify reproducible

hits. First, we included a large number of control wells distributed across each plate (Fig

2.8A); this layout was designed to fit statistician's recommendations for high-throughput

screens49. Second, we performed the screen with substantial replication (Fig 2.8B): every

library  plate  was  screened  in  triplicate  in  both  transport  directions,  and  protein

concentration was measured in duplicate for every plate.
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Figure  2.8:  Plate  layout  and  replication  design.  (A)  Plate  layout

showing the position of all controls. (B) Diagram of replication schema.



The raw data were normalized using a linear mixed-effects model50, resulting in a

substantial  decrease  in  variability.  Normalized  biological  replicates  displayed  a  high

degree of reproducibility, with an R2 of 0.907 for basolateral to apical transport and 0.966

for apical to basolateral transport (Fig 2.9). Replicate values for each esiRNA were then

pooled together  and converted  into  a  Z-score,  which  reflects  the  number  of  standard

deviations of the phenotype relative to the mock transfection controls. More details about

the normalization and summarization can be found in Appendix A.

This screen was effectively a double screen, with independent data for each of two

directions  of  transport.  When  we compared  Z-scores  between the  two directions,  we

discovered that a simple linear fit could entirely explain any difference in Z-score between

directions (Fig 2.10). This can be explained because we are essentially measuring steady

state flux of FcRn across the cell, and at steady state FcRn flux in both directions must be

equal. Unfortunately, this means that having data for two directions of transport does not

provide any additional biological information, and is useful only as replicates of each other.
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Figure 2.9: Reproducibility of biological replicates during full screen.



We thus pooled together the Z-scores in both directions, resulting in a single pooled Z-

score for each esiRNA.

An ordered plot of final Z-scores is shown in Figure 2.11. Supporting the validity of

our results, 7 out of 9 genes encoding subunits of the exocyst complex resulted in a lower

Z-score than all 112 mock transfection controls. The top 15 hits for decreased transport

(Table 2.1) include both genes with an established role in epithelial membrane trafficking

(e.g. Exocyst, PARD6B) and genes that have not been linked to epithelial trafficking before

(e.g. ARL14, LEPROT, C1H6orf211).
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Figure 2.10:  Comparison of apical to basolateral (A2B) and basolateral to apical (B2A) transport. Left,

Z-scores for A2B and B2A transport for all esiRNAs; dotted red line, the best fit line from a total least

squares regression. Right, histogram of the distance from the best fit line. If both directions of transport

are fully explained by the best fit line, this histogram is expected to fit a standard normal distribution

(mean = 0, sd = 1). The standard normal distribution, plotted as a dotted red line, fits the observed data.
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Figure 2.11: Ordered plot of Z-scores for the full screen, with positive controls

highlighted in green, negative controls in blue, the exocyst complex in red, and

all other esiRNAs in black. A histogram of negative control values is shown on

the right, with the standard normal distribution shown as a dotted gray line for

comparison.



2.4 Confirmation Screen and Small-Scale Validation Assays

To assess the reproducibility of our screen between days, we re-screened nearly 1/3 of

the library (164 genes). This confirmation screen included all genes with a Z-score less

than -3 or greater than 5, and a selection of genes that were near these Z-score cutoffs.

Unfortunately, we observed fairly low reproducibility between screens, with only ~30% of

hits displaying a phenotype on the second screen (e.g. only 7 of 23 decreased hits had a

Z-score < -2 on the second screen). Thus, although we find very high reproducibility within

a day, there is strong variability in esiRNA phenotypes between days.
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Due to the variability between the full screen and confirmation screen, we decided

to follow up on 8 out of 15 of our top hits in small scale assays where we could more

carefully control several parameters (Table 1, genes with an asterix). For this follow up,

we applied a double transfection protocol  that produced stronger and more consistent

gene knock down,  assessed gene knock down by qRT-PCR, and monitored electrical

resistance  across  the  cell  layer  as  a  measure  of  overall  cell  health.  In  addition,  we

repeated all  assays on multiple independent days to assess day-to-day variability,  and

synthesized second esiRNAs that target an separate region of each gene. All esiRNAs led

to a gene knock down between 70% - 90% (with the exception of the second esiRNA

against  ARL14)  and did not produce a change in electrical permeability (all  conditions

produced a normal electrical resistance of 120-160 Ωcm2).
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Figure 2.12: Small-scale validation of screen results. Apical to basolateral transport assays

for 8 selected hits using two independent esiRNAs. Error bars represent 95% confidence

intervals. All experiments reproduced on 2-4 independent days.



In the small scale transport assays, 8 out of 8 original esiRNAs led to a reduction in

hGLuc-FcLS permeability that was reproducible between days (Fig 2.12), confirming the

phenotype from our original screen. In addition, the phenotype was validated for 7 out of 8

genes using second esiRNAs, suggesting that these phenotypes are unlikely to be caused

by off-target effects. The second esiRNA against ARL14 produced a weaker knock down

than the original esiRNA, and so the lack of phenotype may be due to insufficient gene

knock down. Of the 7 validated hits,  only  EXOC2 and  PARD6B have been previously

linked to endosome trafficking in polarized epithelial cells44,51,52. Thus, this screen identified

several new genes that are necessary for receptor-mediated transcytosis across polarized

epithelial cells in culture.
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Unbiased annotation of the regulation, expression and function of mammalian genes

requires systematic sampling of the distinct mammalian cell types.

The FANTOM5 Consortium, 2014



3. Estimating Cell Type-Specific Gene Expression through Computational Deconvolution

3
Estimating  Cell  Type-Specific  Gene  Expression
through Computational Deconvolution

This  chapter  describes  the  difficulties  associated  with  isolating  specific  cell  types  for

expression  analysis,  and  the  potential  of  computational  methods  to  overcome  these

difficulties  by  predicting  cell  type-specific  gene  expression  without  the  need  for  cell

isolation.  This  background  information  is  relevant  to  the  computational  method,

CellMapper, described in Chapter 4 and the resulting applications described in Chapter 5.

3.0 Introduction

The identification of  cell-type specific gene expression is key to understanding cellular

function  and   differentiation,  and  how  these  processes  are  disrupted  during  disease

pathogenesis.  However,  there  are  steep  technical  challenges  to  obtaining  pure  cell

populations for expression profiling53. Despite calls for the “systematic sampling” of human

cell types54, current expression resources have predominantly sampled cell types that can
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be readily isolated or grown in culture, and expression data is lacking for many important

human cell types. Computational deconvolution55 is a class of methods that can extract

cell  type-specific  information from expression data on heterogeneous cell  mixtures.  As

these methods avoid the expense and technical difficulties of physical purification, they

offer  the potential  to  fill  important  gaps in  the  expression data.  In  this  chapter,  I  first

provide some background on experimental  techniques and resources for cell  isolation,

and then explain  the concept  behind computational  deconvolution and review existing

methods. In Chapter 4, I introduce a new algorithm, CellMapper, that is more robust and

sensitive than other approaches, and demonstrate that this algorithm provides accurate

predictions for cell  types that could not be analyzed previously.  Finally,  in Chapter 5 I

describe applications of CellMapper to (i) prioritize human disease candidate genes and

(ii) investigate the expression of a poorly understood cell type called enteric glia.

3.1 Experimental approaches

To measure gene expression in any new cell type, the major technical challenge is often

isolating the cell type from its surrounding tissue53. Crude cell isolation can sometimes be

accomplished by simple mechanical and biochemical protocols involving cell fractionation

and basic chemical or enzymatic treatments (e.g. white blood cell fractionation from whole

blood, separation of epithelial cell  sheets from the intestine). However, most cell  types

require more advanced methods to purify cells based on specific properties, such as the

expression of a marker gene. It can takes years to develop and validate any new protocol

for  cell  isolation,  and  established  methods  often  require  the  use  of  transgenic
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animals56–58 and therefore cannot be applied to humans.

Most  experimental  isolation  methods  –  including  fluorescence-activated  cell

sorting (FACS), immunopanning, and tandem ribosome affinity purification (TRAP) –

separate cells based on the expression of a cell-specific marker gene53. In preparation for

these methods, cells that express the desired marker gene must first  be labeled. One

approach for cell labeling is to  stain a sample with antibodies that recognize a cell-specific

epitope; this method requires an antibody to be available for a cell-specific marker gene,

and is difficult to apply to intracellular markers. In another approach, a transgenic animal is

created in which a reporter gene (e.g. GFP) is expressed using a cell-specific promoter;

this  method  is  more  effective  for  intracellular  markers  but  requires  the  availability  of

transgenic animals.

When cell-specific marker genes are not available, laser capture microdissection

(LCM) or  single cell RNA-sequencing (single-cell RNA-Seq) can be used. In LCM, a

defined region of a biological sample is selected under microscopic observation, and this

region is cut out with a laser and separated from the surrounded tissue. In practice, many

cell types cannot be identified by morphology alone, and LCM often still requires a cell-

specific reporter gene to distinguish the cell population of interest59. Single-cell RNA-seq

can decompose a  tissue into  cell  populations  without  requiring  any  knowledge of  the

underlying cell types60, by sequencing RNA from many isolated single cells in parallel and

clustering  the resulting  expression profiles.  However,  single-cell  RNA-seq data is  only

available  for  a  few organs60–62;  furthermore,  the  read  densities  currently  employed  by

single-cell RNA-seq studies make it difficult to sensitively identify cell type-enriched genes,

especially for rare cell types and for genes with relatively low expression levels.
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3.2 Computational approaches

3.2.1 Gene-driven differential expression analysis

As described above,  the standard  approach to  identify  cell  type-enriched genes is  to

isolate the cell type of interest and search for genes strongly expressed in that cell type

relative to a subset  of  others.  However,  there is  an alternative to  this  sample-driven

strategy for differential expression analysis that bypasses the need to isolate cell types

altogether63–65:  gene-driven analysis.  Rather  than  comparing  expression  between

samples, gene-driven analysis searches for genes that share a similar expression profile

to an established set of cell type-specific markers, referred to here as query genes (Fig

3.1).  This approach can identify  cell

type-enriched  genes  using

heterogeneous  samples  such  as

whole  tissue,  because  the  relative

proportion  of  cell  types  varies  from

sample to sample. As a result, gene-

driven analysis offers the potential to

rapidly  leverage  existing  expression

data  to  predict  cell  type-enriched

genes – even if  a cell  type has not

been isolated for expression analysis

before.
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Figure  3.1:  Hypothetical  example  illustrating  the

difference  between  sample-driven  and  gene-driven

strategies  to  identify  cell  type-specific  genes.  Sample-

driven  analysis  compares  samples  (columns)  to  find

genes  that  are  differentially  expressed  between  a

purified cell  type and negative control  samples.  Gene-

driven analysis compares genes (rows) to find those with

a similar expression profile to a set of cell type-specific

query  genes.  Gene-driven  analysis  can  utilize  both

purified and mixed cell type samples.



Despite  its  promise,  the  gene-driven  strategy  has  so  far  been  constrained  by

limitations of existing methods for analysis. The first application of gene-driven analysis

predicted smooth muscle genes using Pearson's correlation63. However, correlation was

later  shown to lack the sensitivity  required to identify  genes expressed in many other

tissues64 and cell types65. To overcome this limitation, more sophisticated algorithms were

developed that use machine learning64–66. The machine-learning algorithms are effective

where correlation fails, but the sensitivity gained comes at a high cost: all require very

large training sets of both positive and negative control genes (>20 of each) to define a

cell type. This requirement poses a severe limitation for most biological applications, as it

is difficult to curate such a large list of established marker genes for even a well-studied

cell type, and impossible for many others.

3.2.2 Computational deconvolution and related methods

Gene-driven  analysis  can  be  grouped  into  a  larger  class  of  methods  called

computational deconvolution. Computational deconvolution comprises any method to

infer information about individual cell types using expression data from heterogeneous cell

mixtures55.  These  methods  vary  in  the  resolution  of  cell-specific  information  that  is

extracted from a dataset. At the lower end of resolution are algorithms that estimate only

the relative frequencies of each cell type in a sample55,67, and do not attempt to determine

the  expression  level  of  any  gene.  High  resolution  algorithms  attempt  complete

deconvolution, estimating the absolute expression level of all genes in every (or most)

cell  types  of  a  sample68–70.  Gene-driven  algorithms  provide  an  intermediate  level  of
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resolution, as they identify genes that are differentially expressed in one cell type relative

to  others,  but  do  not  reveal  any  information  about  absolute  expression  levels.  While

complete deconvolution provides the most information about a sample, it often requires

stronger assumptions and necessitates additional user-provided input. In Appendix B, we

show  that  our  gene-driven  algorithm,  CellMapper,  strongly  outperforms  available

algorithms for complete deconvolution when absolute expression levels are not needed.
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4. Design and Validation of the CellMapper Algorithm

4
Design and Validation of the CellMapper Algorithm

This chapter describes the development  of  CellMapper,  an algorithm to predict  genes

selectively  expressed in  specific  cell  types.  I  designed and conducted all  experiments

discussed in this chapter, with general strategic guidance from my advisor, Wayne Lencer,

and  support  on  the  computational  biology  and statistics  from our  collaborators  Curtis

Huttenhower and Levi Waldron.

4.0 Introduction

Cell  type-specific  gene  expression  plays  a  defining  role  in  cellular  function  and

differentiation. However, efforts to compare gene expression across cell types have been

confounded  by  the  challenge  of  isolating  pure  cell  populations  and  the  cellular

heterogeneity of mammalian tissues.  The human brain provides a clear example: many

brain cell types do not maintain their differentiated state when grown in culture, and can

only be isolated acutely from intact brain tissue. Validated cell isolation protocols in mice
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often require the use of transgenic animals to label specific cell  types56–58,71,72,  and are

therefore not applicable to human. As a result, expression data are only available for a

small fraction of the ~150 estimated cell types73 of the human central nervous system, and

this problem is similar for many other tissues.

Gene-driven analysis (reviewed in Chapter 3) introduces an appealing alternative

to cell isolation: expression profiles of individual cell types can be computationally inferred

from  heterogeneous  cell  mixtures,  avoiding  the  expense  and  technical  difficulties  of

physical  purification. Rather than comparing expression between samples, gene-driven

analysis searches for genes with a similar expression profile to known cell type-specific

markers, called “query genes”. The gene-driven strategy has been used to identify genes

expressed selectively in smooth muscle cells63 and kidney podocytes65, demonstrating that

it  can  match  or  exceed  the  accuracy  of  targeted  expression  profiling  studies,  and  is

effective even for cell types that are difficult to isolate. However, this approach has so far

been constrained by limitations of existing methods for analysis; in particular, the most

current and sensitive algorithms require very large training sets of positive and negative

control genes to define each cell type65, limiting their application to cell types where many

marker genes are already available.

Here, we describe an approach to substantially increase the sensitivity of gene-

driven  analysis,  making  it  possible  to  rapidly  and  accurately  predict  cell  type-specific

genes for almost any cell type – even when only a single query gene is available. The

main innovation is  a  singular  value decomposition (SVD) filter  that  serves to highlight

subtle, but biologically relevant signals in the data. We then apply our algorithm to a large

compendium  of  19,801 microarrays  and  identify  genes  specifically  expressed  in  30
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diverse  cell  types  of  widespread importance in  human biology.  Our  approach can be

applied to any transcriptionally defined cell population.

4.1 Development of CellMapper

4.1.1 Comparing prospective algorithms

To establish a gene-driven algorithm that is accurate with only a small number of known

marker  genes  (1-2  genes),  we  started  by  comparing  several  prospective  algorithms

against a benchmark of genes enriched in each of 30 tissues74. We initially focused on

tissue-specific gene expression (e.g. liver, intestine, heart), rather than cell type-specific

expression, because there exist large catalogs of tissue-specific genes to serve as a “gold

standard” for performance evaluation. This strategy also allowed us to perform algorithm

development  and  optimization  using  an  independent  test  case  (tissue-specific

expression), and fix all algorithm parameters before moving on to our primary interest (cell

type-specific expression).

Pearson's correlation has been applied to identify cell type-enriched genes using a

single query gene in a few cases63,75, but was later shown to lack the sensitivity required

for many tissues64 and cell  types65.  To overcome this limitation, we first  tested several

algorithms that were originally developed to find genes in co-regulated biological pathways

(e.g. genes associated with the same GO terms) – GeneRecommender76,  MEM77,  and

SPELL78 – as well as mutual information. Each of these algorithms are compatible with

small  training  sets  (1-2  query  genes)  and  have  greater  sensitivity  than  Pearson's

correlation  when  applied  to  biological  pathways;  we  hypothesized  that  one  of  these
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alternative algorithms might also be effective when applied to cell types.

To compare algorithms, we applied each to search a large compendium of human

microarrays79 using many independent combinations of  2 query genes for each tissue.

After each search, we then quantified the accuracy with which the remaining TiGER genes

from the same tissue were identified (leave-2-in cross validation) as assessed by the area

under  the  precision-recall  curve  (AUPR).  Unfortunately,  none  of  the  newer  algorithms
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Figure 4.1:  Performance evaluation of five prospective gene-driven search algorithms using TiGER

tissue genes as a gold standard74, compared to the final algorithm CellMapper.  Tukey boxplots show

the change in area under the precision recall  curve (AUPR) for  each tissue,  relative to the AUPR

achieved  by  the  best-performing  prospective  algorithm  for  that  tissue.  While  all  five  prospective

algorithms performed poorly relative to the other algorithms in several tissues, CellMapper achieved the

highest AUPR in 25 out of 30 tissues and was always within 20% AUPR of the best method. MEM, Multi

Experiment  Matrix77;  SPELL,  Serial  Patterns  of  Expression  Levels  Locator78;  GR,  Gene

Recommender76; MI, Mutual Information.



provided a consistent performance increase relative to Pearson's correlation. While each

strongly outperformed correlation in some tissues, they all performed very poorly in many

others  (Fig  4.1).  Overall,  the  relative  performance  of  the  five  algorithms  was  highly

variable between tissues, with no single algorithm performing well across the board. This

lead us to test alternative strategies to increase the sensitivity of Pearson's correlation,

and we found success when filtering the data based on singular  value decomposition

(SVD), as described below.

4.1.2 SVD filter design and optimization

In our comparison across algorithms, we found that Pearson's correlation performed best

on average,  but  very poorly  for  some tissues (Fig 4.1).  To address this  limitation,  we

sought a strategy to harvest more information from the data without requiring an increase

in the number of query genes. One approach to highlight subtle, but informative signals in

microarray  data  is  to  filter  the  data  based  on  singular  value  decomposition80 (SVD).

Singular value decomposition (SVD; also related to principal component analysis) of an

expression matrix is the linear transformation of the original m genes by n arrays into an

uncorrelated set of “eigengenes” and “eigenarrays” 80 given by:

Xm×n = Um×nΣ n×nV n×n
T

where X is the expression matrix; U and V contain the eigenarrays (right-singular vectors)

and corresponding eigengenes (left-singular vectors) of X, respectively; and Σ contains

the  singular  values  of  X,  or  the  relative  importance  (variance  explained)  of  each

eigenvector  in  the  original  expression  matrix.  SVD  is  widely  used  in  genomics  data
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analysis because the eigengenes and eigenarrays often have a biological interpretation.

For instance, in the HG-U133A dataset used in this study, the first eigengene distinguishes

hematopoietic  from  solid  tissue  samples79,  and  the  first  eigenarray  explains  the

corresponding genomic expression changes that accompany hematopoiesis.

While  the  top  eigenvectors  represent  the  strongest  signals  from  the  original

expression matrix,  they are not the most informative for every biological question. For

instance,  in  an  SVD  analysis  of  yeast  cell  cycle  microarrays,  the  first  eigenvector

explained over 90% of the gene expression data, yet the second and third eigenvectors

contained most of the oscillating cell cycle gene expression signal80. The first eigenvectors

can also relate to systematic technical noise such as lab effects80,81. Finally, the strongest

signals in a large meta-analysis of  diverse samples will  be dominated by the types of

experiments  performed  most  often  in  the  literature;  almost  a  third  of  the  HG-U133A

dataset  contains  microarrays  from  breast  or  breast  cancer79.  This  sampling  bias  will

disproportionately  impact  the  first  eigenvectors,  while  later  eigenvectors  may  contain

relevant information from biological conditions sampled less frequently. To increase the

influence of potentially informative signatures from the later eigenvectors, we filtered the

data by adjusting the relative weight of each eigenvalue.

One possibility would be to posit  that each eigenvector has an equal chance of

being informative, and weight all eigenvectors equally. The gene co-expression algorithm

SPELL effectively  takes  this  approach78,  by  examining  correlations  between  genes  in

eigenarray space. However, earlier eigenvectors contain a greater signal to noise ratio,

and so weighting them equally with the lower (and noisier) eigenvectors may result  in

overemphasis of  noise in the later eigenvectors.  Therefore, we examined filters of  the
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form:

σ k ' = σk
α

which varies smoothly between no filter (α = 1) to completely equalized eigenvalues (α =

0; comparable to SPELL).  Figure 4.2A shows how AUPR varied as a function of α for

each of the TiGER tissues. The vast majority of tissues showed an increase in AUPR for

most values of α, and many demonstrated an increase in AUPR even as α approached 0.

We selected α to be 0.5 because this resulted in an improved AUPR for 25 out of 30

tissues  (p  =  3.5  x  10-7,  Wilcoxon  signed  rank  test),  and  never  led  to  a  substantial

decrease.
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The above filter assumes that there is no way to identify which eigenvectors will

best distinguish genes expressed in a given cell type. However, as we are defining cell

type genes based on their similarity to a set of query genes, we can expect that the most

informative eigenvectors will be those where the query genes are well separated from the

rest of the genome. Therefore, we also apply a soft filter to the eigenvectors, multiplying

each eigenvalue by a weight that increases as the query genes stand out:
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Figure 4.2: Parameter optimization for the CellMapper singular value decomposition (SVD) filter, using

test searches to find tissue-enriched genes as defined in the TiGER database74. (A) Evaluation of the

free parameter, alpha. The SVD filter incorporates a free parameter, alpha, which allows the strength of

the filter to be tuned, ranging in value from 1 (weak filter) to 0 (strong filter). Alpha values between 1

and 0.3 led to an increase in AUPR for 25 out of 30 tissues. An intermediate value of 0.5 was chosen

for the final algorithm, and this parameter was fixed for all analyses on cell types. (B) Evaluation of the

query-driven  weight  term  (QDW).  The  SVD  filter  also  includes  a  term,  abbreviated  QDW,  that

decreases the weight of components in which the query genes are not well separated from the rest of

the genome. The QDW term leads to an increase in performance beyond what is seen using the alpha

scaling factor alone. ***, p < 10-4; Wilcoxon singed rank test. In both subfigures, AUPR was plotted

relative to alpha = 1 and no query-driven weight term, which is approximately equivalent to Pearson's

correlation (it is equal to Pearson's correlation with the low variance principle components filtered, see

Methods).



w k = ∑
g∈(query genes)

tanh(uk
g
)

where uk
g  is the loading of gene g in singular vector k, normalized so that uk  has a

mean of 0 across all genes with a standard deviation of 1. This weight plateaus when the

query  genes  are  at  least  a  standard  deviation  away  from  the  mean  value  for  an

eigenvector, but approaches 0 as the query genes tend towards the mean.  Figure 4.2B

shows that this query-driven weighting (QDW) produced an increase in AUPR beyond

what was obtained using the α filter alone (p = 9.3 x 10 -4 relative to the filter with α = 0.5

and no QDW; Wilcoxon signed rank test).

An important  benefit  of  this  filter  was  to  make the  final  algorithm,  CellMapper,

consistent  across  tissues.  While  the  other  algorithms  performed  inconsistently,

CellMapper  was always among the best-performing methods,  and outperformed every

other  algorithm in  25  out  of  30  tissues  (Fig  4.1,  right).  In  addition,  the  SVD filter  of

CellMapper is robust to added Gaussian noise (Fig 4.3) and makes the algorithm less

sensitive to bias in sample composition (Fig 4.4).  After establishing these two suitable

filters for ranking of tissue-specific genes, the same filters were applied to the identification

of cell-type specific genes.
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Figure  4.3:  Sensitivity  of  the  CellMapper  SVD  filter  to  added  Gaussian  noise.

Gaussian noise was added to the Lukk, et al. (2010) dataset through the range of

0% to 1000% of the estimated technical noise, and then CellMapper was applied to

search the noisy dataset to find TiGER tissue genes. The amount of technical noise

was  estimated  from the  median  standard  deviation  of  the  500  least  expressed

genes. (A) Performance of CellMapper in the face of added technical noise, with

and without the SVD filter applied (“No Filter” is equivalent to Pearson's correlation

with the low variance principal components removed). AUPR was plotted relative to

“No Filter” with 0% added technical noise. At the point where performance with and

without the SVD filter is equal (900% added technical noise), the added Gaussian

noise has a greater variance than 99% of genes in the dataset. (B) Sensitivity of the

choice of free parameter,  α,  to added noise.  The choice of  α that results in the

maximum AUPR is shown as a black dot, and all choices that result in an AUPR

within 5% of this maximum value are covered by the black line. At the point where α

= 0.5 (RED line) is no longer within 5% AUPR of the best performing value (500%

added technical noise), the added Gaussian noise has a greater variance than 90%

of genes in the dataset.  These values were calculated with CellMapper's  query-

driven weight term included, and so α = 1 is not the same as “No Filter”. When the

query driven weight term was not included, α was less sensitive to noise.
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Figure 4.4: Sensitivity of the CellMapper SVD filter to sampling bias. Samples were

drawn  from the  Lukk,  et  al.  (2010)  dataset  in  order  to  intentionally  increase or

decrease bias in sample composition, and the affect on algorithm performance was

quantified. (A) Sensitivity to adding redundant samples. CellMapper was applied,

with  and  without  the  SVD  filter,  to  search  for  tissue-specific  genes  using  500

randomly selected samples from the total microarray dataset, plus varying numbers

of added “redundant samples”. For this analysis, “redundant samples” were selected

from a subset of the data annotated as “blood”,  “bone marrow”,  and “mammary

gland” because these 3 sample annotations are the most over-represented in the

Lukk dataset, accounting for over half of all samples. While performance degraded

when redundant samples were added without the SVD filter, CellMapper actually

performed better  and was able to  benefit  from the increase in  sample size.  (B)

Sensitivity  to  removing  relevant  samples.  Samples  annotated  as  belonging  to  a

specific tissue were removed from the Lukk dataset, and CellMapper was applied to

search  this  truncated  dataset  for  genes  expressed  in  the  tissue  with  samples

removed. This analysis was run separately for each of 7 tissues (“bone”, “colon”,

“kidney”,  “liver”,  “ovary”,  “prostate”,  and “skin”),  and the  mean change in  AUPR

across all tissues is reported. These tissues were analyzed because they represent

an intermediate number of samples in the Lukk dataset (50-150 sample for each

tissue, or 1-3% of the total).



4.2 CellMapper can distinguish cell type-specific expression 

signatures from whole tissue microarray data

4.2.1 Application to major brain cell classes

As a first application of CellMapper, we applied it to identify genes expressed in four major

brain cell types – neurons, astrocytes, oligodendrocytes, and microglia – using microarray

data from the Allen Brain Atlas82. The Brain Atlas data provides an excellent case study for

gene-driven analysis because it is composed exclusively of samples from heterogeneous

brain tissue, drawn from many regions with varying cellular composition. This dataset has

also been shown to contain sufficient signal to differentiate cell type-specific expression;

when it was analyzed using an exploratory clustering method that groups genes into co-

expressed modules, several of the resulting modules corresponded to genes expressed in

specific cell types82. In addition, there are separate experimental datasets from purified

samples of all four brain cell types56–58,83, providing a means for comparison and validation.

We modeled our analysis after a recent RNA-Seq study of gene expression in cell

types  from  the  mouse  cerebral  cortex58.  In  this  study,  neurons,  astrocytes,

oligodendrocytes, and microglia were identified by their expression of L1CAM, ALDH1L1,

MOG,  and  PTPRC (respectively) and isolated using fluorescence activated cell sorting

(FACS) and immunopanning. We applied CellMapper to replicate a similar experiment in

silico:  cell  type  expression  profiles  were  defined  based  on  the  query  genes  L1CAM,

ALDH1L1,  MOG, or  PTPRC, and then other genes with a correlated expression profile

were identified. This analysis returned 213 genes for neurons, 474 for astrocytes, 1027 for

oligodendrocytes, and 216 for microglia at a false discovery rate (FDR) of 0.01.
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To evaluate the accuracy of

our  results,  we  took  two

complementary approaches.  In  the

first,  we  examined  CellMapper

predictions  for  literature-defined

markers (positive controls) of  each

cell  type.  As  positive  controls,  we

selected  the  cell-specific  markers

used for validation in three previous

studies57,58,84.  CellMapper  correctly

associated  20  out  of  21  positive

control  genes  with  the  expected  cell  type  (Fig  4.5).  The  only  exception,  GFAP,  is

expressed at variable levels within astrocytes85, and so it is possible this gene was missed

for this reason. In the second approach, we asked whether CellMapper predictions for

each cell type were enriched for genes associated with these cell types as measured by

expression  profiling56–58.  We  found  that  our  predictions  for  neurons,  astrocytes,

oligodendrocytes, and microglia were significantly enriched for genes expressed in those

cell types as measured by the previous RNA-Seq study58 (p = 6.3 x 10-69, p = 4.5 x 10-76, p

= 2.5 x 10-131, and p = 1.1 x 10-84, respectively; Fisher's exact test), and by three other

studies56,57,83 (Table  4.1).  In  contrast,  we  never  observed  significant  overlap  between

CellMapper  predictions  for  one  cell  type  and  experimentally  measured  genes  from a

different cell type (enrichment p-value > 0.05), confirming the specificity of our results.
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Figure 4.5: CellMapper was applied using query genes for

four  major  brain  cell  types.  The  correct  identification  of

classic  cell-specific  markers  confirms  the  accuracy  of

CellMapper's  predictions.  OLG,  myelinating

oligodendrocytes; FDR, false discovery rate.
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These findings were robust to the choice of query gene, as both the literature-curated

markers and experimentally-defined cell type genes were also correctly identified when

CellMapper was run using different query genes (Table 4.1). Thus, CellMapper accurately

identified genes expressed selectively in these four cell types.

4.2.2 Application to other cell types

We next tested CellMapper on a large panel of additional cell types (Table 4.2), this time

extending  our  analysis  to  include  both  brain  and  non-brain  cell  types,  with  multiple

representatives of all major cell classes (neural, epithelial, connective tissue, muscle, and

hematopoietic). We curated one query gene for each cell type (Table 4.2); in most cases,

these query genes were selected because their promoters are used to drive cell type-

specific  Cre  expression  in  validated  conditional  mouse  knock  out  models86.  Then  we

applied CellMapper to search our microarray datasets using the query genes, predicting a

mean of 371 cell type-enriched genes per cell type (FDR ≤ 0.01). Again, the quality of our

results was evaluated using literature-curated positive control genes as well as a set of

negative control genes, which include cell-specific markers for non-target cell types and a

reference set of housekeeping genes87. For every cell type, CellMapper identified over half

of the positive control genes within the top 100 predictions (Fig 4.6), and excluded almost

every negative control gene. In total, 208 out of 241 positive controls were ranked within

the top 100 predictions for the correct cell type (86.3%), and all but two were ranked within

the  top  516  predictions  (99.2%;  the  only  exceptions  were  GFAP within  astrocytes,

discussed above, and SYP within enteroendocrine cells). Thus, CellMapper is accurate for
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both single- and multi-organ cell types, and for cell types difficult to isolate or culture (e.g.

Schwann cells, Paneth cells).
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Figure 4.6:  CellMapper is accurate across diverse cell  types. CellMapper was applied using query

genes for 30 cell types (Table 4.2); Tukey boxplots display the rank of 5-10 literature curated markers

(positive controls) and ≥48 negative control genes for each cell type, demonstrating that CellMapper

sensitively identified established cell type-specific markers in every case. Filled gray circles represent

negative control genes that fall outside 1.5 times the inter quartile range of the other negative control

genes (“outliers”); open circles represent positive control genes that fall outside this range. In only four

instances (0.3%) was a negative control gene identified within the top 100 predictions for a cell type.

EECs, enteroendocrine cells.



Table 4.2. Cell Types and Query Genes.

Cell Type Query Gene Experiment

Group

Microarray Dataset(s)

Neurons L1CAM A Allen Brain Atlas

Astrocytes ALDH1L1 A Allen Brain Atlas

Oligodendrocytes

(Myelinating)

MOG A Allen Brain Atlas

Microglia PTPRC A Allen Brain Atlas

Catecholaminergic Neurons TH B Allen Brain Atlas

Cholinergic Neurons CHAT B Allen Brain Atlas

GABAergic Neurons GAD1 B Allen Brain Atlas

Serotonergic Neurons FEV B Allen Brain Atlas

Adipocytes FABP4 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

B Cells CD19 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Cardiomyocytes TNNI3 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Chondrocytes ACAN C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Endothelial Cells TEK C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Erythrocytes EPB42 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Macrophages CD163 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

NK Cells NCR1 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)
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Osteoblasts IBSP C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Platelets PF4 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Pluripotent Stem Cells NANOG C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Schwann Cells (Myelinating) MPZ C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Simple Epithelial Cells KRT8 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Skeletal Muscle Cells TNNT3 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Smooth Muscle Cells MYH11 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Stratified Epithelial Cells KRT5 C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

T Cells CD3D C Engreitz, et al. (2010); Lukk, et al. 

(2010); Zheng-Bradley, et al. (2010)

Enterocytes ALPI D Intestine-specific subset of Engreitz, 

et al. (2010) and Lukk, et al. (2010)

Enteroendocrine Cells CHGA D Intestine-specific subset of Engreitz, 

et al. (2010) and Lukk, et al. (2010)

Goblet Cells MUC2 D Intestine-specific subset of Engreitz, 

et al. (2010) and Lukk, et al. (2010)

Paneth Cells DEFA5 D Intestine-specific subset of Engreitz, 

et al. (2010) and Lukk, et al. (2010)

Podocytes PTPRO E Kidney Datasets from Ju, et al. (2010)
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Table 1 (cont.). There were five “Experiment Groups”, each of which used a different set of microarray

data and different control genes (control genes are negative control markers supplied to CellMapper,

see Methods). As control genes, we included all query genes for a non-target cell type within the same

experiment group, with the addition of ALDH1L1, MOG, and PTPRC for Group B and AQP1, ACTA2,

and CDH5 for Group E.

4.2.3 Experimental validation of novel predictions

As  a  final  test  of  the  gene-driven  approach,  we  experimentally  validated  three  new

predictions by RNA in  situ  hybridization  (ISH).  We focused on predictions for  smooth

muscle and simple epithelial cells because these cell types are in close proximity in many

tissues but  can be identified without  co-staining  for  cell-specific  markers.  Figures 4.7

shows the expression of two poorly studied genes newly predicted for simple epithelia

(TMEM30B and  C77080) and one for smooth muscle (RASL12)  in six different mouse

tissues. We found that  TMEM30B and  C77080 were expressed in the simple epithelial

cells of every tissue examined, with no detectable staining in fibroblasts, muscle cells,

endothelial cells, or other connective tissue. RASL12 was expressed strongly in vascular

smooth muscle from every tissue and smooth muscle from the epididymus, weakly in the

external smooth muscle layers lining the colon, but absent from connective tissue and

epithelia. We also observed C77080 and RASL12 expression in a subset of cells within

autonomic ganglia located near the heart (Fig 4.7E), the only example of an additional site

of expression. Taken together, all three genes were strongly enriched in the predicted cell

type relative to a wide range of others across 6 diverse mouse tissues.
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Figure 4.7:  Validation of  novel  predictions.  RNA in  situ  hybridization of  serial  sections of  selected

mouse tissues using probes against  TMEM30B,  C77080, or  RASL12. Red dots indicate staining with

Affymetrix QuantiGene ViewRNA probes, blue is hematoxylin counterstain. Epi, epithelial cells; SMC,

smooth muscle cells; N, neuron cell bodies; Sat, satellite cells. (A) Cross section of villus from small

intestine. (B) Wall of medium sized artery sectioned longitudinally, with connective tissue (above) and

lumen (below). (C) Epididymus, including epithelium, and underlying connective tissue rich in smooth

muscle  cells.  (D)  Renal  pelvis,  including  edge  of  medulla  with  collecting  ducts  (left)  and  urinary

epithelium of calyx with associated smooth muscle (right). (E) Autonomic ganglion containing neurons
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Figure 4.7 (cont.): and satellite cells. (F) Colon, including epithelium of mucosal surface (right) and

crypts (center), muscularis mucosae under crypt bases, submucosa with small arteriole, and circular

smooth muscle layer (left).

4.2.3 Comparison to related approaches

A gene-driven  algorithm,  called  in

silico nano-dissection, was recently

shown to be effective at identifying

genes  expressed  in  kidney

podocytes65. This algorithm is based

on machine learning and requires a

large  training  set  of  positive  and

negative control genes. To test how

the  accuracy  of  CellMapper

compared  to  in  silico nano-

dissection, we applied each method

to  identify  genes  expressed  in

podocytes  and  quantified  the

accuracy  with  which  each

recovered  an  experimentally

defined  (“gold  standard”)  set  of

podocyte  genes88.  We  found  that

CellMapper  identified  the
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Figure 4.8:  CellMapper achieves similar accuracy to the

machine  learning  algorithm,  in  silico nano-dissection65,

while requiring far fewer query genes. Evaluating in silico

nano-dissection  and CellMapper  based on the  ability  to

recover  an  independent  experimentally  defined  set  of

podocyte-enriched genes88. Dark gray line,  in silico nano-

dissection using the training set from the original study (46

query  genes and 97 negative  control  genes);  light  gray

line,  in  silico nano-dissection  using  a  smaller  set  of  10

query genes and 10 negative control genes, the smallest

training  set  permitted  by  the  algorithm.  CellMapper

achieved comparable precision to in silico nano-dissection

using  a  substantially  smaller  training  set  (1  query  gene

versus 46 for in silico nano-dissection).



experimentally defined podocyte genes with similar precision to in silico nano-dissection at

all  levels of  recall  (Fig 4.8),  despite using a much smaller training set of  positive and

negative control genes (1 query gene for CellMapper vs. 46 query genes and 97 negative

controls for in silico nano-dissection). We then repeated in silico nano-dissection using a

smaller training set of 10 query genes and 10 negative control genes (the smallest training

set  permitted by  the algorithm),  choosing  ten established podocyte markers  as  query

genes (CR1, MAFB, MME, NES, NPHS1, NPHS2, PDPN, PODXL, TJP1, and WT1) and

markers for the other major kidney cell types as negative control genes (negative controls:

CDH5,  KDR, and  TEK for endothelia;  ACTA2,  CD34, and  PDGFRB for mesangial cells;

AQP1, SLC12A1, SLC12A3, and UMOD for tubule cells). When using this smaller training

set,  we observed a decrease in performance for  in silico nano-dissection, such that  it

performed noticeably worse than CellMapper (Fig 4.8, light gray line). Thus, CellMapper

achieved similar accuracy to  in silico nano-dissection while requiring substantially fewer

query genes.

Large training sets  of  positive and negative control  genes are not  available for

many biologically important cell types (e.g. the neuronal and intestinal epithelial subtypes

we analyzed), and so the ability to use a single query gene was essential to the success

of  our  analysis.  A  more  detailed  comparison  of  CellMapper  to  other  computational

approaches is provided in Appendix B; all other approaches have limitations that prevent

their application to many of the 30 cell types we analyzed successfully with CellMapper.
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4.3 Discussion

Understanding the unique gene expression profiles of individual cell types is fundamental

to continued advances in biology and medicine. CellMapper is one approach to obtain this

crucial information. We show the method to be sensitive, robust, and highly capable of

addressing both basic and clinical problems in human biology.

Perhaps the most important advance is that CellMapper can be applied to many

cell  types that would be difficult  or impossible to approach with other methods. Earlier

gene-driven algorithms performed inconsistently  or  required very  large training sets  of

positive and negative control  genes. CellMapper,  in contrast,  maintains high sensitivity

and specificity  when using only a single marker gene,  a condition critical  for enabling

many  biological  applications.  Compared  to  sample-driven  experimental  studies,

CellMapper can be applied to cell types that are difficult to purify. For example, many of

the brain cell types we investigated – such as myelinating oligodendrocytes and several

neuron subtypes – have not been isolated for expression analysis from humans before.

Protocols to isolate these cell types from mice required the use of transgenic animals and

other reagents not available for application to humans56–58. However, with CellMapper we

were able to predict genes expressed in these cell types using human microarray data

from complex brain tissue.

We  also  emphasize  the  practical  ease  with  which  gene-driven  analysis  by

CellMapper  can  be  applied.  While  sample  driven  approaches  require  a  substantial

investment in time and resources to purify or enrich each cell type, CellMapper requires

only a single marker gene and readily available microarray data. Markers can be used to
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delineate not only individual cell lineages (DEF5A+ Paneth cells), but also larger classes

of cells with similar function (KRT8+ simple epithelia), allowing the level of resolution to be

tailored to the needs of each specific biological question. This makes it feasible to rapidly

and  accurately  define  genes  expressed  in  many  cell  types  in  parallel,  as  we  have

demonstrated for 30 widely diverse cell types.

A built-in limitation of gene-driven approaches, such as CellMapper, is that they are

dependent  on  the  availability  of  cell-specific  marker  genes  and  large,  representative

expression datasets. Fortunately, marker genes have been established for a wide variety

of cell types, and the requirement of a single marker gene is no greater than that needed

by experimental techniques such as FACS and immunohistochemistry. The availability of

expression data will be most limiting for rare cell types that populate a single tissue, but

we show that CellMapper can still separate genes expressed in closely related cell types

such  as  neuron  subtypes  and  intestinal  epithelial  lineages.  Another  limitation  of  our

approach is that it only addresses genes covered by micoarrays; certain classes of genes,

such as long non-coding RNAs, are not well represented and so CellMapper cannot make

predictions for these genes. Future work could adapt the method for RNA-Seq data to

allow for more complete coverage of the transcriptome. By enabling gene-driven analysis

to a broader range of cell types, CellMapper allows for diverse applications in biology and

medicine.
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5. Applications of CellMapper

5
Applications of CellMapper

This  chapter  describes  two  examples  where  the  cell  type-expression  predictions  of

CellMapper can shed insight into specific biological problems. In the first  example, we

applied CellMapper to prioritize candidate genes in human disease loci. In the  second, we

investigated the expression profile of a poorly understood cell type, enteric glia, using a

combination of CellMapper and RNA-Sequencing. As these examples are independent of

one another,  I  will  describe my specific role and contributions to these projects at  the

beginning of each subsection.

5.1 Prioritizing candidate genes in human disease loci

Genome-wide association studies (GWAS) have linked numerous human genetic variants,

such  as  single  nucleotide  polymorphisms  (SNPs),  to  different  traits  and  diseases.

Although each associated variant implicates a genomic region that can include as many

as ten or more genes, only one is typically relevant to disease pathogenesis89. There are a
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limited set of approaches available to identify which gene(s) surrounding a variant is most

likely to contribute to disease, posing a major bottleneck in translating GWAS results into

mechanistic insight. As many human diseases are caused by defects in specific tissues or

cell  types,  one  fruitful  approach  has  been  to  identify  genes  in  disease  loci  that  are

selectively  expressed  in  the  tissue(s)  or  cell  type(s)  most  relevant  to  disease90–92.

CellMapper offers a powerful tool for this type of analysis, because it can be applied to

every  cell  type  that  is  relevant  to  disease  rather  than  just  the  cell  types  that  are

represented in available large-scale expression datasets. In this first example, we applied

CellMapper predictions to prioritize GWAS candidate genes linked to red blood cell93 and

platelet94 phenotypes, or to inflamatory bowel disease92 (IBD). This analysis highlighted

many candidate genes that were missed by previous approaches, and we experimentally

confirmed cell type-selective expression for three of these. I was involved in nearly every

stage of this subproject, including performing all analyses and designing the experiments.

For  the  experimental  validation,  we collaborated with  several  labs  who provided pure

samples of the cell types, and then I performed the qRT-PCR. 

As an initial case study, we applied CellMapper to prioritize genes from two recent

GWAS meta-analyses of  erythrocyte93 and platelet94 phenotypes,  two examples where

high quality GWAS data are available and the relevant cell type is unambiguous. Providing

initial  evidence that  CellMapper  might  be used to  highlight  genes from these studies,

CellMapper predictions for erythrocytes and platelets were >10 fold enriched within 10 kb

of SNPs associated with red blood cell and platelet phenotypes, respectively (p = 2.1 x

10-10, p = 2.3 x  10-5; Fisher's exact test).  We searched the GWAS loci for erythrocyte and

platelet  genes,  and found 47 candidates predicted  to  be selectively  expressed in  the
…...................................................
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relevant cell type. One gene that stood

out  was  TRIM58 because  it  is  in  a

locus associated with both erythrocyte

and  platelet  cell  number  (Fig  5.1A)

and  predicted  to  be  selectively

expressed in both cell types with high

confidence  (FDR  <  10-15).  We

measured  TRIM58 expression across

hematopoietic cells by qRT-PCR, and

found that it was expressed exclusively

in  erythrocytes,  platelets,  and  their

common  progenitors  (Fig  5.1B),

validating  our  predictions  and

implicating  a  role  for  TRIM58 in  the

developmental  program  for  platelets

and erythrocytes. A functional role for

TRIM58 in  erythrocyte  development

was  later  confirmed  after  our

analysis95.

We next applied CellMapper to analyze GWAS results for the chronic inflammatory

bowel  diseases (IBD),  a complex set  of  diseases involving many cell  types,  including

some that lack gene expression profiles. We focused on the 163 IBD susceptibility loci

identified  by  Jostins,  et  al.92,  38  of  which  lack  any  candidate  gene(s)  highlighted  by
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Figure  5.1:  Using  CellMapper  to  prioritize  GWAS

disease  genes,  part  1.   (A)  The  genetic  locus

surrounding  sentinel  SNP rs381144,  associated  with

erythrocyte  (Ery)  and  platelet  (MkP)  cell  number.

Genes  predicted  for  expression  in  erythrocytes  and

platelets are displayed in red. (B) TRIM58 expression in

primary  mouse  hematopoietic  cells  as  measured  by

qRT-PCR.  MPP,  Multi-Potent  Progenitor;  PreMegE,

Pre-Megakaryocyte-Erythrocyte; Ery, Erythrocyte; MkP,

Megakaryocyte/Platelet;  GMP,  Granulocyte-Monocyte

Progenitor;  Neu,  Neutrophil;  MΦ,  Macrophage;  cDC,

conventional  Dendritic  Cell;  B,  B Cell;  T,  T Cell;  NK,

Natural Killer Cell. All bars are mean +/- SD (n = 3 – 7

independent biological replicates), and letters indicate

statistically significant differences between groups (p ≤

0.05, Tukey's Honest Significant Difference test).



previous prioritization strategies. Genes predicted by CellMapper to be …...................................................

differentially expressed in T cells, B cells, NK cells, and platelets were more than 5-fold

enriched among genes located within 10 kb of IBD SNPs (p < 0.01 for all  cell  types),

highlighting the well-known relevance of  the  three lymphocyte cell  types to  IBD96 and

supporting the view that platelets also play an active role in disease pathogenesis97. We

searched IBD loci for genes predicted to be differentially expressed in these four cell types

and four others that  contribute to IBD96 – macrophages,  simple epithelial  cells,  goblet

cells,  and  Paneth  cells.  This  analysis

highlighted  65  novel  candidates  and

provided  additional  support  for  74

previously implicated genes.

Example candidates highlighted

by  CellMapper  are  C1orf106 and

KIF21B (Fig  5.2A),  two genes  in  the

same locus predicted to be enriched in

simple epithelial cells and in T and NK

cells,  respectively.  As  before,  we

verified  our  expression  predictions  by

qRT-PCR,  this  time  using  human

immune cell  types  isolated  by  FACS,

cultured endothelial  and epithelial  cell

lines,  and  primary  intestinal  epithelial

organoids  (Fig  5.2B).  The  results
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Figure  5.2:  Using  CellMapper  to  prioritize  GWAS

disease  genes,  part  2.   (A)  The  genetic  locus

surrounding sentinel SNP rs7554522, associated with

inflammatory bowel  disease (IBD).  Genes colored in

purple are predicted for simple epithelial cells, genes

colored  green  predicted  for  T  and  NK  cells.  (B)

C1orf106 and  KIF21B expression  in  human primary

cells  and  cell  lines.  Mono,  monocyte;  HMEC1,

endothelial  cell  line;  Caco2, colon epithelial  cell  line;

Organoid,  primary  epithelial  organoid  from  small

intestine biopsy. All bars are mean +/- SD (n = 3 – 7

independent biological replicates), and letters indicate

statistically significant differences between groups (p ≤

0.05, Tukey's Honest Significant Difference test).



confirmed epithelial expression of C1orf106, and T and NK cell expression of KIF21B. This

example  illustrates  one  benefit  of  CellMapper  as  a  prioritization  strategy  for  GWAS:

CellMapper can be used to not only prioritize candidate genes, but also to suggest which

cell type(s) might be affected for each candidate. C1orf106, the gene we discovered to be

epithelia-specific,  is  particularly  interesting  as  an  IBD  candidate  because  rare  coding

variants in this gene have been associated with an increased risk for IBD98.

To assess whether CellMapper could also be used to prioritize candidates for other

diseases,  we  comprehensively  searched  for  enrichment  of  disease  candidate  genes

among our top predictions for each of the 30 cell types. We considered genes linked to

human genetic disorders in Online Mendelian Inheritance in Man99 (OMIM) and genes in

disease  susceptibility  loci  identified  by  GWAS100.  Both  OMIM  genes  and  GWAS

candidates were significantly enriched in the top 200 predictions across all CellMap cell

types (p = 7.4 x 10-37 and 3.3 x 10-30, respectively). Furthermore, we frequently found that

genes linked to individual diseases were enriched in the top predictions for specific cell

types  (Fig 5.3A,B),  and these disease-cell  type associations primarily  highlighted cell

types  with  an  established  role  in  disease  pathology.  These  results  demonstrate  the

potential of CellMapper to prioritize genes for many other human diseases.
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Figure 5.3: Enrichment of genes linked to (A) human genetic disorders (OMIM) or (B) human GWAS

phenotypes (NHGRI) within the top 200 genes prediction for a given cell  type. All cell type-disease

enrichments that reached statistical significance are shown.



5.2 Transcriptional identity of enteric glia

Glia are the supportive cells of  the nervous system. In the enteric (intestinal) nervous

system,  glia  outnumber  neurons  several  fold  and  are  essential  for  normal  intestinal

function101,  yet  the  physiological  role  of  this  cell  type  remains  poorly  understood.  I

contributed to a project in collaboration with Drs. Meena Rao and Gabrial Corfas to study

gene expression in enteric glia using a combination of RNA-Seq and CellMapper.  The

goal was to identify new cell type-specific markers for enteric glia and to compare enteric

glia to other neural cell types based on expression similarity. Enteric glia have previously

been thought to be most similar to astrocytes102, due to their similar morphology and the

fact that they express the astrocyte marker  Gfap, and to Schwann cells102, due to their

similar  developmental  origins.  However,  we found that  enteric  glia  also express many

markers of myelinating oligodendrocytes, and bear as much global expression similarity to

oligodendrocytes as they do to astrocytes or Schwann cells.  These results reveal that

enteric glia cannot be considered analogous to either astrocytes or Schwann cells, but are

rather  transcriptionally  distinct  from all  other  neural  cell  types – with  some overlap in

expression with other glia, but also many differences. We also identified many new genes

enriched in enteric glia, and some of these may be useful as cell type markers. My role in

this  project  was  to  analyze  the  RNA-Seq  data,  plan  and  conduct  the  expression

comparison between neural  cell  types,  and provide  other  bioinformatics  support.  This

section was co-written with Dr. Rao, and the project has been previously published103.
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5.2.1 Transcriptional profiling of enteric glia

Genome-wide expression data were not previously available for enteric glia; to gain insight

into the functions of  glia in the gastrointestinal  tract,  we determined the transcriptional

profile of  Plp1+ enteric glia by RNA-Seq. GFP+ cells were isolated by FACS from the

ileum  and  colon  of  Tg(Plp1-GFP)  reporter  mice  –  which  express  GFP on  the  Plp1

promoter. Then total RNA abundance was measured by Illumina deep sequencing, and

differential expression assessed with Cuffdiff104. For the differential expression analysis,

GFP+ samples from colon and ileum were treated as biological replicates and compared

to GFP- samples.  This represents a conservative strategy that  should highlight  genes

selectively expressed in enteric glia in both colon and ileum. To validate our RNA-Seq

results, we first checked the measured expression of established marker genes for several

intestinal cell types. The enteric glial genes S100b, Gfap, Plp1, and Sox10 were strongly

enriched  in  GFP+  samples,  while  markers  of  epithelial  cells,  smooth  muscle,  and

endothelia were all depleted (Fig 5.4). A subset of neuronal genes that are not expressed

by  enteric  glia  were  also  somewhat  enriched  in  the  GFP+  sample  (Fig  5.4,  right),

suggesting that  this  sample contained some neuronal  contamination.  Regardless,  glial

genes were enriched to levels at least 20-fold higher than that of neuronal genes in the

GFP+ sample; therefore, the presence of some neurons is unlikely to confound further

analysis, which focuses on the most differentially expressed genes.
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5.2.2 Enteric glia are transcriptionally distinct from other types of glia

Enteric glia share the same developmental origins as Schwann cells, but have traditionally

been considered to be analogous to astrocytes based on their morphology and expression

of Gfap102. To explore the transcriptional similarity between enteric glia and other types of

glia in the nervous system, we compared our data to previous microarray57,105 and RNA-

Seq58 studies  of  gene  expression  in  murine  astrocytes,  neurons,  oligodendrocytes,
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Figure 5.4:  RNA from  Plp1+ cells  isolated from postnatal  intestine is

enriched for enteric glial marker genes. Relative difference in expression

of cell-type specific genes in RNA-Seq data from GFP+ versus GFP-

samples. To avoid numerical instability (dividing by 0) in cases where a

gene was very weakly expressed in one sample, a pseudocount of 0.01

was added to all measured FPKM prior to calculating fold enrichment.

This will,  in general,  decrease the estimated fold change, providing a

more conservative value. 



microglia and Schwann cells. In a second complementary approach, we used CellMapper

to  predict  genes  expressed  in  enteric  glia  and  other  neural  cell  types  using  human

microarray data from ArrayExpress79,106 and the Allen Brain Atlas82.  In total,  these two

approaches  provide  independent  gene  expression  measurements  for  each  cell  type,

allowing us to  compare our  results  to  several  studies  and determine which cell  type-

similarities are robust across methods.

There are several technical challenges when comparing gene expression between

studies:  different  cell  isolation  protocols,  RNA purification  methods,  and  expression

technologies, all leading to “lab effects” that can substantially alter an overall expression

profile107.  To overcome these uncertainties,  we designed a strategy to distinguish true

biological  differences between cell  types while mitigating technical  variability.  First,  we

compared genes upregulated in a given cell type (relative expression) rather than raw

expression  levels.  Second,  we  assessed  similarity  of  gene  expression  between  each

experiment by calculating a “similarity score”108, which emphasizes genes that are most

differentially expressed in an experiment over genes that do not change substantially and

contribute to noise. To test this approach, we calculated similarity scores between every

pair  of  studies  and  estimated  how  much  of  the  variability  in  these  scores  could  be

explained by the combination of cell types being compared (e.g. Neuron-Neuron, Neuron-

Enteric Glia). Cell type combination explained ~80% of the variance in similarity scores (η2

= 83%; p <  10-4 by  permutation test),  indicating that  the similarity  score strategy can

highlight true biological differences between cell types.
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Similarity  scores  between  every  combination  of  samples  are  illustrated  as  a

heatmap  in  Figure  5.5.  This  plot  shows  the  consistency  across  methods  aimed  at

measuring  expression  for  the  same  cell  type.  For  example,  at  a  global  level,  gene

expression in astrocytes is highly similar whether measured by RNA-Seq, microarray or

CellMapper.  Previously  known similarities  and differences between cell  types are also
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Figure 5.5: Global comparisons of enteric glial transcriptional profiles to that of other

neural cell types, part 1: Heatmap illustrating global similarity scores between gene

expression in glial and non-glial cell types. (B) Gene set enrichment analysis (GSEA)

showing the rank of markers from neurons (N), oligodendrocytes (O), and astrocytes

(A) within the transcriptomes of CNS cell types (top) versus enteric glia (bottom). 



evident.  For  instance,  oligodendrocytes,  astrocytes  and neurons  have  very  little  gene

expression similarity with each other, and consequently similarity scores between these

cell  types  are  very  low.  Also  as  expected,  Schwann  cells  show strong  similarity  with

oligodendrocytes, the other myelinating cell type, but only weak similarity to astrocytes

and no similarity to neurons. Enteric glia display the greatest similarity to Schwann cells,

and then to oligodendrocytes.  They also exhibit  some similarity to astrocytes,  but  it  is

limited and no greater than the similarity between Schwann cells and astrocytes. Enteric

glia  share  no  significant  similarity  with  the  mesoderm-derived  microglia,  pericytes  or

endothelia. Of note, enteric glia exhibit significant similarity scores with neurons, unlike

any of the other types of glia. It is unclear if this similarity is due to neuronal contamination

of the enteric glial data set, or to shared expression of some biological pathways. The

consistency of this observation across the RNA-Seq and CellMapper data supports the

possibility of shared pathways.

The  global  comparisons  of  transcriptional  similarity  suggest  that  enteric  glia

express many of the same genes as several different types of glia. To investigate this

suggestion further, we examined our RNA-Seq and CellMapper predictions for expression

of an established set of   astrocyte,  oligodendrocyte, and neuron markers57,  and asked

whether each marker set was enriched in enteric glia according to gene set enrichment

analysis109 (GSEA). To validate this approach, we first assessed the rank of these markers

within RNA-Seq data sets for each of the CNS cell types58. We found that neuronal genes

were enriched only in neurons, astrocytic genes in astrocytes, and oligodendrocyte genes

in oligodendrocytes (Fig 5.6, top), confirming that the “established markers” chosen are

consistent  across  studies  and represent  an  accurate  set  of  cell  type-specific  markers
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within the CNS.

When we carried out GSEA using these markers in the enteric glia data set, the

results were striking. Markers for all 3 CNS cell types were enriched, with some markers

being strongly  expressed in  enteric  glia  (ranking among the top enriched enteric  glial

genes), while other markers were undetected (Fig 5.6, bottom). This result was equivalent
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Figure 5.5: Global comparisons of enteric glial transcriptional profiles to that of other

neural cell types, part 2: Gene set enrichment analysis (GSEA) showing the rank of

established markers57 from neurons (N),  oligodendrocytes  (O),  and  astrocytes  (A)

within the transcriptomes of CNS cell types (top) versus enteric glia (bottom). 



whether we analyzed the enteric glial expression profile predicted by CellMapper or the

RNA-Seq data, showing that the finding was consistent across methods. Certain subsets

of  markers  of  each  CNS cell  type  were  strongly  enriched  in  our  GFP+  sample.  For

instance, a subset of genes important in myelinating glia including Sox10, Plp1, Mbp, and

Mpz,  were all  strongly enriched while others,  such as  Mog,  Mobp,  and  Mag were not

detected. Astrocytic genes such as  Gfap,  Entpd2, and  Dio2 were all  highly enriched in

enteric  glia  while  other  widely  used  markers  of  astrocytes,  such  as  Aldh1l1 and  the

glutamate transporter Slc1a3, were not expressed. Taken together, the GSEA and global

analyses of  transcriptional  similarity  show that  enteric  glia  are a unique class of  glia,

without direct analogy to any other type of glial cell examined.
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A. Details of Normalization and Analysis for RNAi Screen

A
Details of Normalization and Analysis for RNAi Screen

To analyze our data, we developed a strategy that assesses esiRNA activity at the same

time as normalization, estimating the consistent effect among all esiRNA replicates which

cannot  be  explained  by  known  systematic  sources  of  variation.  Let  Xeфi be  the  log-

transformed luciferase intensity of well i, treated with esiRNA e, and measured at location

ф (ф = {b,p,r,c} for batch b, plate p, row r, and column c). We fit the measured intensities,

Xeфi,  to  a  mixed effects  linear  model  with  fixed esiRNA effects  μe,  random systematic

effects Sф, and residual error εi:

Xeфi = μe + Sф + εi

where systematic effects are the sum of batch effects Bb, plate effects Pp, row effects Rpr,

and column effects Cpc:

Sф = Bb + Pp + Rpr + Cpc

This model was fit separately for each direction of transport. Normalized signal intensities,

which have been corrected for systematic errors (Xeфi – Sф), are plotted in Figure A.1B.
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Figure A.1: Raw (A) and normalized (B) results from the screen. Each dot corresponds to a single

luciferase  measurement;  there  are  6  measurements  for  each  esiRNA (3  biological  x  2  technical

replicates). Blue, Pos (GFP - Eupheria); Green, GFP - Lencer; Red, Neg1 (mock); Orange, Neg2 (Luc);

Gray, other.



To assess statistical significance of each esiRNA effect μe, we used a permutation

test. A single mock transfection well on the library plate was labeled as a gene named

“MOCK”, and then the mixed linear model fit was repeated, obtaining an estimate of the

“esiRNA”  effect  for  a  known  negative  control,  μMOCK.  This  was  then  repeated  for  the

remaining mock transfection wells (112 in total),  providing an empirical null distribution

under the mock transfection condition. The null distribution, μMOCK, fits a normal distribution

for both directs of transport (p = .82, .40 for basolateral to apical and apical to basolateral

transport,  Shapiro-Wilk  test).  As can be seen in  Figure A.2,  the actual  distribution of

esiRNA effects is spread out relative to the null distribution.
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A Z-score was then calculated for each gene and direction of transport by dividing

the estimated esiRNA effect, μe, by the standard deviation of the empirical null distribution

(i.e. the standard deviation of μMOCK). Z-scores for each direction were then pooled using

Stouffer's method:

Ze=
Ze

A 2B
+Ze

B2A

√2

resulting in a single overall Z-score for each esiRNA in the screen.
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Figure A.1: Histogram of the log2 esiRNA effect, μe, is shown in red.

Histogram of empirical null distribution, μMOCK, is shown in blue, with

the best fit normal distribution plotted as a dotted blue line.



B. Comparing CellMapper to Other Approaches

B
Comparing CellMapper to Other Approaches

This section provides a performance comparison between CellMapper and several other

methods that can be applied to identify genes enriched in different cell types, including the

unsupervised  hierarchical  clustering  algorithm  weighted  gene  co-expression  network

analysis  (WGCNA)110,  several  complete  deconvolution  algorithms55,  and  Pearson's

correlation.  Although  these  algorithms  can  all  be  used  to  identify  genes  expressed

selectively in specific cell types, most were not designed for this purpose: WGCNA was

designed to explore large patterns in gene expression data, and complete deconvolution

algorithms  were  designed  to  separate  expression  changes  due  to  variation  in  cell

proportions and changes due to expression differences within the individual cell  types.

CellMapper cannot address these alternative problems, and the performance evaluations

below  only  demonstrate  the  superiority  of  CellMapper  for  the  specific,  but  important

challenge of identifying cell type-enriched genes. A comparison between CellMapper and

the machine-learning algorithm, in silico nano-dissection65, is provided in Chapter 4.2.3.
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Figure B.1: Comparison to Pearson's correlation. All searches described in  Table 4.2 were repeated

with Pearson's correlation. Tukey boxplots display the rank of 5-10 literature curated markers (positive

controls) for each of the 30 cell types. While CellMapper was accurate for every cell type (A), Pearson's

correlation performed poorly for about a third of cell types (B).  Figure 4.6 shows the same data as

panel A in log scale, this figure is in linear scale to more clearly demonstrate the poor performance of

Pearson's  correlation for  many cell  types.  GFAP,  the only  positive control  gene ranked > 2000 by

CellMapper, was also ranked > 2000 by Pearson's correlation. EECs, enteroendocrine cells.
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Figure  B.2:  Comparing  CellMapper  to  unsupervised  clustering,  part  1.  Unsupervised  clustering

methods,  such  as  Weighted  Gene  Coexpression  Network  Analysis  (WGCNA),  group  genes  into

modules based on their similarity of expression. These methods provide a powerful means to identify

major patterns of coexpression in microarray data. WGCNA has been shown to uncover modules in

whole  brain  tissue data  that  correspond to  genes expressed in  specific  cell  types82,110,  and so  we

decided to compare the accuracy of this unsupervised approach to CellMapper. Precision recall plots

comparing WGCNA to CellMapper, based on the recovery of experimentally defined (“gold standard”)

cell type-enriched genes56–58,83. CellMapper produces a small, but reproducible performance increase

for astrocytes, oligodendrocytes, and microglia, and a large performance increase for neurons. The

best performing WGCNA module is plotted for each cell type.
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Figure B.3: Comparing CellMapper to unsupervised clustering, part 2. While unsupervised clustering

methods, such as WGCNA, can uncover modules in whole brain tissue data that correspond to genes

expressed in the major cell classes, they offer no ability to target specific cell types. (A) Comparing the

ability  of  CellMapper  and  WGCNA to  recover  experimentally-defined  neuron  subtype  genes56,71,72.

Precision recall curves confirm that CellMapper recovers genes in expressed neuron subtypes using

multiple  query  genes,  while  WGCNA does  not  recover  any  modules  related  to  these  cell  types.

Precision recall curves are plotted for all 13 WGCNA modules, demonstrating that no WGCNA modules

recover neuron subtype genes better than expected by random chance. (B) The correct identification of

literature  curated  (positive  control)  cell-specific  markers  confirm  that  CellMapper  accurately

distinguished genes between the four neuron subtypes. The positive control genes DDC and SLC18A2,

which are ….........................................



Figure B.3 (cont.): expressed selectively in both catecholaminergic and serotonergic neurons, were

correctly associated with both cell types. (C) In contrast, WGCNA did not identify any gene modules

related  to  these four  neuron subtypes,  as  shown by  the  lack  of  correspondence between module

assignment  and  known  association  with  these  cell  types.  Cat,  catecholaminergic  neurons;  Ser,

serotonergic neurons; Cholinergic, cholinergic neurons; GABAergic, GABAergic neurons.
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Figure B.4: Comparing CellMapper to complete deconvolution algorithms. All complete deconvolution

algorithms  from  the  CellMix  R  package113 were  tested,  which  includes  the  Digital  Sorting

Algorithm70 (DSA), deconv111, and semi-supervised Non-negative Matrix Factorization112 (ssNMF), along

with Pearson's correlation and WGCNA82. For this evaluation, we applied each method to predict genes

selectively  expressed  in  the  four  major  brain  cell  classes  from  Figure  B.2 (top)  and  four  neuron

subtypes  from  Figure  B.3 (bottom)  using  microarray  data  from the  Allen  Brain  Atlas82.  Then  we

determined how accurately each method returned an experimentally defined set of genes for each cell

type56,58,71,72,114, as quantified by AUPR. “Relative Performance” is calculated from the AUPR, linearly

scaled so that the best performing algorithm for each cell type is given a value of 100%, and the AUPR

expected by random chance is 0%. Many cell type deconvolution algorithms were originally validated

using the major  brain cell  classes, and are expected to  perform well  for  these cases.  The neuron

subtypes, in contrast, have not been successfully analyzed by other methods.
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