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Geoengineering: the World’s largest control problem

Douglas G. MacMartin, Ben Kravitz, and David W. Keith

Abstract—Solar geoengineering (or Solar Radiation Manage-
ment, SRM) refers to any intentional, large-scale manipulation
of the Earth’s incoming solar radiation to offset some of the
effects of anthropogenic greenhouse gases, reducing the associ-
ated risks from climate changes. Examples of such methods are
injecting aerosols into the stratosphere or increasing marine
cloud reflectivity, both of which would reflect some sunlight
back to space. There are many serious concerns associated
with any such approach, and also many challenges. One often
overlooked aspect in geoengineering research is that this is a
control problem, requiring (a) feedback of the observed climate
state to manage significant uncertainty in both the radiative
forcing and the climate’s dynamic response to this forcing,
and (b) optimization of the distribution of radiative effect to
minimize regional disparities as well as side-effects from the
geoengineering implementation. We present recent progress on
control for this challenging problem, building on [1, 2], and
discuss open research gaps. This is the first time an explicit
external feedback loop has been implemented in a fully coupled
general circulation model of the Earth’s climate.

I. INTRODUCTION

Solar geoengineering might reduce risks from climate

change [3]–[5], but research is required to understand the

effectiveness and risks and to develop knowledge so that

if it were ever deployed, it could be implemented as ef-

fectively as possible. The most frequently discussed option

is injection of sulfate aerosols into the stratosphere to re-

flect a small fraction of incoming sunlight [4, 6]. This is

motivated by the global cooling that follows large volcanic

eruptions; e.g., after the Pinatubo eruption introduced more

than 30 Tg of sulfate aerosols into the stratosphere in 1991,

global mean temperatures temporarily decreased by roughly

0.5◦C [7]. “Marine cloud brightening” [8] could similarly

reflect sunlight; other options include space-based [9] (likely

prohibitively expensive) and surface-based [10] methods.

Approaches to remove CO2 from the atmosphere are also

generally described as “geoengineering”, but these yield only

slow changes in climate and pose very different risks from

solar geoengineering techniques; we do not discuss these.

Solar geoengineering could quickly reduce global mean

temperatures at relatively low cost [11], but with a number

of risks [12,13]. Using geoengineering may lead to a delay in

reducing CO2 emissions; as a result, geoengineering could

be required for centuries. Any technology will have some

undesired side effects, e.g., stratospheric approaches will lead

to changes in ozone and other chemistry [14]. Simulations
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with either a spatially-uniform aerosol layer or uniform solar

reduction yield reasonable spatial compensation of temper-

ature changes due to increased greenhouse gases [15, 16]

but poorer compensation of precipitation; regional disparities

in outcomes [17] could even lead to conflict. Further, the

climate system is uncertain, requiring design for a system

not fully understood, yet experimentation at a scale sufficient

to measure climate response involves risks similar to deploy-

ment: if solar geoengineering is used, we must get it right

the first time. These last two issues involving uncertainty and

imprecise compensation can be at least partially addressed

with control theory.

In addition to challenges that span physical, social, polit-

ical, and ethical issues, geoengineering is a control problem

that requires choosing the amount, spatial pattern, and tem-

poral pattern of radiative forcing (or equivalently e.g. aerosol

injection latitude and timing), to minimize the combined

risks from both climate changes (temperature, precipitation,

etc.) and from the implementation of geoengineering (less

forcing results in lower risks, such as ozone depletion). These

choices must be made despite significant model uncertainty,

much of which is unresolvable without large-scale, lengthy,

and risky global experiments [18,19].

Here we describe two key contributions. We first discuss

global system dynamics and feedback algorithms to achieve

a climate goal in the face of uncertainty (Section II; see

also [2]). Next we introduce optimization of the spatial and

seasonal pattern of forcing to minimize regional climate

change or other metrics while constraining the amount of

solar reduction used (Section III; see also [1]). Finally, we

briefly discuss open research questions.

II. FEEDBACK

Models of the climate response to greenhouse gases (or

solar reductions) do not all agree; see, e.g., Figure 1, which

compares 24 fully coupled atmosphere-ocean general circula-

tion models (AOGCMs) from the Coupled Model Intercom-

parison Project, phase 5 (CMIP5). Model discrepancies are

even larger for regional precipitation responses [16]. Further-

more, in addition to uncertainty in the climate response, there

is uncertainty in the radiative forcing from any particular

geoengineering implementation (e.g., how much sunlight is

reflected by stratospheric aerosols depends on particle size,

which depends on coagulation; there may also be some

influence on cirrus clouds that could change the net radiative

effect [20]). Open-loop strategies will therefore result in

significant error in meeting specific climate objectives, and

feedback of the observed climate state must be an essential

element of any solar geoengineering strategy [30].
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Fig. 1. Model uncertainty: The step response to an instantaneous quadru-
pling of CO2 is shown for 24 different CMIP5 climate models; the solid
line corresponds to the box-diffusion model in Fig. 2.

A. Dynamic Model

A box diffusion model represents the dynamic behavior

of global mean temperature well enough to design the

control algorithm. This model consists of heat diffusion into

an effectively semi-infinite reservoir (deep ocean), with a

surface layer of fixed heat capacity (land, atmosphere, and

surface ocean). A semi-infinite diffusion model matches the

global mean temperature response in the HadCM3L GCM

over a wide range of frequencies [21]; and also fits the

transient response of most CMIP5 models [22]. Including

a surface layer better predicts the short time-scale response.

For radiative forcing F (t), the surface temperature T (t) and

deep ocean temperature Td(z, t) satisfy

C
dT

dt
= F − λT + β

∂Td

∂z

∣

∣

∣

∣

z=0

(1)

∂Td

∂t
= κ

∂2Td

∂z2
, (2)

with boundary condition Td(0, t) = T (0, t) (taking the top

of the deep ocean as z = 0). The parameter λ describes

the natural climate feedback (the change in radiation due to

a change in surface temperature), C = cρH is the surface

layer heat capacity per unit area, κ the thermal diffusivity,

and β = cρκ for density ρ and specific heat capacity c.

Taking Laplace transforms [2,23,24], the transfer function

from radiative forcing perturbation F (s) to temperature

anomaly T (s) is

G(s) =
T (s)

F (s)
=

(

1

λ + β(s/κ)1/2 + Cs

)

(3)

Equation (3) is compared with the calculated HadCM3L

frequency response in Fig. 2; the latter was computed by

introducing 1% sinusoidal variations in solar forcing [21].

In this model, a 2.3% solar reduction would offset the

3.7 Wm−2 radiative forcing from a doubling of atmospheric

CO2 [1]. Using this to convert solar reduction into radiative
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Fig. 2. Frequency response G(s) of global mean temperature in response
to 1% perturbations in solar forcing calculated for HadCM3L (from [21]),
and least-squares fit to a box-diffusion model (from [2]).

forcing, the best fit to the calculated frequency response gives

λ = 1.2 W m−2 K−1, τ = β2/(λ2κ) = 13 years, and C =
3.2× 106 J m−2 K−1.

The step response in Fig. 1 illustrates the robustness

challenge. The steady-state response varies by more than a

factor of two, and the dynamics also change. Some models

are better fit with a much larger heat capacity [25], which

would increase the high frequency phase lag in Fig. 2.

B. Feedback Overview

The block diagram in Fig. 3 illustrates the coupled human-

climate feedback system. The dynamic system characterized

by G(s) describes the global mean temperature response to

imposed radiative forcing F , including forcing associated

with anthropogenic climate change Fd, solar geoengineering

Fs, and perturbations w responsible for natural variability

(which has a 1/f power spectrum, so w is approximately

white). The solar geoengineering forcing includes the best

estimate F̂ of the radiative forcing required to maintain

T = Tref in the presence of Fd, as well as the component

Fc that corrects for errors in this estimate based on feedback

of the observed climate state.

If the dynamics G(s) and radiative forcing Fd were

known, then F̂ could be chosen so that T only differs

from Tref by natural variability; in reality, using the best

estimate of F̂ will yield some error that could be corrected

with feedback. We define Fr = Fd + F̂ as the residual

radiative forcing. The temperature error relative to the desired

temperature, Te = T − Tref , can then be expressed as

Te =
G(s)

1 + G(s)K(s)
(Fr + w) = Gfb(s)(Fr + w) (4)

where Gfb(s) = G(s)S(s). The static equivalent is well

known in climate literature [26, 27]. However, recognizing

that this predicts the transient as well as steady-state response

is novel in climate analysis, as is the possibility for the

feedback K(s) to be chosen as opposed to being a property
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feedforward of the best estimate of geoengineering forcing F̂ required to
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of the climate system. Furthermore, the waterbed effect
∫

∞

0

log |S(iω)|dω = 0 (5)

is important in understanding the dynamic behavior resulting

from solar geoengineering. The feedback acts on temperature

errors due to both greenhouse gases and natural variability.

Frequencies where |S(iω)| > 1 correspond to amplification

of natural climate variability, which can be particularly

significant if time delay is introduced.

From Fig. 2, PI control K(s) = kp +ki/s is sufficient for

this application (see the Bode plot in Figure 4). This yields

Gfb(s) =
s

ki + s(λ + kp + β(s/κ)1/2 + Cs)
(6)

and zero steady-state error; proportional gain alone is equiv-

alent to a change in intrinsic climate feedback parameter λ.

C. Feedback in a GCM

The results in Figure 5, based on simulations in [2],

represent the first ever explicit feedback loop implemented

in a fully-coupled AOGCM of the Earth’s climate. We use

HadCM3L, which has resolution of 3.75◦ in longitude by

2.5◦ in latitude in both the atmosphere and ocean, with 19

vertical levels in the atmosphere and 20 in the ocean [29].

There are three take-away messages from Fig. 5. Most

important, though unsurprising, is that properly designed

feedback of the “observed” temperature can maintain the

global mean temperature at a desired target value, despite

uncertainty in both the model and the forcing. Second (also

unsurprising to anyone experienced in designing controllers)

is the importance of proper representation of system dy-

namics. A poorly designed controller can result in near-

oscillatory behavior, illustrated here by increasing the time

delay, resulting in poor phase margin (see Fig. 4). The

third important result is that the dynamic behavior resulting

from implementing feedback in a complex climate model is

well predicted from the simple box-diffusion model. This
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Fig. 4. Bode plot with PI gains kp = 4 and ki = 2π, chosen to give
reasonable bandwidth and phase margin if the level of solar reduction is
updated every N = 1 years based on the average temperature in the previous
N = 1 years. With updates every N = 2 years, the phase margin is poor,
giving significant amplification of natural variability at frequencies near the
control bandwidth. The accurate discrete-time response is plotted including
zero-order-hold, averaging, and frequency fold-overs from aliasing [2].

is illustrated by comparing the ratio of the closed-loop and

open-loop amplitude spectra with the predicted sensitivity

function.

While an important first step, there are several details yet

to be filled in. First, the control gains were tuned using

the frequency response of the same model that was used to

evaluate performance. This is clearly not an option if geo-

engineering is ever implemented in the real world. A second

climate model could serve as a proxy for the unknown real-

world dynamics, to verify that a controller designed on one

model is robust to the inter-model uncertainty [30]. Second, a

PI controller illustrates the potential and also some dynamic

characteristics associated with implementing feedback, but

more complicated controllers may be appropriate. Adaptation

could be used to better learn the dynamics as time progresses

[31], or model-predictive control to enforce constraints on the

amount and rate of climate change and on the rate of change

of applied forcing. Finally, while many climate impacts can

be related to global mean temperature, a more realistic goal

would consider other variables such as precipitation or sea

ice, as well as regional effects. Including multiple objectives

will require managing more than a single degree of freedom.

The next section introduces this as an optimization problem;

future work will integrate feedback into the multiple degree

of freedom optimization problem to manage uncertainty.

III. OPTIMIZATION

The second application of control theory to solar geoengi-

neering we discuss is optimization to (a) improve the com-

pensation between the climate effects of greenhouse gases

and those due to solar geoengineering, (b) maximize the

benefit with minimum solar reduction, and (c) consider trade-

offs between different metrics. Some of this appears in [1].

The radiative forcing due to greenhouse gases is relatively
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uniform in space and time (latitude and season), while solar

geoengineering is most effective in summer in the respective

hemisphere [15]. Furthermore, the different mechanisms of

radiative forcing have different relative impacts on tempera-

ture vs precipitation [32]. As a result, spatially and seasonally

uniform solar reductions do not fully compensate climate

changes due to greenhouse gases in any model [16]. The

compensation can be improved by optimizing the distribution

of solar reduction. This might be achieved, for example, by

varying the latitude and time of year of stratospheric aerosol

injection. Here we explore the potential benefit for the

solar reduction patterns in Fig. 6. In practice, neither these

patterns nor the resulting climate response will be known,

and feedback would be needed to manage this uncertainty.

We again use HadCM3L, and compute the climate re-

sponse for each spatial and temporal pattern in Fig. 6.

Assuming linear superposition to estimate the response to

any combination of these patterns (eq. (7)) is a good approx-

imation [33,34]. A pre-industrial CO2 (278 ppm) simulation

defines the “baseline” or desired climate, and a 2×CO2 case

used to define the perturbed climate that geoengineering is

intended to compensate. For each applied radiative forcing

pattern, we compute the monthly means over the second half

of a 200-year simulation to minimize errors in estimating the

long time-scale behavior.

The monthly-mean temperature and precipitation differ-

ences between the 2×CO2 and baseline cases for all m grid

cells can be concatenated into a vector b ∈ R
24m. Tem-

peratures and precipitations are normalized by the standard

deviation of their interannual natural variability [17,34]; this

measures change compared to “normal” variability. Similarly,

the response to the n patterns of solar reduction can be

described by A ∈ R
24m×n. Define u ∈ R

n as the forcing

amplitude corresponding to each pattern. Assuming linearity,

the residual response is then

z = b − Au (7)

Minimizing a quadratic function of climate changes rel-

ative to a pre-industrial baseline while constraining the av-

erage insolation reduction yields a constrained least-squares

problem that can be solved using quadratic programming:

J∗ = min
u

{

uT (AT A)u + 2bT Au
}

with Cu ≤ 0 (8)

In addition to the constraint on average solar reduction, the

constraint that we can only reduce sunlight, not increase it,

can also be written as Cu ≤ 0, with each row of C enforcing

this at a particular latitude and time of year. (It is sufficient

to enforce this at only a few times and latitudes.) It is also

straightforward to include in the same framework variables

one might wish to maximize, such as Arctic sea ice extent.

We also consider the forcing pattern that minimizes the

worst-case climate change in any grid-cell:

J∗ = min
u

max
i

|(b − Au)i| with Cu ≤ 0 (9)

where (·)i is the ith element of the vector. Figure 8 is

obtained by optimizing as in (8) with constraints Au ≤ α−b
and −Au ≤ α + b, where α is the allowable worst-case.

Allowing the distribution of solar reduction to vary in

space and time improves the compensation of climate change
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Fig. 7. Trade-off between maximizing Arctic sea-ice extent and minimizing
global-rms temperature and precipitation changes (from [1]) if the solar
reduction is optimized in space and time. The trade-off is shown for
increasing uniform solar reduction (solid black line) and non-uniform
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at constant average solar reduction). Non-uniform solar reduction improves
outcomes (as measured here), and can also result in climates that are not
achievable with only uniform reductions.

due to greenhouse gases in this model, and also allows

different trade-offs to be made depending on the weighting

of different objectives in the optimization. Results in [1]

illustrate several trade-offs, including (a) the ability to reduce

the worst-case climate change over any region while still

reducing the global rms climate change; this is relevant for

minimizing regional disparities, (b) the trade-off between

minimizing global rms temperature changes and global rms

precipitation changes, and (c) the trade-off between mini-

mizing global rms temperature and precipitation changes and

maximizing Arctic sea ice. The last of these is reproduced in

Fig. 7 for illustration. The trade-off is shown as a function

of the average solar reduction, a proxy for the negative

impacts associated with implementing geoengineering (e.g.,

decreased ozone from stratospheric aerosols). For example,

restoring pre-industrial sea ice in this model requires ∼2.5%

reduction in sunlight if the reduction is spatially and season-

ally uniform, but the same sea ice extent can be obtained with

only 0.5% solar reduction if solar changes are concentrated

optimally in space and time.

Here we further evaluate whether similar performance

improvement can be obtained with only spatially uniform

(but seasonally varying) or seasonally uniform (but spatially

varying) solar reduction. Figure 8 demonstrates that while

some improvement in worst-case climate changes are possi-

ble with only seasonal variation, the biggest benefit comes

from allowing the solar reduction to vary as a function

of latitude; introducing both provides only minor further

improvements. For different objectives, different degrees of

freedom are important to include. The sea-ice improvement

of Fig. 7 requires both spatial and seasonal variations in solar

reduction, although some benefit is again obtained with only

spatial (concentrated in the Arctic).
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IV. CHALLENGES AND OPEN QUESTIONS

Several open issues have been noted, including using

feedback (Sec. II) to manage uncertainty with multiple

degrees of freedom (Sec. III). As a concrete example, an

initial target for geoengineering might be the Arctic [35], to

reduce risks associated with permafrost thaw, sea ice loss,

or Greenland ice-sheet melt. Implementing such a scenario

without adverse tropical precipitation effects [36] would

require a counterbalancing southern hemisphere solar reduc-

tion. This would almost certainly require feedback to manage

uncertainty. Also noted is the need for more complex control

algorithms incorporating learning, and constraints both on

climate variables and to ensure implementation is feasible.

Controls engineers may also be useful in designing tests to

maximize signal-to-noise ratio for system identification [19].

Climate changes occur over decadal and longer time-

scales. While stratospheric aerosol concentrations could not

be rapidly modulated, marine cloud brightening could be

modulated at time scales of order one week, opening up the

possibility of responding at the time-scale of hurricane evolu-

tion, for example [37]. (Hurricane control has been suggested

earlier, but without a realistic mechanism for excitation [38]).

Spatial and temporal control of solar reduction could also

be used to alter the dynamics of El Niño [39]. Averaging

over space and time tends to reduce model uncertainty, and

thus attempts to control local dynamics at these shorter time-

scales will be challenging.



More broadly, introducing a feedback loop around a cli-

mate model as in Sec. II is relevant beyond geoengineering

for understanding human-climate interactions (e.g., incorpo-

rating gradual learning to change predicted optimal pathways

for reducing emissions), understanding natural climate feed-

backs (e.g., permafrost thaw leading to CO2 and methane

release leading to further warming), or better understanding

of model behavior (e.g., automated model tuning).

V. SUMMARY COMMENTS

For a given level of climate change, there is clearly less

climate risk if this is reached through reduced greenhouse

gas emissions rather than geoengineering. However, because

of technical and societal inertia, atmospheric CO2 concen-

trations are likely to continue to increase, and for a given

atmospheric concentration, there may be less risk if some

amount of geoengineering is used rather than none. While

there are many concerns associated with geoengineering, it

is essential to research the problem to know what can and

cannot be achieved, and to be prepared to implement it

intelligently rather than in a crisis. Control and dynamics are

essential element of geoengineering research, indeed, this is

the largest control problem ever considered!
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