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Abstract
Inspired by the Design by Contract paradigm, we intro-
duce CONSUL, a contract system for distributed compo-
nents. CONSUL monitors distributed components at run time
with higher-order behavioral contracts. Contract monitoring
is local to a component, and the component is treated as
a black box. Thus it does not disturb the highly decoupled
nature of distributed components and allows heterogeneous
implementation languages and platforms without modifica-
tions to a component’s code. We describe the design, seman-
tics and properties of CONSUL (adapter transparency and
correct blame), and show that its contracts can capture and
enforce precise and useful properties of a variety of off-the-
shelf components.

1. Introduction
The Design by Contract methodology [21–23] facilitates the
correct design of component-based software. It dictates that
each component should come with a contract: a precise and
enforceable specification of its expectations of and promises
to other components. Contracts are usually expressed in a
full-fledged programming language and are checked when
components run. Thus they make it easy for programmers to
state and enforce precise conditions on the correct use of a
component. In addition to protecting components within an
application, contracts enrich the documentation of compo-
nents, eliminate the need for defensive code that hinders the
readability and maintenance of components, and upon con-
tract failures provide useful information (blame) that serves
as a starting point for debugging. Since their introduction in
Eiffel [21], contracts have been adapted with much success
to diverse settings (e.g., [3, 4, 11, 17, 18]). In this paper, we
describe CONSUL, a tool that brings the benefits of contracts
to distributed components.

CONSUL, and any other contract system for distributed
components, must satisfy a challenging set of requirements
to be practical. First, when writing distributed applications,
programmers wire together third-party remote components
usually without having access or the ability to modify the
components’ source code. Even when they do have access,
the source code of the components is often written in a multi-
tude of languages. Thus, in contrast to a contract system for

a programming language, a contract system for distributed
components cannot depend on specific features of a com-
ponent’s language to describe and enforce properties of the
component, i.e., it must be component-language agnostic.

Second, programmers usually do not have control over
the deployment and configuration of a third-party compo-
nent. This has three implications for a distributed contract
system: (i) the contract system can only assume third-party
components are black boxes that send and receive messages,
i.e., contracts should express properties of the messages and
information from messages alone should suffice to enforce
the properties; (ii) the contract system must be able to check
contracts under partial deployment, i.e., when some but
not all components use it; (iii) the contract system should
cause no changes to communication patterns between com-
ponents, since doing so under partial deployment of the con-
tract system may cause some components to fail.

Third, distributed components are often only loosely cou-
pled. Their interfaces are typically specified using RPC
frameworks (e.g., Thrift [1]), or web services standards (e.g.,
WSDL [8]) that describe the operations a component offers
to its clients together with the structure of the messages the
operations expect and return. These basic interface abstrac-
tions enable the re-use of components in diverse contexts
since they do not assume that components are deployed on
top of a particular middleware or distributed system (e.g.,
CORBA [24]). In turn, this enables programmers to eas-
ily compose components that assume different RPC frame-
works, transfer protocols, etc., all within the same applica-
tion. A contract system for distributed components should
accommodate the loose coupling of distributed components
and operate on top of popular interface abstractions. More-
over, as new interface abstractions are developed, a contract
system should be extensible with interface abstractions.

CONSUL meets all of these requirements. CONSUL takes
a black-box approach to contract checking and can enhance
the interface of components without requiring code changes
or a particular shared middleware, message protocol, etc.
A CONSUL-enhanced component collects data from mes-
sages the component sends and receives and then determines
whether a contract is satisfied based only on this local data.
Moreover, CONSUL operates on top of popular interface ab-
stractions such as Thrift and WSDL and users can extend
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CONSUL with plugins for the interface abstraction of their
choice. Finally, CONSUL can be partially deployed: some
but not necessarily all components in a distributed applica-
tion may use it while CONSUL remains transparent to com-
ponents that do not use it.
Properties enforceable by CONSUL CONSUL allows the
specification and enforcement of behavioral contracts [5]:
arbitrary computable properties of the messages that a com-
ponent operation receives and sends. By contrast, most exist-
ing distributed component monitoring tools focus on syntac-
tic properties of messages, communication patterns between
components, or quality of service.

Existing systems that support behavioral contracts (e.g.
[6]) limit expressiveness to first-order properties of mes-
sages, i.e, assertions. However, the documentation of pop-
ular distributed components are rife with descriptions of
properties of messages that go beyond what assertions can
express. For instance, the documentation of the Thrift API
of the popular note taking service Evernote1 states that
the listLinkedNotebooks operation returns (among other data)
a noteStoreURL, the address of a service that implements the
NoteStore interface [10]. To express this property, a contract
system must be able to associate noteStoreURL with a contract
for the NoteStore interface. To enforce it, a contract system
must be able to keep track of future messages sent to and
from noteStoreURL and monitor that they conform with the
contract for NoteStore. This is not a first-order property of
noteStoreURL but rather a higher-order one. It describes what
operations the server at noteStoreURL offers, what arguments
they expect and what results they return. Note that the argu-
ments or results may in turn implement NoteStore or some
other higher-order specification. Thrift and other frame-
works that describe only syntactic contracts or first-order
behavioral contract systems for distributed components can-
not express this property and would treat noteStoreURL as a
string, rather than a reference to a component.

In contrast, CONSUL is a higher-order behavioral contract
system for distributed components. It can express and en-
force exactly the higher-order properties of messages that
programmers can express in contract systems for higher-
order programming languages. More concretely, with CON-
SUL the author of the Evernote API can state that noteStoreURL
refers to a service that adheres to the NoteStore contract and
CONSUL checks that any connections to noteStoreURL con-
form to that contract. In Section 2 we further describe how
CONSUL can express and enforce behavioral contracts for an
application like Evernote.
Validation Simultaneously addressing all the above re-
quirements is complex and challenging. Moreover, even
though contracts for higher-order functions [11] have been
extensively studied over the last fifteen years, adapting these
results for CONSUL is not straight-forward. Important se-
mantic issues arises from the lack of linguistic mechanisms,

1 https://evernote.com/

such as proxies, that associate values and their contracts.
Instead, CONSUL has to carefully infer and maintain the
association between services and their contracts only from
inspecting network messages. To ensure the correctness of
CONSUL, we develop CC, a calculus that models the se-
mantics of CONSUL. In Section 3 we present CC and its
properties, namely that CONSUL is transparent to applica-
tion components (under certain reasonable conditions) and
that CONSUL assigns correct blame upon contract viola-
tions. These results help validate that our system meets the
requirements for a practical contract monitoring system for
distributed components. In addition, we have implemented
CONSUL and used it to harden the interfaces of a variety
of off-the-shelf components (Section 4), and evaluate the
impact of CONSUL on their performance (Section 5).

2. CONSUL by Example
Evernote provides cloud-based storage of notes, organized
into notebooks. Each user’s notes and notebooks are stored
in a particular sharded database called a note store. Client-
side components implement tools for users to create and
access notes and notebooks. Evernote allows a user to share
her notebooks with other users. Thus, a note store contains
the notes and notebooks a user has created, and a list of
shared notebooks she has shared with other users and a list
of linked notebooks that other users have shared with her.

Accessing a shared notebook may require contacting a
note store that is different from the one the user contacts
for her own notes. Figure 1 depicts some of the steps that
a user must take to access a note from a notebook shared
with her by another user [10]. Each box in the diagram rep-
resents a component, and arrows indicate RPC calls and re-
turns. Labels in bold above an arrow indicate the operation
being called, and labels below arrows describe the data trans-
ferred in the request or reply message. Component Client is
the client-side component that interacts with the Evernote
services. Component Server1 is the Evernote cloud service
that implements the user’s note store, and Server2 represents
the note store where a shared notebook resides.

To access a shared notebook, the client retrieves from
its own note store a list of linked notebooks (operation
listLinkedNotebooks) and uses the information from a linked
notebook to contact Server2 and authenticate to the shared
notebook (authenticateToSharedNotebook).The client can then ac-
cess the shared notebook (getSharedNotebookByAuth) and find a
note within the notebook (findNotes).

There are many properties of this workflow that are nec-
essary to successfully access a user’s shared notebooks but
stated only informally in the documentation. We focus here
on two, a simple and a complex one: (1) the findNotes op-
eration consumes a nonnegative integer offset argument and
returns a list that has a length of at most maxNotes (another ar-
gument to the function); (2) listLinkedNotebooks returns URLs
that are references to NoteStore services (i.e., services with a
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particular interface located at different endpoints) together
with a shareKey per NoteStore service to be used when calling
authenticateToSharedNotebook on that service.

CONSUL can capture both properties as contracts and
enforce them at run time. CONSUL provides its own IDL
to express contracts. The IDL does not focus on syntactic
specifications (which IDLs such as Thrift’s already handle)
but instead on behavioral contracts. Its features are tailored
to the contracts that CONSUL aims to express and enforce.

Server1

Server2

Note,...

sharedAuthToken,filter,offset,maxNotes
findNotes

NotebookMetadata

sharedAuthToken
getSharedNotebookByAuth

sharedAuthToken

shareKey
authenticateToSharedNotebook

[shareKey,noteStoreURL],...

listLinkedNotebooks

Client

Figure 1. Evernote: access to a shared notebook

To express the first property as a CONSUL contract, we
note that it corresponds to a first-order behavioral contract,
i.e., the kind of contract that can be expressed with just a pre-
and a post-condition for an operation. Lines 2–4 of Figure 2
show the part of the contract for findNotes. The keyword service

defines a contract and names it, in this case NoteStore. A
contract describes the interface of a component and contains
signatures for all the operations the component provides.
Each signature is followed by tags that state properties about
the arguments and result of the operations. Figure 2 shows
part of the contract for a note store service, such as Server1

and Server2, and shows the signature for findNotes, with two
tags, @requires and @ensures, which define a pre-condition and
a post-condition respectively. Pre- and post-conditions are
specified as Python code, i.e., code between « and » in
the contract is Python. The Python code in pre- and post-
conditions can refer to the operation’s arguments (e.g., offset
and maxNotes in the snippet above). Post-conditions also have
access to a special Python variable result that is bound to the
result of an operation call. In the snippet, @requires checks that
offset is nonnegative and @ensures checks that the length of result

is less than or equal to maxNotes.
A CONSUL-enhanced component installs a network adapter

as a stand-alone running process that intercepts all messages
between the component and its peers. The network adapter
checks messages against the contract. CONSUL treats all
components as black boxes and does not require code mod-
ifications nor does it change how components interact. If
a check fails, CONSUL logs the details of the contract and
message involved, and blames the component that was re-
sponsible for the contract violation. Intuitively, CONSUL
blames the component that vouched for the value to meet its
contract that triggered the violation. For example if the Ever-
note client’s adapter detects a violation of the pre-condition
of findNotes, it blames the client. With this information, CON-

SUL helps localize the fault to facilitate the debugging and
maintenance of distributed components.

To express the second property from above, the CONSUL
IDL must be able to express that: (1) a datum from the result
of a service operation corresponds to an endpoint of another
service that adheres to a specific contract; (2) another datum,
called hereafter a token, is coupled with an endpoint; and (3)
operations of the endpoint expect as an argument the token
that accompanies the endpoint. In terms of our Evernote ex-
ample, the CONSUL NoteStore contract must capture that (1)
listLinkedNotebooks returns noteStoreUrls that in turn adhere to the
NoteStore contract; (2) each noteStoreUrl is coupled with a to-
ken shareKey; and (3) authenticateToSharedNotebook expects as its
argument the token shareKey for the corresponding service’s
endpoint. In sum, the NoteStore contract is a higher-order con-
tract, i.e., it captures a property that can only be checked
when the client uses the note store service at a noteStoreUrl

and not when listLinkedNotebooks returns the noteStoreUrl.
Lines 6–12 of Figure 2 show the part of the NoteStore con-

tract for listLinkedNotebooks and authenticateToSharedNotebook. An
@identifies tag that supplements the signature of an operation
directs CONSUL to identify a datum from a request message
for the operation as an endpoint of a service that adheres
to a contract together with its accompanying token if any.
We call the token that accompanies an endpoint the index of
the endpoint’s contract. Intuitively, an index denotes that an
endpoint adheres to a family of contracts that all describe the
same properties, but are distinguished by a particular value.
An @identifies tag has two parts: a contract for an endpoint,
and a Python snippet for extracting the endpoint and the in-
dex for its contract. In this snippet lines 7–8 extract a list of
URLs from the result of listLinkedNotebooks (the Python code in
between « and »; expression yield is special CONSUL syntax
to identify an individual service) and declare that all of those
identified services should satisfy the NoteStore contract, each
indexed by the respective shareKey. The @indexedby tag that sup-
plements the signature of an operation directs CONSUL to
treat a datum from a request message for the operation as
an index, i.e., the token distinguishes the member of the cor-
responding contract family CONSUL should check. Line 11
of figure 2 specifies that the index that CONSUL should use
when checking the contract for the authenticateToSharedNotebook

operation is shareKey.
To enforce this contract, a CONSUL adapter tracks where

endpoints are identified so that the referrer of an endpoint
can be blamed in the event of a contract failure of the
post-condition of the contract of the endpoint. Furthermore
CONSUL also distinguishes different referrers of an end-
point based on indices. Concretely, the adapter of the Ev-
ernote client records that, according to Server1, noteStoreUrl

adheres to the NoteStore contract with index shareKey. Thus
if a subsequent call to authenticateToSharedNotebook with the
token received from listLinkedNotebooks as the argument, vi-
olates its post-condition (elided for conciseness from Fig-
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1 service NoteStore {
2 findNotes(authToken,filter,offset,maxNotes)
3 @requires « offset >= 0 »
4 @ensures « len(result) <= maxNotes »
5 ...
6 listLinkedNotebooks()
7 @identifies NoteStore[] by «
8 for nb in result: yield (nb.noteStoreUrl, index=nb.shareKey) »
9 ...

10 authenticateToSharedNotebook(shareKey)
11 @indexedby « shareKey »
12 ...
13 }

Figure 2. The NoteStore contract

Processes P = B
D,U
in,out | m | P‖P

Messages m = x〈κ, b̃ 〉 | κ〈 b̃ 〉

Figure 3. Core CC syntax

ure 2), the adapter of the client blames Server1, the provider
of the reference to the note store at Server2 and of the in-
dex. If in contrast, the client forges a token and passes it
to authenticateToSharedNotebook, the client’s adapter blames the
client for using an index the adapter does not know and thus
absolves Server1 from any responsibility for the result of the
operation. Hence, CONSUL contracts can express and en-
force the second property of the workflow.

In the following section, we precisely and formally de-
scribe how the system monitors messages from black boxes,
checks for errors according to the given contracts, and as-
signs blame upon contract violations.

3. CONSUL Formally
We gradually introduce CC, a formal model for CONSUL,
along with its properties. This model highlights key aspects
of the design of CONSUL, and demonstrates formally how
CONSUL meets the goals we set in Section 1.

3.1 Core CC: Distributed Black Boxes
Figure 3 shows the syntax of Core CC. Processes P rep-
resent distributed black-box components and the messages
they exchange. There are two kinds of basic processes: black
boxes BD,Uin,out and messagesm. A compound process P 1‖P 2

represents the parallel composition of processes P 1 and P 2.
We assume the standard structural equivalence.

A black box B
D,U
in,out corresponds to an application com-

ponent in CONSUL. To capture our assumption that we do
not have access to a component’s source code, black boxes
are opaque and we can observe only messages they send and
receive. Black boxes receive messages on their open ports
and send messages to open ports of other black boxes. To
model TCP-like communication, we distinguish between re-
quest ports and reply ports. A request port x corresponds to
a well-known TCP endpoint, whereas a reply port κ corre-
sponds to an ephemeral TCP port. AnnotationsD, U , in and
out on black boxes represent information about the port in-
terface of a black box: port domain D is the unique set of

κ ∈ D κ 6∈ U κ 6∈ in in ′ = in ∪ {κ}

B
D,U
in,out

!x〈κ,b̃ 〉−→ B
D,U
in′,out‖x〈κ, b̃ 〉

x ∈ in out ′ = out ∪ {κ}

B
D,U
in,out‖x〈κ, b̃ 〉

?x〈κ,b̃ 〉−→ B
D,U
in,out′

κ ∈ out out ′ = out \ {κ}

B
D,U
in,out

!κ〈 b̃ 〉−→ B
D,U
in,out‖κ〈 b̃ 〉

κ ∈ in κ 6∈ U in ′ = in \ {κ} U ′ = U ∪ {κ}

B
D,U
in,out‖κ〈 b̃ 〉

?κ〈 b̃ 〉−→ B
D,U′

in′,out

Figure 4. Core CC reduction rules

request and reply ports a black box can open; input ports
in ⊆ D are the open ports of a black box; used ports U ⊆ D
are the reply ports a black box has opened and closed; output
ports out are the reply ports of other black boxes a black box
has not replied to yet.

Messages are of the form y〈mc 〉 where y indicates the
target port of the message and mc is the message content.
Request messages have the form x〈κ, b̃ 〉, where κ indicates
the the reply port for the request and b̃ is an arbitrary bit-
stream (representing the message’s payload).2 Reply mes-
sages have the form κ〈 b̃ 〉; they are messages sent to the re-
ply port of a previous request message.

In CoreCC, processes evolve when black boxes consume
and spawn messages. Figure 4 shows the reduction rules
for Core CC. The rules are of the form P a−→ P ′.3 The
first rule shows that black box B

D,U
in,out can produce a request

message x〈κ, b̃ 〉 using a fresh reply port κ ∈ D \ (U ∪ in).
The resulting black box B

D,U
in′,out records that it has opened

reply port κ (i.e., in ′ = in ∪ {κ}). The second rule shows
that black box BD,Uin,out can consume request message x〈κ, b̃ 〉
provided x ∈ in , and records in its port interface that it
has not yet sent a reply message to port κ (i.e., out ′ =
out ∪ {κ}). The third rule shows that black box B

D,U
in,out can

spawn a reply message to reply port κ ∈ out . To record
the use of the request port, the rule removes κ from out .
The final rule consumes a reply message on port κ ∈ in .
To ensure that reply ports are used at most once, the rule
removes κ from in and adds it to U .

For example, the following trace represents two black
boxes where one sends a request on x with reply port κ and
message body b̃ (1); the other black box responds (2); and
the resulting final state of the black boxes (3):

B
D1,∅
∅,∅ ‖B

D2,∅
{x},∅

!x〈κ,b̃ 〉−→ B
D1,∅
{κ},∅‖x〈κ, b̃ 〉‖B

D2,∅
{x},∅

?x〈κ,b̃ 〉−→ (1)

B
D1,∅
{κ},∅‖B

D2,∅
{x},{κ}

!κ〈 b̃′ 〉−→ B
D1,∅
{κ},∅‖B

D2,∅
{x},∅‖κ〈 b̃

′ 〉 ?κ〈 b̃′ 〉−→ (2)

B
D1,{κ}
∅,∅ ‖BD

2,∅
{x},∅ (3)
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Processes P ::= ... | AD,Uin,out{C, S,R,L, l}(B)

Messages m ::= ... | x〈κ, b̃, C, l 〉 | κ〈 b̃, C, l 〉
Configurations C : z 7→ z
Specs S : id 7→ (c, vp, pp, ip)

Contracts c ::= given e, ĩd returns e, ĩd

Value Plugins vp : b̃ 7→ ṽ

Port Plugins pp : b̃ 7→ (x̃, ṽ⊥)

Parameter Plugins ip : (̃b 7→ v) ∨ (̃b 7→ ⊥)
Registry R : y 7→ re

Registry Entry re ::= (�, p̃i) | (id, bi, p̃i)
Blame Info bi ::= (v⊥, l̄, l)

Blame Log L ::= l̃e
Blame Log Entry le ::= (pre : x, id, v⊥, l)

| (post : κ, id, v⊥, l̄)
| (conflict : x, id, l̄, id, l̄)

| (unknown v : x, id, l̄)

Figure 5. CC syntax

3.2 Adding CONSUL Adapters
We now extend CC with CONSUL adapters. Intuitively, an
adapter wraps around a black-box component. The adapter
and the component it wraps are together called a CONSUL-
enhanced component. The adapter intercepts messages the
wrapped black box sends, performs contract checks, and
forwards these messages to their destination (which is ei-
ther a black box, or, if the destination is CONSUL-enhanced,
the destination’s adapter). The adapter also intercepts mes-
sages intended for the black box it wraps, performs contract
checks, and forwards these messages to the wrapped black
box. The adapter holds sufficient information to determine
which messages to intercept, where to forward them, and
which contracts to enforce on these messages.

Figure 5 presents the syntax of CC, extending the syntax
of Core CC. An adapter process AD,Uin,out{C, S,R,L, l}(B)
wraps an adapter pool B, which consists of a black box, and
a (possibly empty) list of Core CC messages that the black
box has just sent and have yet to be processed by the adapter,
or that the adapter has forwarded to the black box. Each
adapter has a label l that uniquely identifies it and a blame
log L that records information about contract violations.

Adapter annotations D, U , in and out have the same
meaning as for black boxes. Port domain D of an adapter
is a superset of the port domain of the black box it wraps,
and also contains request adapter ports x and reply adapter
ports κ. Adapter ports are used for communication between
CONSUL-enhanced components. For the remainder of the
paper z ranges over ports in general while y ranges over
black-box ports and y over adapter ports.

The adapter’s configuration C tells the adapter where
to forward messages it intercepts. It is a map from ports
to ports, such that if C(z) = z′ then the adapter should
forward intercepted messages intended for z to port z′. Port

2 We use notation t̃ and t̄ to indicate a sequence and a set of ts respectively.
Here b stands for bits.
3 Label a ∈ {?m, !m} indicates consumption or spawn of message m.

z′ is either equal to z (meaning the destination is not known
to be CONSUL-enhanced) or is an appropriate adapter port
of the destination’s adapter (which allows the adapter to
communicate directly with the destination’s adapter).

A specification S is a map from contract identifiers to a
tuple that consists of a service contract c and contract plu-
gins vp, pp and ip to extract information from messages
that the adapter should check against c. For example, in Fig-
ure 2, S would map identifier NoteStore to the contract pre-
sented in the figure and its plugins. An adapter’s S includes
all the contracts an adapter knows. A contract’s plugins vp,
pp and ip extract contract-relevant information from mes-
sage payloads. Plugin vp consumes a bitstream and returns a
sequence of values ṽ, the arguments for the contract’s pred-
icates. Plugin ip returns the index v for the contract or ⊥
if the contract does not expect an index. Plugin pp extracts
the request ports mentioned in the payload, and, if relevant,
indexes for the contracts on those request ports. Note that
the plugins are typically automatically derived from the con-
tract and a parser for the message protocol. For the example
in Section 2, the plugins are derived automatically given a
parser for Thrift messages. We assume plugins are correct.

In a contract given pre, ĩdpre returns post, ĩdpost,
predicates pre and post correspond to the pre-condition and
post-condition respectively for the service offered on a port
x. Thus, pre is the predicate that the payload of a request
message to x must meet and post is the predicate for the
payload of the corresponding reply. Both predicates are to-
tal boolean functions, i.e., they terminate. The sequences of
contract identifiers ĩdpre and ĩdpost correspond to @identifies

clauses in the CONSUL IDL and indicate the contracts that
should be enforced on ports mentioned in the payload of re-
quest and reply messages. (Specification S is used to extract
ports mentioned in the payloads.) CC contracts are higher-
order: they can express not only first order properties of
arguments and results of service calls but also the expected
behavior of ports that service calls consume and return.

An adapter’s registryR maps black-box ports to informa-
tion about the port’s contract. The domain of R includes all
black-box ports in the adapter’s input ports in , but may also
include black-box ports of other components that the adapter
learns about. If R(y) = (id, bi, p̃i) then id is the contract for
y and bi is information the adapter collects for y to assign
blame upon contract failures. Blame info bi is a triplet of an
index v⊥, a set of labels l̄, and a blame label l. Index v⊥ is
an index the adapter has “learned” for the contract of port
y (either a value v or the default index ⊥). Labels l̄ are the
labels of adapters that have “promised” that the service on
y given index v⊥ behaves according to contract id. Blame
label l is the label of the adapter that has “promised” to use
the service on y given index v⊥ as a service that behaves ac-
cording to contract id. That is, l̄ are the adapters to blame
if the post-condition is violated, and l is blamed if the pre-
conditions are violated. These labels are like the server and
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(y 6∈ in and y 6∈ dom(R)) or (y 6∈ in and R(y) = (�, p̃i))

A
D,U
in,out{C, S,R,L, l}(B‖y〈mc 〉) −→

A
D,U
in,out{C, S,R,L, l}(B)‖y〈mc 〉

y 6∈ in and y ∈ D
A
D,U
in,out{C, S,R,L, l}(B)‖y〈mc 〉 −→

A
D,U
in,out{C, S,R, l, L}(B‖y〈mc 〉)

Figure 6. Rules for messages that bypass an adapter

client blame labels in formal models of higher-order con-
tracts. Under partial deployment we use † as the label for all
non-CONSUL-enhanced black boxes.

The registry is updated as the adapter learns about ports
and their contracts from messages it intercepts. Multiple
messages may talk about the same port (and so we have a
set of server labels in the blame info instead of just one). If
the messages contain contradictory information about port y
then we replace R(y) with a conflict entry (�, p̃i), record a
contract conflict, and stop checking contracts for y.

Registry entries include provenance information p̃iwhich
does not affect how adapters intercept messages, check con-
tracts, assign blame, or forward messages. Provenance is a
technical artifact to prove blame correctness. We describe
provenance in Section 3.3.

Adapter messages x〈κ, b̃, C, l 〉 and κ〈 b̃, C, l 〉 are sent
between adapters. In addition to the message payload b̃,
they include the label l of the sender adapter and a trans-
mitted configuration C, which informs the receiver of other
CONSUL-enhanced black boxes the sender knows of. The
reduction semantics of CC include the reductions of Core
CC (which allow a black box in a CONSUL-enhanced com-
ponent to consume and spawn messages within its adapter
pool). Additional reduction rules enable an adapter to isolate
a black box in its pool from other black boxes and regulate
how messages move in and out of the pool. There are 10 ex-
tra rules, in three groups: (1) rules for messages that bypass
adapters; (2) rules for black-box messages that an adapter
intercepts and forwards; (3) rules for sending and receiving
adapter messages. We discuss all three groups but show only
representative rules that capture the subtleties of CONSUL.
The appendix includes all reduction rules.
Messages that Bypass Adapters Depending on an adapter’s
state, some messages to and from the adapter’s black box are
not intercepted by the adapter. Figure 6 shows these rules.
For messages sent by an adapter’s black box, this occurs
when: (1) the target port is not an input port of the adapter
(i.e., the message is not sent by the black box to itself); and
either (2a) the adapter’s registry does not know of a contract
for the target port; or (2b) the adapter’s registry has conflict-
ing information for the contract for the target port. Condition
(1) ensures that the adapter doesn’t allow messages the black
box sends to itself to escape the pool.

For messages sent to the adapter’s black box, the adapter
does not intercept the message if its registry indicates that

no contract checking is required (since y 6∈ in implies y 6∈
dom(R)). Note that the adapter allows messages into the
pool only if they are intended for the black box component
(which y ∈ D \ in entails).

Black-Box Interaction When an adapter intercepts a mes-
sage (that doesn’t meet the bypass conditions above), the
adapter checks the message against the appropriate con-
tract before forwarding to its destination port y. Contract
checking and message forwarding depend on whether the
adapter’s configuration C considers the destination to be
CONSUL-enhanced: If C(y) = y then y is not CONSUL-
enhanced. Here, we describe reduction rules for this case
(i.e., partial deployment), and consider the rules for com-
municating with a CONSUL-enhanced component below.

There are four rules in this group. The first fires when the
adapter intercepts a request message that its black box sends
to another black box. The second fires when the adapter
receives a request message from a black box to the adapter’s
black box. The third fires when the adapter intercepts a reply
message that its black box sends to another black box. The
fourth fires when the adapter receives a reply message from
a black box to the adapter’s black box. Each of the four rules
of this group is analogous to one of the four rules of Core
CC. Similar to their Core CC analogues, the rules of this
subsection update the in , U and out sets of an adapter as the
adapter opens, receives or uses a reply port κ.

All these rules perform the same tasks to update the
adapter’s state before forwarding the message. We discuss
these tasks for one of the rules and then explain how the
details of the individual tasks differ between the four rules.

Figure 7 displays the rule that fires when the adapter in-
tercepts a request message x〈κ, b̃ 〉 that its black box sends
to another black box. The rule triggers when x /∈ in and
C(x) = x. We walk through the six tasks the adapter com-
pletes before forwarding the message to its destination.

First, the adapter gets a reply port κ ∈ D \ (in ∪ U) and
adds it to the input ports: in ′ = in ∪ {κ}.

Second, the adapter parses the intercepted message to ex-
tract relevant information, using meta-function message_info.
This meta-function consumes the target port x of the in-
tercepted message, the payload b̃, the adapter’s specifica-
tions S, and the adapter’s registry R. The last argument to
message_info indicates whether it should extract informa-
tion for the given or the returns part of the contract, i.e.,
whether it is checking a pre- or post-condition.

Meta-function message_info returns the contract identi-
fier id for x (according to registry R), the contract c that
corresponds to id (according to S), and the index v⊥. It also
uses registry R to return blame labels to use in the event of
contract violations (the server blame labels ls and the blame
label lc for x). It also returns arguments for the contract pred-
icate (ṽ), and any ports mentioned in the payload along with
their contract identifiers and indexes (x̃, ĩdx, and ṽx⊥). It also
returns provenance information p̃i that we ignore here.
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x 6∈ in C(x) = x κ ∈ D κ 6∈ in κ 6∈ U in ′ = in ∪ {κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(x, b̃, S,R, given_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, l)

Lunk = unk_blame(x, id, v⊥, {lc}, R) Lpred = pred_blame(pre, x, id, v⊥, pre(c), ṽ, lc)
Lconf = conf _blame(pr.conf,R, in, {lc})

Ru = update_registry(pr, {lc}, lc, R, in) Cu = update_config(pr.new,C)

C′ = Cu ∪ {κ 7→ κ} R′ = Ru ∪ {κ 7→ (id,⊥, ls, lc,⊥ p̃i)} L′ = L · Lunk · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B‖x〈κ, b̃ 〉) −→ A

D,U
in′,out{C

′, S,R′, L′, l}(B)‖x〈κ, b̃ 〉

Figure 7. Rule for request message from CONSUL-enhanced black box to non CONSUL-enhanced black box

An invariant ofCC is that if in ∈ dom(R)\in then client
label lc is the label l of the adapter. That is, the component
is the client of all ports it knows about that aren’t its own
input ports. Similarly, if in ∈ dom(R) ∩ in then the label
l of the adapter is in the set of server labels ls. That is, the
component is the server responsible for all its input ports.
We return to these invariants in Section 3.3.

Third, for each port (and the port’s contract informa-
tion) mentioned in the message payload, the adapter uses
its registry R to determine whether (a) it is a new port that
the adapter knew nothing about previously; (b) the port’s
contract information is consistent with what the adapter al-
ready knew about the port; or (c) the port’s contract infor-
mation conflicts with the adapter’s prior knowledge. The
third line of the rule carries out this task using meta-function
add_identified_ports , which returns a record pr with three
fields containing information about the new ports (field
pr.new), consistent ports (field pr.cons), and conflicted
ports (pr.conf ).

Fourth, the adapter checks whether the adapter already
knows the index v⊥ for the contract of x or not, and also
checks the appropriate predicate of the contract. Meta-
functions unk_blame and pred_blame perform these checks.
Each returns an appropriate blame log entry if it detects a
contract violation using its label arguments. Blame log entry
(unknown v⊥ : x, id, {lc}) is returned by unk_blame , in-
dicating that index v⊥ for the contract contract id of port x
is not known to the adapter and adapter lc is responsible for
this unknown index. Blame log entry (pre : x, id, v⊥, l

c)
is returned by pred_blame indicating violation of the pre-
condition of contract id given index v⊥ for for port x and
adapter lc is responsible for the violation.

Fifth, the adapter uses meta-function conf _blame to pro-
duce blame log entries for the conflicted ports in pr.conf
that are not in the input ports in of the adapter. An en-
try (conflict : xconf , idold, lold, idconf , {lc}) says that the
adapter has associated port xconf with contract idold accord-
ing to adapters lold while adapter lc claims that xconf has
contract idconf .

Sixth the adapter updates its registry R, its configuration
C, and its blame log L accordingly. For new ports, meta-
function update_registry adds new entries to the registry
using the supplied server and client labels. For consistent
ports, it adds the server and client labels to the existing reg-

rule send
request

receive
request

send
reply

receive
reply

condition
x 6∈ in,
C(x) = x

x ∈ in,
C(x) = x

κ ∈ out ,
C(κ) = κ

κ ∈ in,
C(κ) = κ

opens port κ – – –
unk_blame {lc} {lc} ls ls

pred_blame pre, lc pre, lc post, ls post, ls

conf _blame {lc} {lc} ls ls

update_registry {lc}, l {lc}, l ls, lc ls, lc

Figure 8. Differences between black-box interaction rules

istry entry. For conflicted ports, it typically replaces the ex-
isting registry entry with a conflict entry. However, if the
conflicted port is in the input domain in of the adapter, it
leaves the registry entry unchanged, since the adapter is re-
sponsible for the input port and should continue to enforce
contracts on messages to it. Meta-function update_config
adds entries xnew 7→ xnew to C for every newly identified
port xnew. Finally, the adapter extends C and R with appro-
priate entries for the newly allocated reply port κ and adds
any blame log entries to blame log L.

After completing all six tasks, the adapter consumes the
message x〈κ, b̃ 〉 from its pool and spawns it into its context.

The other three rules for black-box interaction follow the
same structure as the rule in Figure 7. However, they differ
from this rule as follows. First, they fire under different
conditions. Second, they do not allocate a reply port κ.
Third, they use different blame labels as arguments to the
various meta-functions. Fourth, the rules that concern reply
messages check the post-condition of the contract of the
target port instead of the pre-condition and do not add to the
adapter’s registry and configuration entries for the reply port
κ (those are already there due to the corresponding request
message). Figure 8 summarizes the differences.
CONSUL-enhanced Interaction CC has four more rules
that fire when an adapter forwards a message to a CONSUL-
enhanced target or receives a message from a CONSUL-
enhanced origin. These rules have the same structure as the
corresponding rules for black-box interaction.

Figure 9 displays the CONSUL-enhanced interaction rule
that corresponds to the black-box interaction rule from Fig-
ure 7. Notice that the rules are almost identical. They have
only four differences. First, the rule in Figure 9 fires when
C(x) = x, i.e., when the adapter considers the target of the
message to be CONSUL-enhanced. Second, the rule opens
two new ports κ and κ and adds both to the input ports in of
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x 6∈ in C(x) = x κ, κ ∈ D κ, κ 6∈ in κ, κ 6∈ U in ′ = in ∪ {κ, κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(x, b̃, S,R, given_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, l)

Lunk = unk_blame(x, id, v⊥, {lc}, R) Lconf = conf _blame(pr.conf,R, in, {lc})
Ru = update_registry(pr, {lc}, lc, R, in) Cu = update_config(pr.new,C)

C′ = Cu ∪ {κ 7→ κ, κ 7→ κ} R′ = Ru ∪ {κ 7→ (id,⊥, ls, lc,⊥ p̃i)} L′ = L · Lunk · Lconf
Ct = transmitted_config(pr.cons, C′) ∪ {κ 7→ κ, κ 7→ κ, x 7→ x}

A
D,U
in,out{C, S,R,L, l}(B‖x〈κ, b̃ 〉) −→ A

D,U
in′,out{C

′, S,R′, L′, l}(B)‖x〈κ, b̃, Ct, l 〉

Figure 9. Rule for request message from CONSUL-enhanced black box to CONSUL-enhanced black box

the adapter. Third the rule does not check the pre-condition
of contract id. This is because under CONSUL-enhanced in-
teraction adapters share the burden of contract checking to
reduce duplicate contract checks. Thus only the adapter of
the destination of the intercepted message checks the pre-
condition. Fourth, the adapter does not spawn the same mes-
sage as the one it receives. Instead, it replaces the ports x
and κ in the message with their adapter analogues x and κ.
In addition, the adapter supplements the payload of the mes-
sage b̃ with a configuration Ct. This configuration, produced
by meta-function transmitted_config , includes all entries in
the configuration C of the adapter that correspond to iden-
tified consistent ports. The adapter augments the transmit-
ted configuration with entries for the newly opened reply
ports κ and κ and, the target port of the intercepted message
x. The inclusion of the transmitted configuration in adapter
messages (1) contains sufficient information for the receiver
adapter to translate the adapter message into a black-box one
and, (2) informs the receiver adapter of CONSUL-enhanced
black boxes they may ignored. When an adapter receives an
adapter message, it merges the transmitted configuration into
its configuration. Thus transmitted configurations promote
CONSUL-interaction and reduce the cost of contract check-
ing. We assume adapters that communicate using adapter
messages are mutually trusted.

The other three rules for CONSUL-enhanced interaction
follow exactly the same structure as the rule in Figure 9.
They differ to each other in a similar manner that black-
box interaction rules differ to each other. The correspond-
ing table to that in Figure 8 has three important differ-
ences. First, when adapters consumed an adapter (black-box)
message they check if their configuration maps the target
adapter (black-box) port to a black-box (adapter) port. Sec-
ond, when adapters consume an adapter message from their
context (receive request and receive reply), they use the
message label lm as the client label for their various meta-
functions. Third, send request and receive reply do not per-
form predicate checks. Finally, adapters translate an adapter
message into a black box one and spawn the translated mes-
sage in their adapter pool and vice versa for a black-box mes-
sage consumed from an adapter’s pool and forwarded to the
adapter’s context.

3.3 Properties of CC
In this section, we establish the two key properties of CC:
adapter transparency and correct blame assignment.4 First,
though, we discuss certain conditions that adapters must
satisfy to achieve these properties.

We capture invariants of CC processes using a well-
formedness predicate. These include relationships between
annotations on black boxes and adapters (e.g., in ∩ U =
∅), uniqueness of adapter labels, and consistency of config-
urations C and specifications S across different adapters.
Preservation of well-formedness is the basis for proving
adapter transparency and correct blame assignment for CC.
We provide the full definition of well-formedness in the ap-
pendix.

Theorem 1 (Preservation of Well-formedness). If P is well-
formed and P α−→ P ′ then P ′ is well-formed.

3.3.1 Adapter Transparency
To prove that adapters are transparent (i.e., do not affect
the messages black boxes send and receive, as described
in Section 1), we define a notion of contextual equivalence
between processes in CC.

Recall that in CC messages that black boxes consume
and spawn appear as labels on reduction steps. We use these
labels to define observational simulation and equivalence
for CC. A process P simulates P ′ iff in any well-formed
context E , where E = [ • ] or E = E‖P , when P , after
possibly some reduction steps, takes a step with label α then
P ′, after possibly some reduction steps, also takes a step
with label α:

Definition 2 (Black Box PreordervB). For P and P ′, P vB

P ′ iff for all contexts E such that E [P ] and E [P ′] are well-

formed, if E [P ]
β̃−→∗ α−→ Q then E [P ′]

γ̃−→∗ α−→ Q′ where
α, γ ∈ {?m, !m, ·} and β ∈ {?m, !m}.

Two processes are equivalent if one simulates the other:

Definition 3 (Black Box Equivalence ∼=B). Terms P and
P ′ are black box equivalent, P ∼=B P ′, iff P vB P ′ and
P ′ vB P .

With the definition of contextual equivalence in hand, we
can show the transparency of adapters. This boils down to

4 Complete formalisms and proof sketches are in the appendix.
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proving that a wrapped black box is contextually equivalent
to the black box without the wrapper:

Theorem 4. BD
B,UB

inB,outB
∼=B A

DA,UA

inA,outA{C, S,R,L, l}(B
DB,UB

inB,outB)

Adapter transparency has pragmatic significance for
CONSUL. It implies that a user can add adapters to a col-
lection of distributed communicating components without
affecting their behavior.

3.3.2 Correct Blame Assignment
The pragmatic value of a contract system depends on the
correctness of blame assignment. Informally, Dimoulas et al.
[9] define that a contract system assigns blame correctly if it
blames the component that vouched for the value to meet
its contract that triggered the violation. Formally, they ex-
tend their contract calculus with provenance information and
prove that the blame label reported upon contract violation
matches the provenance of the value that triggered the viola-
tion. The provenance information is not used in contract en-
forcement, but provides a sound basis for specifying blame
correctness.

We use the same approach and add provenance informa-
tion to CC to specify correct blame. Due to the black-box
nature of components in CC, we cannot use the same prove-
nance tracking mechanism of Dimoulas et al. [9]. Instead,
each adapter records in its registry R provenance informa-
tion about ports it “learns” from intercepted messages. The
recorded provenance information is the p̃i part of a registry
entry re in Figure 5. An element pi of p̃i is either of the form
v⊥  l or v⊥  p̃i. Provenance element v⊥  l means that
the adapter “learned” that the index v⊥ for the contract of a
port directly from adapter l. Provenance element v⊥  p̃i
means the provenance of index v⊥ is p̃i. Thus p̃i is a forest
where each tree describes the provenance of a known index
for the contract of a port in the domain of R. The leaves
of each tree are adapter labels; the labels of the origin of
the contract of a port given an index. We use meta-function
origin_of ((y, v⊥), R) to obtain the set of labels that consist
the origin of the contract of a non-conflicted port y given
index v⊥ in registry R.

The reduction rules of CC compute provenance informa-
tion for identified ports and newly opened reply ports and
update the registry accordingly. The provenance of contracts
of ports identified from request messages is the label of the
adapter that sent the request. For example, in Figures 7 and 9
the last argument l of the call to the identified_ports meta-
function is the label used to construct the provenance entries
for the contracts of identified ports. Contracts of ports iden-
tified from reply messages and newly opened reply ports in-
herit the provenance of the corresponding request port. For
example, in Figures 7 and 9, the rule uses the provenance
entry p̃i for x to construct the provenance for the contract
of newly opened x. Note that like Dimoulas et al. [9], the
reduction rules of CC construct provenance information for
the contracts of ports independently from the way they ma-

nipulate blame labels. Thus provenance information in CC
is a sound basis for specifying and proving correct blame.

We first use a blame-consistent with provenance relation
.R(P ) (defined in the appendix) that requires for the reg-
istries of all the adapters in P , the origin of the contract of a
non-conflicted port given an index matches the server blame
labels for the the contract of the port given the same index.
Blame consistency with provenance is an invariant of the se-
mantics of CC and together with well-formedness guaran-
tees correct blame.

Informally, correct blame assignment requires that if a
well-formed and blame-consistent with provenance P takes
a step and this step results in an adapter in P detecting con-
tract violations, then if an additional entry in the blame log of
the adapter after the step is (1) a violation of a pre-condition,
CC blames always the sender of the request message that
caused the violation; (2) a violation of a post-condition, CC
blames the origin of the contract of the target port of the re-
ply message that caused the violation. Formally, the correct
blame theorem is (the actual theorem, provided in the ap-
pendix, includes also cases for blame due to conflicts and
unknown indices):

Theorem 5. Let P = E [AD,Uin,out{C, S,R,L, l}(B)]. If
P is well-formed, .R(P ) and P −→ P ′ where P ′ =

E ′[AD,U
′

in′,out′{C ′, S,R′, L′, l}(B′)] and L′ = L · L∗ then:
1. if (pre : x, id, v⊥, l

∗) then
(a) if P = E ′[x〈κ, b̃ 〉‖AD,Uin,out{C, S,R,L, l}(B)] then

l∗ = †;
(b) if P = E ′[x〈κ, b̃, C, lm 〉‖AD,Uin,out{C, S,R,L, l}(B)]

then l∗ = lm;
(c) if P = E [AD,Uin,out{C, S,R,L, l}(x〈κ, b̃ 〉‖B′)] then

l∗ = l
2. if (post : y, id, v⊥, l∗) ∈ L∗ then
l∗ = origin_of ((y, v⊥), R).

4. CONSUL in Practice
We have developed a prototype implementation for CON-
SUL. It consists of the network adapter that was formalized
in Section 3, and an interposition library for redirecting con-
nections through the adapter. The network adapter is approx-
imately 3,800 non-empty lines of Python code. The adapter
runs in its own OS process and is responsible for checking
contracts and spawning messages. The adapter stores ser-
vice records in its disk-backed store. Service records remain
in memory until a limit in the cache is reached, or the net-
work adapter process exits. When a cache miss occurs, the
file store is checked for the service record and the service
record is fetched to memory if found. We leave garbage col-
lection of the store as future work. In our case studies all
information in the store is ephemeral and can be safely col-
lected after some time out. Protocols can be supported by
CONSUL by writing a plugin for the tool. We have plugins
for Thrift (in 150 lines of code), REST (100 lines) and SOAP
(400 lines). To handle issues of encrypted communications
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(i.e., a component using SSL), the adapter and the compo-
nent it enhances share certificates to allow the adapter to
decrypt the message to check contracts. Upon deployment,
CONSUL-enhanced components are loaded with an interpo-
sition library that ensures that any connect system call made
by the application component is intercepted by CONSUL.
The interposition library contacts the adapter redirector to
check if a new connection should bypass the adapter.

We have used CONSUL to harden the interfaces of three
real-world off-the-shelf distributed components: Evernote
(from Section 2), the Twitter API, and an online correspon-
dence chess service. CONSUL’s contracts are expressive
enough to capture properties of the components that were
described only informally in their documentation. The com-
plete CONSUL contracts for the three case studies and an
additional one are in the appendix. We discuss their most
interesting aspects in the remainder of the section.

4.1 Evernote
Evernote demonstrates how CONSUL copes with four of the
challenges we discuss in Section 1: (i) the Evernote server is
a black box for its clients; (ii) CONSUL can only be partially
deployed as clients do not have access to Evernote servers;
(iii) CONSUL cannot change the communication pattern be-
tween the Evernote server and its clients; and (iv) CONSUL
has to interoperate with Evernote’s Thrift-based API and
also its simpler HTTPS protocol for OAuth requests.

Evernote documentation describes many first-order prop-
erties that both Evernote server components and clients have
to defensively check. These include: non-empty strings,
bounds checks on integers, malformed GUIDs, strings that
are too long, missing parameters that could not be marked as
required due to Thrift limitations, and strings not matching
certain patterns (e.g. valid MIME type). CONSUL is able to
enforce these properties and we wrote contracts for many
of them (one of which was described in Section 2 in the
findNotes operation). These contracts help the early detection
of malformed messages.We also expressed properties about
the correct use of tokens similarly to Section 2 despite some
of these tokens being initially given over a different protocol.

4.2 Twitter
Twitter’s REST API5 allows access to information about
tweets and followers, and is representative of many REST
APIs. This case study highlights how we can re-express
the API’s example-based documentation as a precise and
executable specification.
Property 1. (Well-formed data) The documentation re-
quires that the operation to fetch tweets is given either a user
ID or screen name. We encode this disjunctive requirement
with a contract. We found that very few API libraries actu-
ally defensively checked this requirement. Instead they re-
lied only on the server to report back an error message. The

5 https://dev.twitter.com

contract can also check for appropriate data types, like lists
meeting a length requirement or proper date formats.

Property 2. (Valid OAuth tokens) Similar to Evernote,
Twitter uses the OAuth protocol to perform authentication.
We encoded the validity checks in a similar way to Ever-
note’s use of tokens described in Section 2.

Property 3. (Valid User and Tweet IDs) Twitter makes
extensive use of tokens to identify different types of records,
like tweets and users. We found it useful to track these IDs to
ensure the proper discovery and use of the various IDs. The
following contract shows how we capture the proper use of
IDs with the Twitter API for Tweet IDs.
service Twitter {
/1.1/statuses/user_timeline(req)
@identifies Tweet[] by « for t in result: yield (index='t_' + t.id) »

/1.1/statuses/retweet/<id>.json(req)
@indexedby « 't_' + id »
@ensures « 'does not exist' not in result.get('errors') »

}

Here the operation name is the HTTP path and req is a
structured representation of the request body. The index is
derived from the id that comes from the request URL (which
is bound to the variable id declared in the operation name).

4.3 Chess
Xfcc is a popular web service specification for playing corre-
spondence chess6 with many different service providers that
follow the protocol. This case study showcases that CON-
SUL can check contracts with a diversity of server and client
implementations and can find server and client violations of
the specification. The standard is specified using WSDL with
SOAP as the underlying message protocol. It supports two
operations: GetMyGames returns all games the user is playing
in and the state of the game, and MakeAMove performs a game
action (e.g., move a piece, offer a draw).

Property 1. (Valid game IDs used) The Xfcc documen-
tation states that if a client provides an invalid game ID
in MakeAMove, then a return code InvalidGameID should be re-
turned. We found that two popular Xfcc servers returned a
database error page rather than the appropriate error code.
We also found that a client was unable to interpret the return
code, making a move look successful to the client user. We
were able to express this contract in a similar way to how we
express valid IDs in the Twitter case study above.

Property 2. (Accept draw when allowed) Xfcc allows a
player to offer a draw and accept an offered draw (as long
as another move was not made after the offer). To express
the constraint we made the index based on the game ID,
move count, and whether the draw was indeed offered. When
a draw was offered, two services were identified: one for
accepting the draw and one for not accepting the draw. When
a draw was not offered, it would yield one service. When
a client attempts to accept a draw for when not offered, the

6 http://xfcc.org/
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client will be blamed. When a server does not approve a valid
draw acceptance, the server will be blamed.

5. Performance
We evaluate CONSUL’s performance to understand its im-
pact on components it enhances. We analyze the time, mem-
ory, and network overhead on the three case studies de-
scribed in Section 4. For our experimental setup, we devel-
oped a test suite for each case study. Each workflow exer-
cises the contracts from Section 4. Operations that identify
a service create fresh tokens to grow the adapter’s store. We
developed mock servers to provide responses to the client
requests in the test suite. We opt to mock servers for two
reasons: (1) mocking the servers removes several sources of
measurement noise; (2) we cannot deploy the real servers
and performing our experiments on production servers vio-
lates their terms of use.

We collect four measurements for each test suite. First,
we record the time each request takes for the test client
and for the adapter performing the original request on the
mocked server; the difference between these two measure-
ments yields the latency the adapter creates. In our ex-
perimental setup, adapters check all contracts. Second, we
record the amount of memory used by adapters and the size
of client adapters’ store. Finally, we measure the adapter-
to-adapter traffic (not including the original request or re-
sponse) in the TCP stream. Our experiments are set up with
full deployment in order to create the most amount of adapter
traffic. We take measurements only for the clients’ adapters
as they are the hub for all communication in our experi-
ments.

We ran our experiments on a 3 GHz Intel Core i7 pro-
cessor with 2 GB of DDR3 memory with all components
communicating over the loopback adapter. Figure 10 shows
our measurements for each test suite. The production server
latency on the operations we tested was between 250ms –
500ms. The average adapter latencies for Twitter, Chess,
and Evernote were 30ms, 46ms, and 53ms respectively. The
amount of RAM used by the adapter and latency did not in-
crease as requests were made. The rate of increase in the
disk-backed store for Twitter, Chess, and Evernote was 6.8kb
per request, 1.7kb per request, and 3.3kb per request respec-
tively. The rate of increase in store size as well as network
overhead was dependent on how many services were identi-
fied. The average network overhead for Twitter, Chess, and
Evernote was 105kb per request, 76kb per request, and 92kb
per request respectively. Variance in network overhead is due
only to the different operations made and does not change
over each set of requests in a trial. Network overhead and
store size did not have a dominant effect on latency; Twit-
ter had the largest store and highest average network over-
head yet the lowest latency. Instead, we found that latency
was largely dependent on the implementation of the network

plugin; the REST plugin used a more efficient marshaller
and handled sockets better than the other plugins.

6. Related work
Existing frameworks for the composition of distributed com-
ponents can enforce higher-order behavioral contracts sim-
ilar to those of CONSUL but assume that components are
written and deployed in a particular manner. For example,
CORBA [24] and Java RMI [26] require all components to
use their libraries. CONSUL can support these middlewares
given an appropriate CONSUL adapter plugin.

Behavioral Interface Specification Languages (BISLs),
such as JML [18], have extensions for specifying and en-
forcing higher-order behavioral contracts for communicat-
ing components. However, these languages are tightly cou-
pled with particular component-implementation languages
or families of languages. For instance, JML is designed for
Java programs and comes with particular features to handle
inheritance. Also, tools based on these languages re-write
programs to insert checking probes. Thus BISLs and their
contract checking tools are not language-agnostic. In con-
trast, CONSUL and its IDL are language-agnostic and do
not modify components’ code. Some features of CONSUL’s
IDL, such as pre- and post-conditions, are common with
most BISLs. Others, such as @identifies, are unique to CON-
SUL. Runtime verification tools, such as Monitor-Oriented
Programming (MOP) [7], can in principal enforce higher-
order behavioral contracts in a language agnostic man-
ner (with appropriate plugins). However, these are general
frameworks and building a contract system on top of them
requires solving the semantic issues CONSUL solves.

Finally, there is much research on enforceable synchro-
nization and quality of service specifications for distributed
components that do not overlap with CONSUL’s higher-order
behavioral contracts. For example, finite state machines can
constrain WSDL-defined interactions [19] and web brows-
ing [12]. BPEL [16] is a specification language for the or-
chestration of web services. It assumes a common communi-
cation bus for all components in an application. Multi-party
session types [13] assume a global choreography protocol
that is broken into locally enforceable pieces. Extensions
to multi-party session types check dynamically first-order
behavioral contracts for messages [6] similar to CONSUL’s
pre- and post-conditions on operations. Dynamic verifica-
tion of multi-party session types shares the same motivation
as CONSUL (e.g., support for heterogeneous or black-box
components) [14, 15]. Other tools express and enforce qual-
ity of service specifications [2, 25].

7. Conclusion
CONSUL enhances the interfaces of distributed components
with higher-order behavioral contracts. CONSUL contracts
express and enforce semantically rich properties of these
components. To accommodate the heterogeneity of real-
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Figure 10. The charts show the time, memory, and network overhead for each case study. The left chart shows the latency of the adapter as requests are
made. Each point is the average from the 250 requests around it. The middle chart shows the resident set size of the adapter and the dashed lines show the sizes
of the store on disk. The right chart shows the average amount of adapter traffic per RPC. 95% confidence intervals are indicated by vertical bars.

world distributed components, CONSUL treats components
as black boxes. It does not depend on or modify the source
code of components and does not change the way distributed
components communicate.

Thus CONSUL can improve the correct and reliable com-
position of distributed components, including legacy com-
ponents, and facilitate their debugging and maintenance.
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A. A Distributed Black Boxes Contract Calculus
A.1 The Core Distributed Black Boxes Calculus
A.1.1 Syntax

Processes P = B
D,U
in,out | m | P‖P

Messages m = x〈κ, b̃ 〉 | κ〈 b̃ 〉

A.1.2 Evaluation Contexts
Evaluation Contexts A = [ • ] | P‖[ • ]

A.1.3 Reduction Semantics
x ∈ in out ′ = out ∪ {κ}

B
D,U
in,out‖x〈κ, b̃ 〉

?x〈κ,b̃ 〉−→ B
D,U
in,out′

κ ∈ D κ 6∈ U κ 6∈ in in ′ = in ∪ {κ}

B
D,U
in,out

!x〈κ,b̃ 〉−→ B
D,U
in′,out‖x〈κ, b̃ 〉

κ ∈ in κ 6∈ U in ′ = in \ {κ} U ′ = U ∪ {κ}

B
D,U
in,out‖κ〈 b̃ 〉

?κ〈 b̃ 〉−→ B
D,U ′

in′,out

κ ∈ out out ′ = out \ {κ}

B
D,U
in,out

!κ〈 b̃ 〉−→ B
D,U
in,out‖κ〈 b̃ 〉
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A.2 The Distributed Black Boxes Contract Calculus
A.2.1 Syntax

Processes P = ... | AD,Uin,out{C, S,R,L, l}(B)

Black Box Pool B = B
D,U
in,out | B‖x〈κ, b̃ 〉 | B‖κ〈 b̃ 〉

Messages m = ... | x〈κ, b̃, C, l 〉 | κ〈 b̃, C, l 〉
Ports z = y | y
Black Box Ports y = x | κ
Adaptor Ports y = x | κ
Configurations C : z 7→ z
Specs S : id 7→ (c, vp, pp, ip)

Contracts c = given e, ĩd returns e, ĩd

Value Plugins vp : b̃ 7→ ṽ

Port Plugins pp : b̃ 7→ (x̃, ṽ⊥)

Parameter Plugins ip : (̃b 7→ v) ∨ (̃b 7→ ⊥)
Registry R : y 7→ re

Registry Entry re = (�, p̃i) | (id, bi, p̃i)
Blame Info bi = (v⊥, l̄, l)

Provenance Info pi = v⊥  l | v⊥  p̃i

Blame Log L = l̃e

Blame Log Entry le = (pre : x, id, v⊥, l) | (post : κ, id, v⊥, l̄)
| (conflict : x, id, l̄, id, l̄) | (unknown v : x, id, l̄)

A.2.2 Evaluation Contexts

Evaluation Contexts A = ... | AD,Uin,out{C, S,R,L, l}([ • ])
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A.2.3 Reduction Semantics
(y 6∈ in and y 6∈ dom(R)) or (y 6∈ in and R(y) = (�, p̃i))

A
D,U
in,out{C, S,R,L, l}(B‖y〈mc 〉) −→ A

D,U
in,out{C, S,R,L, l}(B)‖y〈mc 〉

y 6∈ in and y ∈ D
A
D,U
in,out{C, S,R,L, l}(B)‖y〈mc 〉 −→ A

D,U
in,out{C, S,R, l, L}(B‖y〈mc 〉)

x 6∈ in C(x) = x κ ∈ D κ 6∈ in κ 6∈ U in ′ = in ∪ {κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(x, b̃, S,R, given_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, l)
Lunk = unk_blame(x, id, v⊥, {lc}, R) Lpred = pred_blame(pre, x, id, v⊥, pre(c), ṽ, lc)

Lconf = conf _blame(pr.conf,R, in, {lc})
Ru = update_registry(pr, {lc}, lc, R, in) Cu = update_config(pr.new,C)

C ′ = Cu ∪ {κ 7→ κ} R′ = Ru ∪ {κ 7→ (id,⊥, ls, lc,⊥ p̃i)} L′ = L · Lunk · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B‖x〈κ, b̃ 〉) −→ A

D,U
in′,out{C ′, S,R′, L′, l}(B)‖x〈κ, b̃ 〉

x ∈ in C(x) = x κ 6∈ out out ′ = out ∪ {κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(x, b̃, S,R, given_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, †)
Lunk = unk_blame(x, id, v⊥, {lc}, R) Lpred = pred_blame(pre, x, id, v⊥, pre(c), ṽ, lc)

Lconf = conf _blame(pr.conf,R, in, {lc})
Ru = update_registry(pr, {lc}, l, R, in) Cu = update_config(pr.new,C)

C ′ = Cu ∪ {κ 7→ κ} R′ = Ru ∪ {κ 7→ (id,⊥, ls, lc, v⊥  p̃i)} L′ = L · Lunk · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B)‖x〈κ, b̃ 〉 −→ A

D,U
in,out′{C ′, S,R′, L′, l}(B‖x〈κ, b̃ 〉)

κ ∈ out C(κ) = κ out ′ = out \ {κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(κ, b̃, S,R, returns_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, p̃i)

Lunk = unk_blame(κ, id, v⊥, ls, R) Lpred = pred_blame(post, κ, id, v⊥, post(c), ṽ, ls)
Lconf = conf _blame(pr.conf,R, in, ls)

R′ = update_registry(pr, ls, l, R, in) C ′ = update_config(pr.new,C)
L′ = L · Lunk · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B‖κ〈 b̃ 〉) −→ A

D,U
in,out′{C ′, S,R′, L′, l}(B)‖κ〈 b̃ 〉

κ ∈ in C(κ) = κ in ′ = in \ {κ} U ′ = U ∪ {κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(κ, b̃, S,R, returns_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, p̃i)

Lunk = unk_blame(κ, id, v⊥, ls, R) Lpred = pred_blame(post, κ, id, v⊥, post(c), ṽ, ls)
Lconf = conf _blame(pr.conf,R, in, ls)

R′ = update_registry(pr, ls, l, R, in) C ′ = update_config(pr.new,C)
L′ = L · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B)‖κ〈 b̃ 〉 −→ A

D,U ′

in′,out{C ′, S,R′, L′, l}(B‖κ〈 b̃ 〉)
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x 6∈ in C(x) = x κ, κ ∈ D κ, κ 6∈ in κ, κ 6∈ U in ′ = in ∪ {κ, κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(x, b̃, S,R, given_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, l)
Lunk = unk_blame(x, id, v⊥, {lc}, R) Lconf = conf _blame(pr.conf,R, in, {lc})
Ru = update_registry(pr, {lc}, lc, R, in) Cu = update_config(pr.new,C)

C ′ = Cu ∪ {κ 7→ κ, κ 7→ κ} R′ = Ru ∪ {κ 7→ (id,⊥, ls, lc,⊥ p̃i)} L′ = L · Lunk · Lconf
Ct = transmitted_config(pr.cons, C ′) ∪ {κ 7→ κ, κ 7→ κ, x 7→ x}

A
D,U
in,out{C, S,R,L, l}(B‖x〈κ, b̃ 〉) −→ A

D,U
in′,out{C ′, S,R′, L′, l}(B)‖x〈κ, b̃, Ct, l 〉

x ∈ in C(x) = x Ct(κ) = κ κ, κ 6∈ out out ′ = out ∪ {κ, κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(x, b̃, S,R, given_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, l
m)

Lunk = unk_blame(x, id, v⊥, {lm}, R) Lpred = pred_blame(pre, x, id, v⊥, pre(c), ṽ, lm)
Lconf = conf _blame(pr.conf,R, in, {lm})

Ru = update_registry(pr, {lm}, l, R, in) Cu = update_config(pr.new,C)

C ′ = Cu ⊕ Ct R′ = Ru ∪ {κ 7→ (id,⊥, l̃s, lm,⊥ p̃i)} L′ = L · Lunk · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B)‖x〈κ, b̃, Ct, lm 〉 −→ A

D,U
in,out′{C ′, S,R′, L′, l}(B‖x〈κ, b̃ 〉)

C(κ) = κ κ, κ ∈ out out ′ = out \ {κ, κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥) = message_info(κ, b̃, S,R, returns_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, p̃i)

Lunk = unk_blame(κ, id, v⊥, ls, R) Lconf = conf _blame(pr.conf,R, in, ls)
R′ = update_registry(pr, ls, l, R, in) C ′ = update_config(pr.new,C) L′ = L · Lunk · Lconf

Ct = transmitted_config(pr.cons, C ′) ∪ {κ 7→ κ, κ 7→ κ}
A
D,U
in,out{C, S,R,L, l}(B‖κ〈 b̃ 〉) −→ A

D,U
in,out′{C ′, S,R′, L′, l}(B)‖κ〈 b̃, Ct, l 〉

C(κ) = κ κ, κ ∈ in in ′ = in \ {κ, κ} U ′ = U ∪ {κ, κ}
(id, v⊥, c, l̄s, l

c, ṽ, x̃, ĩdx, ṽx⊥, p̃i) = message_info(κ, b̃, S,R, returns_ids)

pr = identified_ports(x̃, ĩdx, ṽx⊥, R, p̃i)

Lunk = unk_blame(κ, id, v⊥, ls, R) Lpred = pred_blame(post, κ, id, v⊥, post(c), ṽ, ls)
Lconf = conf _blame(pr.conf,R, in, ls)

R′ = update_registry(pr, ls, l, R, in) C ′ = update_config(pr.new,C)⊕ Ct L′ = L · Lunk · Lpred · Lconf

A
D,U
in,out{C, S,R,L, l}(B)‖κ〈 b̃, Ct, lm 〉 −→ A

D,U ′

in′,out{C ′, S,R′, L′, l}(B‖κ〈 b̃ 〉)

A.2.4 Definitions of Metafunctions
The Get Message Info Metafunction

message_info(x, b̃, S,R, get_ids) = (id, v⊥, c, ls, l
c, ṽ, x̃, ĩdx, ṽx⊥, p̃i

v⊥)

where R(x) = (id, bi, p̃i)

and where S(id) = (c, vp, pp, ip), ṽ = vp(̃b), (x̃, ṽx⊥) = pp(̃b), ĩdx = get_ids(c) and, v⊥ = ip(̃b)

and where p̃iv⊥ = filter_provenence(p̃i, v⊥)

and where v⊥ = v and (v, ls, lc) ∈ bi
or, v⊥ = v and (v, ls′ , lc) 6∈ bi and (⊥, ls, lc) ∈ bi

message_info(κ, b̃, S,R, get_ids) = (id,⊥, c, ls, lc, ṽ, x̃, ĩdx, ṽx⊥, p̃i⊥)

where R(y) = (id, bi, p̃i)

and where S(id) = (c, vp, pp, ip), ṽ = vp(̃b), (x̃, ṽx⊥) = pp(̃b) and, ĩdx = get_ids(c)
and where p̃i⊥ = filter_provenence(p̃i,⊥)

and where (⊥, ls, lc) ∈ bi
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The Filter Provenance Metafunction
filter_provenence(∅, v⊥) = ∅

filter_provenence({v⊥  l} · p̃i, v⊥) = {v⊥  l} · filter_provenence(p̃i, v⊥)

filter_provenence({v⊥  p̃i′} · p̃i, v⊥) = {v⊥  p̃i′} · filter_provenence(p̃i, v⊥)

filter_provenence(pi · p̃i, v⊥) = filter_provenence(p̃i, v⊥)
in any other case

The Identified Ports Metafunction
identified_ports(x̃, ĩd, ṽ⊥, R, ppi) = {new = new; conf = conf ; cons = cons}

where new = new_ports(x̃, ĩd, ṽ⊥, ppi, R)

conf = conflicted_ports(x̃, ĩd, ṽ⊥, ppi, R)

cons = consistent_ports(x̃, ĩd, ṽ⊥, ppi, R)

new_ports(∅, ∅, ∅, ppi, R) = ∅

new_ports(xx̃, idĩd, v⊥ṽ⊥, ppi, R) = new_ports(x̃, ĩd, ṽ⊥, ppi, R)
if x ∈ dom(R)

new_ports(xx̃, idĩd, v⊥ṽ⊥, ppi, R) = {(x, id, v⊥, v⊥  ppi)} ∪ new_ports(x̃, ĩd, ṽ⊥, ppi, R)
in any other case

consistent_ports(∅, ∅, ∅, ppi, R) = ∅

consistent_ports(xx̃, idĩd, v⊥ṽ⊥, ppi, R) = {(x, id, v⊥, v⊥  ppi)} ∪ consistent_ports(x̃, ĩd, ṽ⊥, ppi, R)

if R(x) = (id, bi, p̃i)

consistent_ports(xx̃, idĩd, v⊥ṽ⊥, ppi, R) = consistent_ports(x̃, ĩd, ṽ⊥, ppi, R)
in any other case

conflicted_ports(∅, ∅, ∅, ppi, R) = ∅

conflicted_ports(xx̃, idĩd, v⊥ṽ⊥, ppi, R) = conflicted_ports(x̃, ĩd, ṽ⊥, ppi, R)

if x 6∈ dom(R) or R(x) = (id, bi, p̃i)

conflicted_ports(xx̃, idĩd, v⊥ṽ⊥, ppi, R) = {(x, id, v⊥, v⊥  ppi)} ∪ conflicted_ports(x̃, ĩd, ṽ⊥, ppi, R)
in any other case

The Unknown Parameter Check and Blame Metafunction
unk_blame(y, id, v⊥, l̄, R) = ∅ if v⊥ ∈ known_params_of(y,R)

unk_blame(y, id, v⊥, l̄, R) = {(unknown v⊥ : y, id, l̄)} in any other case

A.2.5 The Known Parameters of Port According to Registry Metafunction
known_params_of(y,R) = v⊥

if R(y) = (id, bi, p̃i)

and where bi = {(v1⊥, ls
1 , lc

1

), ..., (vn⊥, l
sn , lc

n

)}
and where v⊥ = {v1⊥, .., .vn⊥}

known_params_of(y,R) = ∅
in any other case

The Predicate Check and Blame Metafunction
pred_blame(kind, y, id, v⊥, pred, ṽ, b) = ∅ if (pred ṽ) ⇓ true

pred_blame(kind, y, id, v⊥, pred, ṽ, b) = {(kind : y, id, v⊥, b) if (pred ṽ) ⇓ false
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The Conflict Blame Metafunction
conf _blame(∅, R, in, l̄) = ∅

conf _blame({(xconf , idconf , vconf⊥ , pi)} ∪ (xconf , idconf , vconf⊥ , pi), R, in, l̄) =

{(conflict : xconf , idold, lold, idconf , l̄)} · conf _blame((xconf , idconf , vconf⊥ , pi), R, in, l̄)

if R(xconf ) = (idold, bi, p̃i′) and xconf 6∈ in

and where bi = {(v1⊥, lold
1 , lc

1

), ..., (vn⊥, l
oldn , lc

n

)} and lold = lold1 ∪ ... ∪ loldn

conf _blame({(xconf , idconf , vconf⊥ , pi)} ∪ (xconf , idconf , vconf⊥ , pi), R, in, l̄) =

conf _blame((xconf , idconf , vconf⊥ , pi), R, in, l̄)
in any other case

A.2.6 The Blame Labels of Port According to Registry Metafunction
blame_labels_of(y,R) = l̄

if R(y) = (id, bi, p̃i)

and where bi = {(v1⊥, ls
1 , lc

1

), ..., (vn⊥, l
sn , lc

n

)}
and where l̄ = {ls1 , .., lsn}

blame_labels_of(y,R) = ∅
in any other case

The Update Registry Metafunction
update_registry(pr, ls, lc, R, in) = update_registry_aux(pr.cons, pr.conf, pr.new, ls, lc, R, in)

update_registry_aux(∅, ∅, (xnew, idnew, vnew⊥ , v⊥  ppinew), ls, lc, R, in) = R ∪ r̄
where r = xnew 7→ (idnew, {(⊥, ls, lc), (vnew⊥ , ls, lc)}, {⊥ ppinew, v⊥  ppinew})

update_registry_aux(∅, (xconf , idconf , vconf⊥ , piconf ), (xnew, idnew, vnew⊥ , pinew), ls, lc, R, in) =

update_registry_aux(∅, ∅, (xnew, idnew, vnew⊥ , pinew), ls, lc, R′, in)
where for all y ∈ dom(R) if y 6= xconf or y ∈ in then R′(y) = R(y)

else if R(y) = (id, bi, p̃i) then R′(y) = (�, p̃i · piconf )

else if R(y) = (�, p̃i) then R′(y) = (�, p̃i)

update_registry_aux((xcons, idcons, vcons⊥ , picons), (xconf , idconf , vconf⊥ , piconf ), (xnew, idnew, vnew⊥ , pinew), ls, lc, R, in) =

update_registry_aux(∅, (xconf , idconf , vconf⊥ , piconf ), (xnew, idnew, vnew⊥ , pinew), ls, lc, R′, in)
where for all y ∈ dom(R) if y 6= xcons then R′(y) = R(y) else R′(y) = re

and where if R(y) = (idcons, {(vcons⊥ , lold, lc)} ∪ bi, p̃i)
then re = (idcons, {(vcons⊥ , ls ∪ lold, lc)} ∪ bi, p̃i · picons)

else if R(y) = (idcons, {(⊥, lold, lc)} ∪ bi, p̃i)
then re = (idconf , {(⊥, lold, lc), (vcons⊥ , ls ∪ lold, lc)} ∪ bi, p̃i · picons)

The Update Configuration Metafunction
update_config((x, id, v⊥, pi), C) = C ∪ x 7→ x

The Transmitted Configuration Metafunction
transmitted_config(∅, C) = ∅

transmitted_config({(x, id, v⊥, pi)} ∪ (x, id, v⊥, pi), C) = {x 7→ C(x)} ∪ transmitted_config((x, id, v⊥, pi), C)

The Configuration Merging Metafunction
C ⊕ ∅ = C

C ⊕ {z 7→ z′} ∪ C ′ = C ⊕ C ′ if C(z) 6= z

C ⊕ {z 7→ z′} ∪ C ′ = ((C \ {z 7→ z}) ∪ {z 7→ z′})⊕ C ′ if C(z) = z
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B. Well-formedness
B.0.7 Well-formed Global Configurations

U, in  C

dom(C) ∪ rng(C) = in ∪ U
U, in  C

B.0.8 Well-formed Global Specs

 S

∀(given e, ĩdg returns e, ĩdr, vp, pp, ip) ∈ rng(S).ĩdg ĩdr ⊆ dom(S)

 S
B.0.9 Well-formed Terms

D,U, in, out , l̄ `CS P

∅, ∅, ∅, ∅, ∅ `CS x〈κ, b̃ 〉 ∅, ∅, ∅, ∅, ∅ `CS κ〈 b̃ 〉

C � C {κ 7→ κ, κ 7→ κ, x 7→ x} ⊆ C
∅, ∅, ∅, {κ, κ}, ∅ `CS x〈κ, b̃, C, l 〉

C � C {κ 7→ κ, κ 7→ κ} ⊆ C
∅, ∅, ∅, {κ, κ}, ∅ `CS κ〈 b̃, C, l 〉

D = D1 ]D2 U = U1 ] U2 in = in1 ] in2 out = out1 ] out2 l̄ = l̄1 ] l̄2
D1, U1, in1, out1, l̄1 `CS P 1 D2, U2, in2, out2, l2 `CS P 2

D,U, in, out , l̄ `CS P 1‖P 2

in ⊆ D U ⊆ D in ∩ U = ∅ out ∩D = ∅
in ′ ⊆ in in ′ ∪ U ′ ⊆ in ∪ U out ⊆ out ′

D,U ′, in ′, out ′, ∅ `CS B
D,U
in,out

in ⊆ D U ⊆ D in ∩ U = ∅ out ∩D = ∅ outA ⊆ out l 6= †
NewK(B,D) ∩ UsedK(B,D) = ∅ NewK(B,D) ∩ (U ∪ in) = ∅ UsedK(B,D) ⊆ U

S ` S C, U, in ` C D,U, in `l R
D′ = {x | x ∈ D} U ′ = {κ | κ ∈ U} in ′ = {x | x ∈ in} out ′ = {κ | κ ∈ out}

D′, U ′, in ′, out ′, ∅ `CS B
D,U, in, out , {l} `CS A

D,U
in,outA

{C, S,R,L, l}(B)

B.0.10 The New Call-Back Ports Metafunction
NewK(P 1‖P 2, D) = NewK(P 1, D) ]NewK(P 2, D)

NewK(x〈κ, b̃ 〉, D) = {κ} if κ ∈ D

NewK(x〈κ, b̃ 〉, D) = ∅ if κ 6∈ D

NewK(κ〈 b̃ 〉, D) = ∅
NewK(P,D) = D in any other case

B.0.11 The Used Call-Back Ports Metafunction
UsedK(P 1‖P 2, D) = UsedK(P 1, D) ] UsedK(P 2, D)

UsedK(x〈κ, b̃ 〉, D) = ∅

UsedK(κ〈 b̃ 〉, D) = {κ} if κ ∈ D

UsedK(κ〈 b̃ 〉, D) = ∅
UsedK(P,D) = D in any other case
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B.0.12 Well-formed Registries

D, in `l R

dom(R) ∩D ⊆ in ∩ U
∀x 7→ (id, bi, p̃i) ∈ R.bi 6= ∅ and unique_params(bi)

∀y ∈ in.y ∈ dom(R)

∀x ∈ dom(R).x ∈ in =⇒ R(x) = (id, {(⊥, {l} ∪ ls, †), (v1⊥, {l} ∪ ls
1 , lc

1

), ..., (vn⊥, {l} ∪ ls
n , lc

n

)}, p̃i)
∀κ ∈ dom(R).κ ∈ in ∪ U =⇒ R(κ) = (id, {⊥, ls, l}, p̃i)

∀x ∈ dom(R).x 6∈ D =⇒ R(x) = (id, {(⊥, ls⊥ , l), (v1⊥, ls
1 , l), ..., (vn⊥, l

sn , l)})
∀κ ∈ dom(R).κ 6∈ D =⇒ R(κ) = (id, {⊥, {l} ∪ ls, lc}, p̃i)

D,U, in `l R

B.0.13 The Unique Parameters Metafunction
unique_params(bi) = true

if ∀(v⊥, ls, lc) ∈ bi.bi = (v⊥, ls, l
c) ∪ bi′ and (v⊥, ls

′ , lc
′
) 6∈ bi′

unique_params(p) = false
in any other case

B.0.14 Well-formed Local Specs

S ` S

S ⊆ S
∀(given e, ĩdg returns e, ĩdr, vp, pp, ip) ∈ rng(S).ĩdg ĩdr ⊆ dom(S)

S ` S
B.0.15 Well-formed Local Configurations

C, U, in ` C

C � C
∀x ∈ in.{x 7→ x, x 7→ x} ⊆ C where x ∈ in
∀x ∈ in.{x 7→ x, x 7→ x} ⊆ C where x ∈ in

∀κ ∈ in.{κ 7→ κ} ⊆ C or {κ 7→ κ, κ 7→ κ} ⊆ C where κ ∈ in
∀κ ∈ in.{κ 7→ κ, κ 7→ κ} ⊆ C where κ ∈ in

∀κ ∈ U.{κ 7→ κ} ⊆ C or {κ 7→ κ, κ 7→ κ} ⊆ C where κ ∈ U
∀κ ∈ U.{κ 7→ κ, κ 7→ κ} ⊆ C where κ ∈ U

∀κ ∈ out .{κ 7→ κ} ⊆ C or {κ 7→ κ, κ 7→ κ} ⊆ C where κ ∈ out
∀κ ∈ out .{κ 7→ κ, κ 7→ κ} ⊆ C where κ ∈ out

C, U, in ` C

B.0.16 Consistent Configurations

C � C ′

∀y 7→ y ∈ C.y 7→ y ∈ C ′ or {y 7→ y, y 7→ y} ⊆ C ′
∀y 7→ y ∈ C.{y 7→ y, y 7→ y} ⊆ C ′
∀y 7→ y ∈ C.{y 7→ y, y 7→ y} ⊆ C ′

C � C ′

Definition 6 (Well-formed Terms). A term P is well-formed iff there exist C, S, D, U , in , out and l̄ such that U, in  C, S
and D,U, in, out , l̄ `CS P .

Theorem 7 (Preservation of Well-formedness). If U, in  C,  S and D,U, in, out , l̄ `CS P and P α−→ P ′ where
α ∈ {?m, !m, ·} then there exist C′, U ′, in ′ and out ′ such that U ′, in ′  C′, D,U ′, in ′, out ′, l̄ `C′S P ′ and, C � C′, U ⊆ U ′,
in ∪ U ⊆ in ′ ∪ U ′ and out ⊆ out ′.

PROOF SKETCH. By straightforward case analysis on the form of the reduction rule P α−→ P ′.
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C. Monitor Erasure
Contexts E = [ • ] | E‖P
Multihole Contexts Ê = [ • ] | Ê‖Ê | Ê‖P

Definition 8 (Black Box Preorder vB). For P 1 and P 2, P 1 vB P 2 iff for all contexts E such that E [P 1] and E [P 2] are

well-formed, if E [P 1]
α̃−→∗

β−→ Q1 then E [P 2]
γ̃−→∗

β−→ Q2 where α, γ ∈ {?m, !m, ·} and β ∈ {?m, !m}.
Definition 9 (Black Box Equivalence ∼=B). Terms P 1 and P 2 are black box equivalent, P 1 ∼=B P 2, iff P 1 vB P 2 and
P 2 vB P

1.

Theorem 10. B
DB,UB

inB,outB
∼=B A

DA,UA

inA,outA{C, S,R,L, l}(B
DB,UB

inB,outB)

PROOF SKETCH. We perform the proof in two steps: we show that (1) BD
B,UB

inB,outB vB A
DA,UA

inA,outA{C, S,R,L, l}(B
DB,UB

inB,outB) (Lemma

11) and, (2) AD
A,UA

inA,outA{C, S,R,L, l}(B
DB,UB

inB,outB) vB B
DB,UB

inB,outB (Lemma 12).

Lemma 11. B
DB,UB

inB,outB vB A
DA,UA

inA,outA{C, S,R,L, l}(B
DB,UB

inB,outB)

PROOF SKETCH. We set up the relation R̂ as the compatible closure over multihole contexts Ê of the following relation R :
• B R A

D,U
in,out{C, S,R,L, l}(B)

• x〈κ, b̃ 〉 R x〈κ, b̃, C, l 〉 if C(x) = x and C(κ) = κ
• x〈κ, b̃, C, l 〉 R x〈κ, b̃, C ′, l 〉 if C � C ′
• κ〈 b̃ 〉 R κ〈 b̃, C, l 〉 if C(κ) = κ
• κ〈 b̃, C, l 〉 R κ〈 b̃, C ′, l 〉 if C � C ′

A
D,U
in,out{C, S,R,L, l}(B)R A

D,U ′

in′,out′{C ′, S,R, L′, l}(B) if C � C ′, U ⊆ U ′, in ⊆ in ′ and out ⊆ out ′.
We show that: (1) if P 1 R̂ P 2 and P 1 α−→ Q1 where α ∈ {?m, !m} then P 2 −→∗ α−→ −→∗ Q2 and Q1 R̂ Q2; (2) if

P 1 R̂ P 2 and P 1 −→ Q1 then P 2 −→∗ Q2 and Q1 R̂ Q2. We proceed with a straightforward case analysis on the steps
P 1 α−→ Q1 and P 1 −→ Q1.

Lemma 12. A
DA,UA

inA,outA{C, S,R,L, l}(B
DB,UB

inB,outB) vB B
DB,UB

inB,outB

PROOF SKETCH. The proof of this lemma is similar to the proof of Lemma 11. Instead, though, of the relation R̂ , we employ
its reverse R̂−1.
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D. Contract Checking Correctness
Registry Set R(P ) = {(R | AD,Uin,out{C, S,R,L, l}(B) occurs in P}

D.0.17 Registry Set Blame Consistent with Provenance

.R(P )

∀R ∈ R(P ). . R

.R(P )

D.0.18 Registry Blame Consistent with Provenance

.R

∀(y, v⊥) such that y ∈ dom(R) and v⊥ ∈ known_params_of(y,R).
blame_labels_of((y, v⊥), R) = origin_of ((y, v⊥), R)

.R

D.0.19 The Blame Labels of a Port–Parameter Pair According to Registry Metafunction
blame_labels_of((y, v⊥), R) = l̄

if R(y) = (id, (v⊥, l̄, l
c) ∪ bi, p̃i)

blame_labels_of(y,R) = ∅
in any other case

D.0.20 The Origin of a Port–Parameter Pair According to Registry Metafunctions
origin_of ((y, v⊥), R) =

trans_provenance(filter_provenence(p̃i, v⊥)) ∪ trans_provenance(filter_provenence(p̃i,⊥))

if R(y) = (�, p̃i · pi)
origin_of ((y, v⊥), R) =

trans_provenance(filter_provenence(p̃i, v⊥)) ∪ trans_provenance(filter_provenence(p̃i,⊥))

if R(y) = (id, bi, p̃i)

origin_for_all(y,R) = trans_provenance(p̃i)

if R(y) = (�, p̃i · pi)

origin_for_all(y,R) = trans_provenance(p̃i)

if R(y) = (id, bi, p̃i)

latest_origin_of (v⊥, R) = single_trans_provenance(pi)

if R(y) = (�, p̃i · pi)
latest_origin_of ((y, v⊥), R) = single_trans_provenance(pi)

if R(y) = (id, bi, p̃i · pi)

D.0.21 The Transitive Provenance Metafunctions
single_trans_provenance(v⊥  l) = l

single_trans_provenance(v⊥  p̃i) = trans_provenance(p̃i)

trans_provenance(pi1 · ... · pin) = single_trans_provenance(pi1) ∪ ... ∪ single_trans_provenance(pin)

Theorem 13 (Preservation of Registry Set Blame Consistency with Provenance). If a process P is well-formed, .R(P ) and,
P −→ P ′ then .R(P ′).

PROOF SKETCH. By straightforward case analysis on the form of the reduction rule P −→ P ′.

Theorem 14 (Correct Blame). Let P = E [AD,Uin,out{C, S,R,L, l}(B)]. If P is well-formed, .R(P ) and P −→ P ′ where

P ′ = E ′[AD,U
′

in′,out′{C ′, S,R′, L′, l}(B′)] and L′ = L · L∗ then:
1. if (pre : x, id, v⊥, l

∗) or (unknown v : x, id, {l∗}) ∈ L∗ then
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(a) if P = E ′[x〈κ, b̃ 〉‖AD,Uin,out{C, S,R,L, l}(B)] then l∗ = †;
(b) if P = E ′[x〈κ, b̃, C, lm 〉‖AD,Uin,out{C, S,R,L, l}(B)] then l∗ = lm;
(c) if P = E [AD,Uin,out{C, S,R,L, l}(x〈κ, b̃ 〉‖B′)] then l∗ = l

2. if (post : y, id, v⊥, l∗) ∈ L∗ then l∗ = origin_of ((y, v⊥), R).
3. if (conflict : x, id], l], id[, l[) ∈ L∗ then l] = origin_for_all(y,R) and l[ = latest_origin_of (y,R′)
and L∗ does not contain any other kind of entries except those mentioned above.

PROOF SKETCH. Parts (a) and (b) of the first conclusion of the theorem are direct consequences of the corresponding reduction
rules. Parts (c) of the first conclusion of the theorem is a direct consequence of the well-formedness of P and Theorem 7. The
second and third conclusions of the theorem are direct consequences of the corresponding reduction rules that produce these
errors, the well-formedness of P , .R(P ) and Theorem 13.
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E. Full Specifications
E.1 Evernote

1
2 service UserStore {
3
4 getNoteStoreUrl(authToken)
5 @indexedby « authToken »
6 @identifies ns:NoteStore[] by «
7 yield (result, authToken)
8 »
9

10 getUser(authToken)
11 @indexedby « authToken »
12 @requires « len(authToken) > 0 »
13 }
14
15
16 service NoteStore {
17 listNotebooks(authToken)
18 @indexedby « authToken »
19 @requires « len(authToken) < 0 »
20
21 listLinkedNotebooks(authToken)
22 @indexedby « authToken »
23 @identifies noteStores:NoteStore[] by «
24 for notebook in result:
25 yield (notebook.noteStoreUrl, authToken + notebook.shareKey)
26 »
27
28 getSharedNotebookByAuth(authToken)
29
30 authenticateToSharedNotebook(shareKey, authToken)
31 @indexedby « shareKey + authToken »
32 @identifies g:NoteStore[] by «
33 yield (index=result.authenticationToken)
34 »
35 @requires «
36 return len(shareKey) > 0
37 »
38
39 findNotes(authToken, filter, offset, maxNotes)
40 @requires « offset >= 0 »
41 @ensures «
42 result.totalNotes <= maxNotes and result.totalNotes == len(result.notes)
43 »
44 }
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E.2 Twitter
1 service TwitterTweets {
2 /1.1/friends/list.json(request)
3 @indexedby « 'u' + request['args'].get('user_id', request['args'].get('screen_name')) »
4 @requires « 'user_id' in request['args'] or 'screen_name' in request['args']»
5 @requires « request['args'].get('count', 0) >= 0 »
6 @requires « 'Authorization' in request['headers'] »
7 @ensures « type(result['body']['users']) == list »
8 @identifies t:TwitterTweets[] by «
9 for f in result['body']['users']:

10 yield (request['headers']['Host'], "u" + f['id_str'])
11 »
12
13 /1.1/statuses/user_timeline.json(request)
14 @indexedby « 'u' + request['args'].get('user_id', request['args'].get('screen_name')) »
15 @requires « 'Authorization' in request['headers'] »
16 @requires « 'user_id' in request['args'] or 'screen_name' in request['args']»
17 @identifies t:TwitterTweets[] by «
18 for tweet in result['body']:
19 yield (request['headers']['Host'], "t" + tweet['id_str'])
20 »
21 @ensures «
22 'count' not in request['args'] or \
23 len(result) <= max(200, request['args']['count']) »
24 @ensures «
25 for tweet in result['body']:
26 assert rfc822.parsedate_tz(tweet['created_at']) != None
27 »
28
29 /1.1/statuses/retweet/<id>.json(request)
30 @indexedby « "t" + request['args']['tweet_id'] »
31 @ensures « 'errors' not in result['body'] »
32
33 }

E.3 Chess
1 service Chess {
2
3 GetMyGames(username, password)
4 @identifies g:Chess[] by «
5 for game in result:
6 nmoves = len(split('[0−9]+\. ', game['moves']))
7 yield (index=str((game['id'], game['drawOffered'], nmoves)))
8 if game['drawOffered']:
9 yield (index=str((game['id'], False, nmoves)))

10 »
11
12 MakeGame(whitePlayer, blackPlayer)
13 @identifies gas:Chess[] by «
14 yield (index=str((result, False, 0)))
15 »
16
17 MakeAMove(username, password, gameId, resign, acceptDraw, movecount, myMove, offerDraw, claimDraw, myMessage)
18 @indexedby « str((gameId, acceptDraw, movecount)) »
19 @ensures « result != "NoDrawWasOffered" »
20 @ensures « result != "InvalidGameID" »
21
22 }
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F. Additional Case Study: Airline Reservations
The airline reservation open-source case study [20, 27] models an airline reservation system, and was developed to provide
researchers and educators with a simple but complete service-oriented application. With respect to the challenges we discuss
in Section 1, it demonstrates that (i) CONSUL can operate on top of yet another interface abstraction (SOAP with a WSDL
interface); and (ii) CONSUL can express and enforce contracts between components implemented in different languages
(Python and PHP for client and server respectively).

The text documentation of the case study informally describes the component interfaces, and the WSDL specification
captures some of the interface’s syntactic properties. However, WSDL cannot express many of the properties in the text
documentation. We wrote CONSUL contracts for some of these additional properties.
Property 1. (Well-formed passenger information) The documentation states that passengers’ first and last names cannot
contain whitespace. This ensures consistent treatment of passenger names by all services and applies to all services that use
passenger data.

With CONSUL, we are able to ensure that passenger information is well-formed by adding the following tags for the bookSeat

operation to the contract of the airline server (We also add similar tags for other uses of passenger information.)
bookSeat(bookingRequestNumber, flightId, passenger)
@requires « ' ' not in passenger.firstName »
@requires « ' ' not in passenger.lastName »

We tested the effectiveness of this contract by removing the passenger data validity check from the reference implementation
of the bookSeat operation. Similar defensive code that checks this property appears in multiple places in the case study’s code
base. Without CONSUL and the defensive code, a client is able to book a flight with invalid passenger information. With
CONSUL and the above contract, the violation was reported and the client was blamed. Thus the CONSUL contract is as
effective as defensive code injected in multiple places in the service’s code.
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