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Semiconductors with a Loop of Extrema

E. I. Rashba
Physical Institute of the Academy of Sciences of Ukrainian SSR, Kiev, USSR

Crystals with a Wurtzite-type structure are used as an example to show that owing to spin-orbit
coupling a new type of the band structure can arise. For this band structure the extrema are reached
at a circle, a loop of extrema, rather than in isolated points of the Brillouin zone. Specific properties
of such semiconductors are studied theoretically, in particular, the peculiarities of the cyclotron
resonance at low temperatures. In strong magnetic fields, spin-orbit coupling results in absorption
at the frequency of electron spin resonance but driven by the electric vector of electromagnetic wave
(combined resonance).

PACS numbers:

Spin-orbit (SO) coupling can result in a specific band
structure such that, in a reasonable approximation, the
extremum is reached at a circle, “a loop of extrema”,
rather than in isolated points of the Brillouin zone (B.Z.).
In particular, such a band structure can arise in the lat-
tices of the wurtzite type (C4

6v).
Analysis of the position of the potential zero-slope

points of the energy spectrum in absence of spin-orbit
coupling was performed for a lattice of the wurtzite type
by using the general formulae of Ref. [1] that include
only characters of irreducible representations. It shows
that the zero slope can arise at an arbitrary point of
the B.Z., having a shape of a right hexagonal prism,
but at its top and bottom faces, and also at its vertical
ribs P for the states transforming according to the two-
dimensional representation. Remarkably, the only exclu-
sion are the vertices H of the prism for the states trans-
forming according to the two-dimensional representation.
Two bands can stick together in the point where an ex-
tremum is reached only at two instances, either when
this happens in the point H or at the symmetry axis ∆
(for representations ∆5 and ∆6). In the latter case the
constant energy surfaces have a shape of two unwarped
ellipsoids of revolution, one embedded into the other. In
other points of the B.Z. the bands are nondegenerate near
the extrema.

If nondegenerate extrema are reached in P or ∆ in
absence of spin-orbit coupling, then with the SO coupling
included the dispersion law reads

E(k) = ak2
⊥ + bk2

z ± αk⊥, where k⊥ =
√

k2
x + k2

y (1)

(z-axis is parallel to the hexagonal axis c). The parame-
ter α is proportional to the SO coupling strength. Energy
E(k) reaches its minimum [Footnote 1: All presentation
below is in terms of the conduction band.] at a circle of a
radius k0 = α/2α. The depth of the loop, i.e., the energy
separation between the point k = 0 and the bottom of
the band, is equal to ε = α2/4a. At E < 0, constant
energy surfaces have the shape of tori. If the terms of
the higher order in k are taken into account in E(k), the
loop disintegrates and minima of E(k) are achieved in
a set of isolated points of the B.Z. However, the saddle
points between them should be low and therefore the ap-

proximation based on the loop of extrema is expected to
turn more useful than the description in terms of isolated
points of extrema. Similarly, the splitting of each of the
∆5 and ∆6 bands by SO coupling results in two energy
bands. In one of them (∆9) the slope vanishes at k = 0,
while in the other (∆7 or ∆8) a loop of extrema develops
[2].

The data on intermetallic compounds [3] suggest that
ε may be large enough to make the displacement of the
minimum from a symmetry axis observable experimen-
tally. Also, the current interpretation of the data on
CdS [4] according to which both the bottom of the con-
duction band and the top of the valence band are reached
in the center of the B.Z., and similarity between the op-
tical spectra of CdS and a number of different crystals,
suggest that in the crystals of this group the loop of ex-
trema really exists. Therefore, a more detailed investiga-
tion of semiconductors with a loop of extrema is both of
intrinsic interest and can serve as a convenient model for
investigating the properties of noncentrosymmetric semi-
conductors.

In a magnetic field H ‖ c the effective mass meff of
electrons diverges at the surface of the cylinder of a ra-
dius k0 because ∂E/∂k⊥ = 0. The effective mass of elec-
trons is positive, meff > 0, for k⊥ > k0 and is negative,
meff < 0, for k⊥ < k0. Therefore, inside the cylinder elec-
trons behave dynamically as holes. At low temperatures,
when charge carriers populate the region near the bottom
of the band and the concentrations of “electrons” and
“holes” are nearly equal, the absorption of the right- and
left-polarized electromagnetic waves propagating along c
should be nearly equal, the Hall constant should van-
ish [Footnote 2: At a total constant concentration of the
carriers in the band], etc.

A detailed investigation of the resonances can be per-
formed by using the exact solution defining two branches
of quantized states

E0 = h̄ω∗β, Es = h̄ω∗(s ±
√

β2 + γ2s), s ≥ 1, (2)

where ω∗ = 2aeH/h̄2c, γ = 2
√

ε/h̄ω∗, β = β0H/h̄ω∗,
and β0 is an effective magnetic moment of the electron.
The probabilities of quantum transitions driven by cou-
pling of the electron charge to the electromagnetic wave
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can be calculated using two-component eigenvectors that
are conveniently expressed in terms of the eigenfunctions
of a harmonic oscillator. One can check that the selec-
tion rules are s → s ± 1, and both the intraband and
interband transitions are allowed [5].

Let us begin with intraband transitions. When Es � ε,
the resonance condition is ω ≈ ω∗, which corresponds to
the usual pattern of the cyclotron resonance (CR) for
electrons with ellipsoidal constant-energy surfaces. On
the contrary, when Es < 0, frequencies of the transitions
between adjacent energy levels strongly depend on Es.
Therefore, when kBT is less or of the order of ε but is
larger than the separation between adjacent energy lev-
els, the transitions frequencies are different for different
groups of electrons and therefore no distinct resonance
is expected. The most intriguing peculiarities of the CR
should manifest themselves in the ultra-low temperature
region when kBT is less than the level separation and the
majority of electrons populates the lowest energy level.
In this parameter range, as it follows from Eq. (2), the
resonance frequency becomes an oscillating function of H
(if the field H is not too strong). Then, under the usual
conditions of the experiment with ω kept fixed and H
changing, and for a favorable relation between ε and h̄ω,
the resonance is achieved at several values of H (with al-
ternating resonances in the right and left waves). These
peculiarities of the CR originate (i) from the existence of
a negative effective mass region, meff < 0, and (ii) due to
a non-monotonic dependence of Es on s, and might be
encountered also in other similar systems.

Interbranch transitions are of special interest in the
strong magnetic field region. When β0H �

√
εEs, the

frequency of quantum transitions is ω0 ≈ 2β0H/h̄, as it
follows from Eq. (2). Obviously, 2β0H is the energy of the
electron spin flip. It is natural to term such a resonance
(i) driven by the electric vector of an electromagnetic
wave but (ii) possessing the frequency of a paramagnetic

resonance controlled by the electron spin-flip energy as a
combined resonance (COR) [5]. This resonance is weaker
than the CR by a factor of the order of ε/β0H , but is
of a few orders of magnitude stronger than the conven-
tional paramagnetic resonance driven by the coupling of
the electron magnetic moment to the magnetic vector of
electromagnetic wave. In physical terms, the mechanism
of COR is absolutely transparent: a strong external field
breaks the SO-coupling and controls the frequency of spin
flips, while the SO-coupling makes possible the spin-flip
transitions driven by the Lorentz force (with a probability
decreasing with H). Obviously, the COR may manifest
itself also in different noncentrosymmetric semiconduc-
tors.

Magnetic susceptibility χ also shows a rather peculiar
behavior [6]. It tends to its ε = 0 limits both (i) for
a nondegenerate electron gas at high temperature and
arbitrary field and (ii) for a strong field at arbitrary tem-
perature. At low temperatures and weak fields, the sus-
ceptibility is positive, χ > 0, and does not depend on the
temperature. The paramagnetic sign of the susceptibil-
ity originates from the fact that in weak fields the lower
Landau levels sink under the bottom of the energy band,
as is seen from Eq. (2). At T = 0 the monotonic part
of χ is a singular function of the chemical potential ζ.
For ζ < 0 [Footnote 3: The same origins are chosen both
for the chemical potential and the energy.] it is positive
and increases with ζ monotonically, at ζ = 0 it has a
pole of the order 1

2 and changes the sign, and for large
ζ it tends to the standard expression for a simple band.
Characteristic beats are superimposed onto the quantum
oscillations of the susceptibility. They originate from the
existence of two close Fermi surfaces.

Properties of semiconductors with a loop of extrema
in a magnetic field parallel to the plane of the loop have
also been investigated.
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