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Standard heat machines (engine, heat pump, refrigerator) are composed of a system (“working
fluid") coupled to at least two equilibrium baths at different temperatures and periodically driven
by an external device (piston or rotor) called sometimes work reservoir. The aim of this paper is to
go beyond this scheme by considering environments which are stationary but cannot be decomposed
into few baths at thermal equilibrium. Such situations are important, for example in solar cells,
chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by
laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and
show that the efficiency of heat machines powered by them is limited by the generalized Carnot
bound.

I. INTRODUCTION

Quantum systems are rarely completely isolated from their environment, whose influence, positive or
negative, should be considered. The theory of open quantum system was developed [1–7] to achieve this goal
and in particular to open the way to the study of quantum heat machines, such as engines and refrigerators
[8–16]. Those models generally assume the interaction between a system and an environment composed of
several baths, each in thermal equilibrium, thereby termed heat baths. The efficiency of these machines is
limited by the Carnot bound, requiring at least two baths at different temperatures in order to extract work.

Nevertheless, there are many examples in nature where at least part of the environment is not in thermal
equilibrium, such as sunlight, continuous laser radiation, biological cells, etc. Our goal is to establish
maximum efficiency bounds, as well as to determine the output (work power or cooling power) of quantum
heat machines operating with non-equilibrium baths. Because the bath is not at thermal equilibrium, the
second law does not demand the presence of a second bath for work extraction.

We study a micro or mesoscopic externally driven quantum system, the working fluid, coupled to a large
environment. On the relevant time-scale, which is longer than the scales of driving and of microscopic
irreversible processes, the basic parameters of the reservoir are constant, hence the reference state of the
environment is a stationary state. Such non-equlibrium stationary systems are well known in macroscopic
thermodynamics and usually described in terms of local equilibrium with space-dependent temperature,
density, pressure, fluid velocity etc [17].

However, there are important situations where non-equilibrium character of the environment state is not
related to spatial non-homogeneity but rather to some internal properties of its state. For example, sunlight
at the Earth surface is a rather homogeneous environment, the shape of its spectrum roughly corresponds
to the Planck distribution at the Sun surface temperature Ts, but the photon density is much lower than
the equilibrium one, and the absorption in the atmosphere creates “holes” in the spectrum.

Another example is a laser radiation [18] in a continuous wave operation mode. For the idealized single
mode situation it can be treated as a single quantum oscillator or even a classical monochromatic wave. For
the multimode case with strong phase diffusion it acts on optically active centers like a non-equilibrium bath.
Biological machines also provide examples of systems coupled to non-equilibrium baths either of chemical
nature or consisting of photons or different types of excitons. Non-equilibrium effects are also found in
strongly coupled heat machines. Both the hot and cold baths undergo a mixing interaction, caused by their
strong coupling to the system, and effectively produce a non-equilibrium bath [19].

In the Section II a general theory of non-equilibrium quantum heat machines, under the assumption of
fast periodic driving is presented. The theory is based on the Markovian Master Equations (MME) derived
using the Davies idea of weak coupling limit [1] and Floquet theory [20]. This theory is consistent with
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thermodynamics and yields a Carnot-like bound for the efficiency. In Section III the physically important
examples of stationary non-equilibrium bosonic baths are given and their local temperatures for linear
interactions are computed. In the last section heat machines based on two-level systems (TLS) are studied.
Different examples of non-equilibrium baths are given and they are classified according to their effects on
heat machine operation.

II. GENERAL THEORY OF NON-EQUILIBRIUM QUANTUM HEAT MACHINES

We study a large class of open quantum systems with physical Hamiltonian HS(t) = HS(t + τ) under
the assumption that the perturbation frequency Ω = 2π/τ is comparable to or higher than the relevant
Hamiltonian Bohr frequencies. Such fast driving is typically provided by a strong coherent laser field and
appears in the thermodynamical approach to the theory of lasers [18, 21–23], various types of laser cooling
[24, 25], optomechanical devices [26], etc. Potential applications include new light harvesting systems, both
of biological nature or man-made devices.
The theory of such systems including the derivation of Markovian Master Equations and thermodynamical
analysis has been presented in the unpublished tutorial [27] for the case of reservoir consisting of several
independent heat baths. The idea of extending those results to non-equilibrium bath characterized by local
temperatures has been proposed in the unpublished note [28] referring to the “violation of Carnot bound"
for non-equilibrium baths discussed in [29]. Here, we present a complete theory of such systems which are
used to model quantum machines for the case of general stationary non-equilibrium bath. In particular, the
laws of thermodynamics are derived and the Carnot-type bounds are obtained.

A. Master equations

We begin with a presentation of the canonical construction of the Markovian dynamics for an open system
weakly coupled to a stationary, but generally nonequilibrium, environment. The special case of periodically
driven quantum optical system coupled to a photon bath at the vacuum state has been already discussed in
[5]. The general theory has been developed in [30], [31] and applied in [13, 25, 32–35].

The system is assumed to be “small" and described by the periodic in time physical Hamiltonian HS(t) =
HS(t + τ) under the assumption that the perturbation frequency Ω = 2π/τ is comparable to or higher than
the relevant temporal Bohr frequencies. We assume that the Hamiltonian of the system already contains all
Lamb-like shifts induced by interaction with environment.
The system-bath interaction is parametrized as

Hint =
∑

α

Sα ⊗ Bα, (1)

where Sα and Bα are hermitian operators of system and bath, respectively. We sum over all the interactions
between the system and the bath. The environment (bath) is assumed to be a large quantum system with
practically continuous Hamiltonian spectrum. The initial state of the bath is stationary, [ρ̄B, HB ] = 0,
therefore is invariant with respect to the free dynamics of the bath generated by the Hamiltonian HB.
Equilibrium states, ρ̄B ∝ e−βHB are just a subset of the stationary states. To justify the Markovian
approximation the multi-time correlation functions of relevant observables must satisfy certain Gaussian
bounds [1] and a technical condition ⟨Bα⟩B = 0 holds, where ⟨· · · ⟩B denotes the average over the bath state.
We assume also, for simplicity, that the cross-correlations between Bα and Bβ vanish for α ̸= β.

Applying the Floquet theory one obtains the following decomposition of the associated unitary propagator
(we put ~ = 1)

U(t) = T exp
{

−i

∫ t

0
HS(s)ds

}
= P (t)e−iH̄t, (2)

where P (t) = P (t + τ) is a periodic function taking values in the set of unitary operators. T is the time
ordering operator [36] and H̄ is the averaged Hamiltonian satisfying

U(τ) = e−iH̄τ . (3)
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The Floquet operator U(τ), and the averaged Hamiltonian H̄ posses common eigenvectors {ϕk}, i.e.,

H̄ϕk = ϵ̄kϕk, U(τ)ϕk = e−iϵ̄kτ ϕk, (4)

where {ϵk} are called quasi-energies of the system. These properties imply a particular form of the Fourier
decomposition

Sα(t) ≡ U(t)†SαU(t) =
∑
{ω̄q}

Sα(ω̄q)e−itω̄q , (5)

where

{ω̄q} = {ω̄ + qΩ} ; {ω̄} = {ϵ̄k − ϵ̄l}, q ∈ Z}, (6)

i.e., it is a set of all sums of the relevant Bohr quasi-frequencies and all multiplicities of the modulation
frequency. By {ω̄q}+ we denote the subset of {ω̄q} with non-negative relevant Bohr quasi-frequencies ω̄.

The operators Sα(ω̄q) are subject to relations

Sα(ω̄q)† = Sα(−ω̄q),
[H̄, Sα(ω̄q)] = −ω̄qSα(ω̄q). (7)

Physically, the harmonics qΩ correspond to the energy quanta which are exchanged with the external periodic
driving.
Repeating the standard construction of the weak coupling generator in the interaction picture one obtains

L =
∑

α

∑
{ω̄q}+

Lα
ω̄q

, (8)

with a single term defined as

Lα
ω̄q

ρ =1
2

{
Gα(ω̄q)

(
[Sα(ω̄q), ρSα(ω̄q)†] + [Sα(ω̄q)ρ, Sα(ω̄q)†]

)
+ Gα(−ω̄q)

(
[Sα(ω̄q)†, ρSα(ω̄q)] + [Sα(ω̄q)†ρ, Sα(ω̄q)]

)}
. (9)

The bath coupling spectrum is defined as

Gα(ω) =
∫ ∞

−∞
eitω⟨Bα(t)Bα⟩Bdt, (10)

where Bα(t) = eiHBtBαe−iHBt.
For a given coupling spectrum one can introduce the notion of local temperature Tα(ω) - a function of the

frequency ω and the observable Bα defined by the formula (we put also kB ≡ 1, hence angular frequency,
energy and temperature have the same units)

e−ω/Tα(ω) ≡ Gα(−ω)
Gα(ω)

. (11)

Notice, that only in the case of thermal bath the local temperature does not depend on the frequency and
the choice of Bα and corresponds to the standard notion of temperature with the relation (11) being a di-
rect consequence of the Kubo-Martin-Schwinger (KMS) condition. The local temperatures can be measured
by the “thermometers" with a single working frequency ω like, for example, TLS or linearly coupled har-
monic oscillator. Upon “equilibration” with the non-equilibrium bath, the ratio between consecutive state
populations is ρj+1j+1/ρjj = e−ω/Tα(ω).

Due to (7) and (11) the structure of the local generator (9) is the same as the generator obtained in the
weak coupling limit for the case of the system with the Hamiltonian ω̄q/ω̄H̄ coupled to the heat bath at
the temperature Tα(ω̄q) [4, 5]. Hence, the corresponding local stationary state of the system possesses a
Gibbs-like form [1]
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ρ̄α
ω̄q

= Z−1e−(ω̄q/ω̄)H̄/Tα(ω̄q), (12)

with the local temperature Tα(ω̄q) corresponding to the coupling channel (α, ω̄q). The “renormalizing"
term ω̄q/ω̄ in front of H̄ in the Gibbs-like state takes into account the total energy exchange including qΩ
corresponding to external driving device. The properties (7) imply also that the generator (9) transforms
independently the diagonal and off-diagonal elements of ρ computed in the eigenbasis of H̄.

The MME in the Schroedinger picture possesses the following structure

dρsch(t)
dt

= −i[HS(t), ρsch(t)] + (U(t)L U(t)†)ρsch(t), (13)

where U(t)ρ = U(t)ρU(t)†. A very useful factorization property for the solution of (13) holds

ρsch(t) = U(t)etLρsch(0), (14)

which allows to discuss separately the decoherence/dissipation effects described by L and the unitary evolu-
tion U(t).

B. The Laws of Thermodynamics

The structure of MME’s derived above and the introduced notion of local temperatures allow to formulate
the first and second law of thermodynamics in terms of energy, work, heat and entropy balance. The basic
tool is the following inequality valid for any LGKS generator L with a stationary state ρ̄ [7] and arbitrary ρ

Tr
(
Lρ[ln ρ − ln ρ̄)]

)
≤ 0. (15)

This inequality is used to show positivity of entropy production under the assumption that the physical
entropy of the system S(t) is identified with the von Neumann entropy of its state in the Schroedinger or
interaction picture

S(t) = −Tr
(
ρ(t) ln ρ(t)

)
. (16)

The early application of (15) to derive the laws of thermodynamics for open system with constant Hamilto-
nian coupled to several heat bath appeared in [7]. This idea was extended to heat engines with slow driving
in [8] and recently to fast driving in unpublished notes [27]. Those works do not analyze the case of baths
out of equilibrium.

1. Entropy balance and local heat currents

In the case of fast driving there is no obvious definition of the temporal internal energy of the system
because a fast exchange of energy quanta qΩ between system and the external source of driving makes a
temporal partition of energy between both systems ambiguous. The situation is different for the entropy
balance because the entropy change is due to irreversible processes which are slow under the weak system-
bath coupling assumption. The weak coupling scheme yields the coarse-grained in time effective dynamics
described by the MME (13). This suggest the following definition of the local heat current Jα(ω̄q)

Jα
ω̄q

(t) = Tr
[
ρ(t) (Lα

ω̄q

∗)
( ω̄q

ω̄
H̄

)]
= ω̄q

ω̄
Tr

(
H̄Lα

ω̄q
ρ(t)

)
, (17)

where ρ(t) is the system density matrix in the interaction picture and according to (13) given by

ρ(t) = etLρ(0). (18)

The local heat current is the energy flow between the system and the environment composed of the bath
and the external driving. It is the mean value of the time derivative of energy operator, exclusively due
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to the given coupling channel. This action is described by the Heisenberg form of the relevant generator
Lα

ω̄q

∗ applied to the renormalized averaged Hamiltonian ω̄q

ω̄ H̄ which takes into account the energy supplied
or extracted by the external driving. The fact that the state of the bath is stationary, prevents the work
exchange between the system and the bath, which requires the change of the bath state.

The definitions of above allow to formulate the Second Law which is again a consequence of (15) applied
to each single coupling channel

d

dt
S(t) −

∑
α

∑
{ω̄q}+

Jα
ω̄q

(t)
Tα(ω̄q)

=
∑

α

∑
{ω̄q}+

σα
ω̄q

(t) ≥ 0, (19)

where σα
ω̄q

(t) ≥ 0 is an entropy production caused by a single coupling channel (α, ω̄q) given by

σα
ω̄q

(t) = Tr
(
Lα

ω̄q
ρ(t)[ln ρ(t) − ln ρ̄α

ω̄q
]
)

≥ 0. (20)

For the case of environment composed of several independent heat baths the equation (19) reduces to the
standard form of the Second Law for open systems with usual temperatures.

2. Steady state regime

Under natural ergodic conditions and due to (13) any initial state tends to a limit cycle (or fixed point in
particular cases), i.e.,

ρsch(t) → ρ̄sch(t) = U(t)ρ̄ U(t)† = ρ̄(t + τ), where Lρ̄ = 0. (21)

Then the entropy S(ρ̄sch(t)) is constant and in the formula for heat currents (17) the time dependence
disappears leading to the following expression

J̄α
ω̄q

= ω̄q

ω̄
Tr

(
H̄Lα

ω̄q
ρ̄
)
. (22)

The Second Law possesses now a simplified form

∑
α

∑
{ω̄q}+

J̄α
ω̄q

Tα(ω̄q)
≤ 0. (23)

The averaged internal energy of the system is constant in the limit cycle, and hence we can use the total
energy conservation to write the First Law in the form

P̄ = −
∑

α

∑
{ω̄q}+

J̄α
ω̄q

, (24)

where P̄ is the stationary power and if it is negative, it is supplied to the source of external driving.
Remark 1

Each Lα
ω̄q

transforms diagonal (in the H̄ basis) elements of the density matrix into diagonal ones, and the
stationary state ρ̄ is diagonal. Therefore, the expressions for the stationary local heat currents and power
involve only diagonal elements and the “classical” transition probabilities between them.

C. Carnot bound at steady state

In the steady state regime the incoming and outgoing heat currents can be defined as follows

J̄ (+) =
∑

{α,{ωq}+;J̄α
ωq

>0}

J̄α
ωq

, J̄ (−) =
∑

{α,{ωq}+;J̄α
ωq

<0}

[
−J̄α

ωq

]
. (25)
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In the standard situation of hot and cold heat baths, the heat current always flows from the hot to the cold
one. In contrast, here different coupling channels to a single non-equilibrium bath can produce incoming or
outcoming heat currents.

We can introduce also effective “hot/cold bath temperatures” by averaging the inverse local temperatures
with the weights proportional to incoming/outgoing heat currents

1
T (+) =

∑
{α,{ωq}+;J̄α

ωq
>0}

[ J̄α
ωq

J̄ (+)

] 1
Tα(ωq)

,
1

T (−) =
∑

{α,{ωq}+;J̄α
ωq

<0}

[ J̄α
ωq

J̄ (−)

] 1
Tα(ωq)

. (26)

Combining now (23) - (26) and the standard notion of efficiency of heat engine one obtains the generalized
Carnot bound

η = −P̄

J̄ (+)
≤ 1 − T (−)

T (+) , (27)

which again coincides with the standard one in the case of environment composed of two heat baths.
Remark 2
The derivation of MME presented above is consistent only for the case of a stationary bath, i.e. being in

the reference state commuting with the bath Hamiltonian. This condition corresponds to the postulate of
random phases often used in quantum statistical mechanics [37]. This postulate seems to be well justified
for large baths with various additional mechanisms of phase diffusion usually not included in the simplified
Hamiltonian HB (e.g. nonlinear effects in quantum oscillator models). However, if the experimental setting
allows to control at least initial phases of the bath a direct injection of work from the bath is possible, but
this effect is not included in the presented formalism.

Remark 3
In the derivation of MME we assume that the bath average ⟨Bα⟩ = 0 for all bath operators entering

the system-bath interaction Hamiltonian. This can always be assumed for stationary bath because we can
replace Bα by Bα − ⟨Bα⟩ and add the term ⟨Bα⟩Sα to the system Hamiltonian (this is the mean "external
potential" produced by the bath). If the bath is in a time-dependent state, then the additional external
potential ⟨Bα(t)⟩Sα can be also time-dependent and cause exchange of work with the system.

III. EXAMPLES OF HARMONIC OSCILLATOR NON-EQUILIBRIUM BATHS

Baths like electromagnetic radiation or vibration modes of a material are just a collection of independent
quantum oscillators with quasi-continuous spectrum of frequencies [5]. Baths could also be composed of
fermions, e.g., spin-baths, but even then by suitable transformations (e.g. Holstein-Primakoff Hamiltonian)
can often be approximated by bosonic baths. The bosonic bath free Hamiltonian is given by

HB =
∑

k

ωk b+
k bk, [bk, b+

l ] = δkl. (28)

In most applications the bath operator that couples to the system is linear in creation and annihilation
operators

B =
∑

k

{
gkbk + ḡkb+

k

}
. (29)

The state of the bath is assumed to be stationary and hence diagonal in the particle number basis. Then,
the coupling spectrum yields

GB(ω) =
{ ∑

k |gk|2(nk + 1)δ(ωk − ω), ω > 0∑
k |gk|2nkδ(ωk − ω), ω < 0

}
, (30)

where nk = Tr(ρBb+
k bk) is the k-mode population, the upper (lower) line in (30) is the emission (absorption)

rate. The local temperature is given by

TB(ω) = ω

ln
[ GB(ω)

GB(−ω)
] (31)
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Figure 1: (Color online) Local temperature of a TLS coupled to sunlight. The continuous line corresponds to the
case of thermal radiation at the temperature of Sun surface Ts ≃ 6000K, while the dashed line to sunlight out of
equilibrium due to a geometrical factor, λ = 2.5 × 10−5 (see main text).

or

e−ω/TB(ω) = n(ω)
n(ω) + 1

, (32)

where n(ω) =
∑

k
|gk|2nkδ(ωk−ω)∑
k

|gk|2δ(ωk−ω)
denotes the average population number for the frequency ω.

As we show below, the frequency dependence of the local temperature determines whether work can be
extracted from the single non-equilibrium bath.

1. Sunlight

The Sun is a thermal source, emitting thermal radiation at Ts = 6000K. Due to geometrical considerations
[38, 39], just a small fraction of the emitted photons reach the Earth, reducing the effective mode population
and thereby n(ω) = λ

[
eω/Ts − 1

]−1, where λ = 2.5 × 10−5 is a geometric factor equal to the angle subtended
by the Sun seen from the Earth. Effectively, sunlight on Earth is out of equilibrium, and systems with
different frequencies, will “equilibrate” to different temperatures. Fig 1 shows the equilibration temperature,
as a function of thermometer’s frequency. Moreover, the atmosphere acts like a filter and produces a more
complicated shape of n(ω) with many “holes".

2. Multimode laser radiation

A multimode laser radiation in a continuous wave operation mode may be modeled as a bosonic bath at
the phase average, ρ̄B , of the multimode coherent state ρB ,

ρB = Uz|vac⟩⟨vac|U†
z , |vac⟩⟨vac| =

⊗
k

|0k⟩⟨0k|, (33)
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where U†
z is the displacement operator

U†
z bkUz = bk − z(ωk). (34)

We now average over the phases,

ρ̄B =
∑

i⃗

|⃗i⟩⟨⃗i|ρB |⃗i⟩⟨⃗i| (35)

where |⃗i⟩ is just the energy basis of the bath free Hamiltonian. Notice, that in order to compute the local
temperature we do not need to compute explicitly the state ρ̄B but it is enough to compute the average
population number n(ωk). Therefore, we apply the unitary map (34) to the particle number operator bk

†bk,
neglect the terms which are not invariant with respect to phase rotation (called gauge transformation) and
compute the average of the remaining ones with respect to the initial coherent state. The bath in this
stationary, phase averaged state, will not exchange work with the system and will drive the thermometer,
with a single working Bohr frequency ω, to a Gibbs state with the local temperature

TB(ω) = ω

ln
(
1 + |z(ω)|−2

) , (36)

as follows from Eqs (31) and (32). For large |z(ω)| (36) yields

TB(ω) ≃ ω|z(ω)|2. (37)

Therefore, for a constant shift, z, for all the modes, the local temperature is a linearly increasing function
of the frequency.

3. Squeezed thermal bath

The state of a stationary squeezed thermal bath is the phase average (compare with[29, 40] where non-
stationary squeezed bath is used), ρ̄B , of the following density matrix

ρB = Z−1Sr e−HB/Teq S†
r , (38)

where Sr is the squeezing unitary operator defined by

S†
rbkSr = cosh(r(ω))bk + sinh(r(ω))b+

k , (39)

and r(ω) is the squeezing parameter for the mode ω.
As for the multimode laser state we assume that the bath is in a phase averaged state, see Eq. (35).

Similarly, we do not need to compute explicitly the state ρ̄B but only the average population number n(ωk)
applying (39) to bk

†bk and leaving the gauge invariant terms only. The local temperature is given by the
expression

TB(ω) = ω

ln
{

1 +
[
neq(ω) + (2neq(ω) + 1) sinh2(r(ω))

]−1} , (40)

where neq(ω) = [eω/Teq − 1]−1, is the mode population without squeezing. In the high temperature limit,
ω

Teq
≪ 1,

TB(ω) ≃ Teq

1 + sinh2(r(ω))
(41)

Applying this result to a modified Otto cycle, where the hot bath is in a thermal squeezed state, the efficiency
bound (Eq. (27)), found in [29, 40] is recovered. For large r (40) reduces to

TB(ω) ≃ ω

4
(2neq(ω) + 1)e2r. (42)

The notion of local temperature explains the meaning of “violation of Carnot bound" for the engine with a
squeezed hot bath observed in [29] (see [28]).
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IV. TLS HEAT MACHINES COUPLED TO DIFFERENT BATHS

In order to illustrate the particular properties of heat machines powered by non-equlibrium stationary bath
we discuss the simplest implementation : TLS-based system driven by the the diagonal periodic perturbation.
We compare different examples of baths and discuss various scenarios of work extraction.

The working fluid (TLS) Hamiltonian is the following

H(t) = (ωo + ω(t))σz

2
, ω(t + 2π

Ω
) = ω(t) (43)

with Pauli matrices σi; i = x, y, z, and the conditions

ωo ≥ 0,

∫ 2π/Ω

0
ω(t) dt = 0. (44)

The coupling to the bath is combined to a single term

Hint = σx ⊗ B (45)

with a single coupling spectrum G(ω).
The averaged Hamiltonian of the system coincides with the unperturbed one

H̄ = 1
2

ωoσz (46)

and therefore, (compare Remark 1) to analyze the stationary case it is enough to use the rate equation for
the diagonal matrix elements in Ho basis. The rate equation has form

ρ̇ee =
∑
q∈Z

Pq

(
G(−ωq)ρgg − G(ωq)ρee

)
, ωq ≡ ωo + qΩ, (47)

where ρgg and ρee = 1 − ρgg are populations of the ground and excited state, respectively. The probability

distribution Pq = P−q = |ξq|2 is obtained from the Fourier series e
−i

∫ t

0
ω(t′)dt′

=
∑

q∈Z ξqe−iqΩt.
It follows immediately that the steady state population, ρ̇ee = 0, ratio reads

w =
(

ρ̄ee

ρ̄gg

)
=

∑
q∈Z PqG(−ωq)∑
q∈Z PqG(ωq)

(48)

which is just the expression for detailed balance population for driven states. The local heat currents and
power defined by the general formulas (22), (24) reduce to

J̄q = ωqPq

w + 1
(G(−ωq) − G(ωq)w) , (49)

P̄ = −
∑
q∈Z

J̄q. (50)

In (49) ωq is the energy quantum exchanged between the bath and, the system and the driving .The rest of
the equation is the rate of population flow.

Classification of non equilibrium baths

The functional dependence of TB(ω) can be used to classify non-equilibrium baths. It depends on the
coupling channel composed of the bath state, coupling to the system and frequency. Using Eqs (48), (49)
we can write the expression for power supplied to the system as

P̄ = z−1
∑

{q1>q2∈Z}

(q1 − q2)ΩPq1Pq2G(ωq1)G(ωq2)
(

e−ωq2 /TB(ωq2 ) − e−ωq1 /TB(ωq1 )
)

, (51)
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where

z =
∑
q∈Z

PqG(ωq)
[
1 + e−ωq/TB(ωq)]. (52)

A sufficient condition

ωq2/TB(ωq2) > ωq1/TB(ωq1), for {q1 > q2}, (53)

assures that P̄ < 0 and hence the engine extracts work from the bath.

4. Non-equilibrium but passive

We define the passivity function as f(ω) ≡ d
dω (ω/TB(ω)). According to (51) if for all frequencies f(ω) > 0,

no work can be extracted. We term such coupling channels as passive. This is in analogy to passive states
[35, 41–43] which do not allow for work extraction by unitary transformations. Here, the transformation
is non-unitary due to the presence of a bath, nevertheless, work extraction is still not allowed. Previous
examples, based on linear coupling to bosonic bath, are passive if we consider only frequency independent
deformations of a thermal bath (constant filtering, displacement or squeezing). From Eq (51) we deduce that
work extracted from a single non-equilibrium bath depends on the coupling spectrum shape and requires the
passivity function f(ω) to be negative in some range of frequencies.

5. Two equilibrium baths as a single non-equilibrium one

As a first example of a non-passive bath, we consider the TLS quantum heat engine where the working fluid
interacts with two independent baths at equilibrium (hot and cold). The coupling operator B = Bh + Bc is
a sum of two terms with negligible cross correlations. Due to a generic cross-talking between baths induced
by the system-bath coupling we can treat them as a single non-equilibrium bath with a continuous local
temperature function obtained from the coupling spectrum being a sum of two baths spectra. Therefore,
the local temperature of this composed bath satisfies the following relation

e−ω/TB(ω) = e−ω/ThGh(ω)
Gh(ω) + Gc(ω)

+ e−ω/TcGc(ω)
Gh(ω) + Gc(ω)

= e−ω/Th(1 − m(ω)) + e−ω/Tcm(ω), 0 ≤ m(ω) ≤ 1,

where we use the fact that both baths are in equilibrium and the standard KMS condition holds. The
effective Boltzmann factor is a weighted average of two Boltzmann ones, where the weights depend on how
strong is the working fluid coupled to each bath at the given frequency. Therefore, Th ≥ TB(ω) ≥ Tc. For the
sake of simplicity, we assume that the bath coupling spectrum overlaps with only two harmonic frequencies
(ωq1 > ωq2). As shown in [34] this condition is required in order to achieve high efficiency. Work extraction
requires the hot bath being coupled more strongly to the high frequency mode (Gh(ωq1) ≫ Gc(ωq1)) and
the opposite for the low frequency mode (Gh(ωq2) ≪ Gc(ωq2)) [34]. The efficiency of the engine is given by
the Carnot-type formula

η = 1 − TB(ωq2)
TB(ωq1)

≤ 1 − Tc

Th
.

The extreme case, where the engine reaches the maximum efficiency, the Carnot bound, is when the bath are
spectrally separated, i.e. TB(ωq1) ≃ Th and TB(ωq2) ≃ Tc . This example, called in [34] universal quantum
machine, provides the closest analog to the standard heat machine alternately coupled to hot and cold bath.

6. An example of non-equilibrium and non-passive bosonic bath

As shown above, frequency independent deformation of a thermal bosonic bath with linear coupling, creates
passive baths. Therefore, work extraction requires the use of “selective” transformations. As an illustration
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we analyze the case where the deviation from equilibrium is obtained through selective filters. This scenario
can be implemented in optical setups, where the photon bath is “filtered” with the use of optical filters.
Other possible deviations from equilibrium may be obtained by other transformations, like displacement or
squeezing, but its detailed analysis is out of the scope of this work. In order to not contradict the second
law of thermodynamics, which forbids work extraction from a single thermal bath, this selective filter should
involve the presence of other baths, non-equilibrium processes or a hidden work injection.

Assume a single bosonic bath at the equilibrium temperature Teq and linearly coupled to the system. If a
selective filter, λ(ω), is applied, the local temperature satisfies

e−ω/TB(ω) = λ(ω)neq(ω)
λ(ω)neq(ω) + 1

, (54)

with neq(ω) = (eω/Teq − 1)−1. What are the conditions required for this filter to allow work extraction?
Consider again the bath coupling spectrum which overlaps with only two harmonic frequencies ωq1 , ωq2

with q1 > q2. Assume that we reduce the population of the mode ωq2 (λ(ωq2)<1), and we do not filter the
other mode (λ(ωq1) = 1). In order to allow work extraction (P̄ < 0, see Eq. (51)), the filter should satisfy
the following condition

λ(ωq2) < e
(q2−q1)

2Teq
Ω sinh( ωq2

2Teq
)

sinh( ωq1
2Teq

)
< 1.

As paradoxical it may sound, by reducing a specific mode population, we can extract work from a single
thermal bath! The filtering lowers the effective temperature TB(ωq2), reducing the excitations that are
emitted to this mode, an “saving” energy which is ultimately transformed into work. The efficiency of this
machine is bounded by a generalized Carnot limit

η = −P̄

J̄H

≤ 1 − TB(ωq2)
Teq

,

where Teq and TB(ωq2) play the role of the effective hot and cold bath temperature, respectively.

7. Deviation from equilibrium of engineered bath

Using the selective filtering introduced in the last section, we can engineer a non-equilibrium bosonic bath
from an equilibrium one, and characterize its deviation from equilibrium by the parameter

D = 1 − λ(ωq2).

For the equilibrium bath D = 0, and when we start reducing population of the modes with frequencies
around ωq2 , the bath will go away from equilibrium producing some non-equilibrium effects, like frequency
dependent equilibration temperature. Nevertheless work extraction will be possible only when the bath is
far enough from equilibrium, i.e.

D > neq(ωq1)(eωq1 /Teq − eωq2 /Teq ). (55)

When the deviation from equilibrium increases, the local temperature of the lower frequency mode reduces
and the efficiency of the quantum heat engine rises. For D < 0 the bath is also out of equilibrium. But, in
this case instead of reducing the mode population, it is being increased by some external mechanism (for
example, selective concentration of light). The equilibration temperature of the system will depend on the
frequency, but for D < 0, work cannot be extracted. Again, paradoxically, the increase of energy in “incorrect
modes” reduces the possibility of work extraction. The bath is taken away from thermal equilibrium, but in
the “opposite direction” to that leading to work extraction.

V. CONCLUSIONS

We showed that quantum machines weakly coupled to a single non-equilibrium stationary environment,
and subject to fast periodic driving by work reservoirs, can be described by the thermodynamical principles
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and bounds which are very similar to the standard ones if only the definitions of the basic notions, which
are consistent with thermodynamics, are used. In particular, the notion of local temperature which depends
not only on the state of environment but also on the form of system-environment coupling is crucial.

The developed non-equilibrium theoretical framework may be used also to describe the standard heat
engine model with two thermal baths including cross-talking effects. Such machines can be effectively
treated as coupled to a single non-equilibrium bath.

Starting from a bosonic thermal bath we showed how to obtain non-equilibrium baths by using different
engineering methods like filtering, energy concentration, displacement or squezeeing operations. We found
out that such non-equilibrium baths may be divided into two different types: (i)passive, which equilibrate
systems to different temperatures depending on their working frequencies but cannot drive heat engines.
Such baths can be obtained by frequency independent transformations of equilibrium ones; (ii) non-passive,
besides producing local equilibration temperatures, they allow work extraction from a single bath and, in the
case of bosonic reservoirs, can be engineered by frequency dependent transformations of equilibrium states.
They are also farther away from equilibrium than passive baths.

A case where non-equilibrium bath is not stationary but, for example, is also perturbed by an external
periodic driving is another interesting topic with possible applications. A natural example is a spin-1/2
coupled to a spin-bath, both periodically perturbed by external magnetic field. It seems that the theory
presented above can be extended to these cases as well.
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