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Abstract

Introduction: Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as
stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach
involves using stage transition analysis to characterize sleep continuity.

Methods and Principal Findings: We analyzed hypnograms from Sleep Heart Health Study (SHHS) participants using the
following stage designations: wake after sleep onset (WASO), non-rapid eye movement (NREM) sleep, and REM sleep. We
show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition
kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep
apnea (OSA), medical co-morbidities, or sleepiness (n = 374) with mild (n = 496) or severe OSA (n = 338). WASO, REM sleep,
and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the
‘‘decay’’ rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of
stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the
data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution.

Conclusion and Significance: OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM
sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved
predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to
characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical
application.
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Introduction

Numerous endogenous and exogenous factors influence wheth-

er sleep or wake is achieved, how long a given state is maintained,

and the reasons sleep architecture may become fragmented

[1,2,3,4]. Much effort has been invested in attempts to correlate

various polysomnogram (PSG) metrics with daytime symptoms,

with the goal of understanding (and promoting) those aspects of

sleep that contribute most to its recuperative properties. However,

correlations between daytime sleepiness and PSG metrics are not

always straightforward, due in part to inter-subject variability, the

subjective nature of the clinical complaints, and variations in an

individual’s tolerance to sleep disruption. The commonly em-

ployed Epworth Sleepiness Scale (ESS), for example, correlates

with subjective complaints of sleepiness but not with objective

measures obtained from Multiple Sleep Latency Tests [5,6].

Although the ESS score was correlated with the severity of

obstructive sleep apnea (OSA) in the large Sleep Heart Health

Study (SHHS) database, the absolute changes were small and even

the most severe OSA group had scores within the normal range

(,10)[7]. Other measurements have also been investigated as

predictors of daytime sleepiness, including fragmentation [8],

autonomic arousals [9], and EEG measurements of cortical

arousals associated with respiratory events in OSA patients [10].

A meta-analysis of the relationship between sleep fragmentation

and daytime function suggested the importance of the percentage

of stage NREM1 which may inversely relate to sleep continuity

[11]. However, other reports show little relationship of stage

NREM1 proportions with fragmentation [12,13]. Percentage or

proportion of a state does not contain information about the

number of transitions, or fragmentation, which may contribute to

some of the differences in reporting.
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Survival analysis applied to sleep bout durations, in which

lifetime refers to the length of time spent in a given stage, indicates

decreased stability of sleep in OSA patients in proportion to

severity of disease[14]. Importantly, when sleep bout duration is

considered in this dynamic sense (the distribution of time spent in a

state), OSA was shown to alter sleep architecture despite

unchanged ‘‘summary’’ PSG metrics, such as stage percentages

or total sleep time[15]. Decreased sleep stability, as measured by

transition probabilities and survival analysis of sleep runs (stage-

independent), was also demonstrated in Chronic Fatigue Syn-

drome patients[16,17]. Transition probability analysis also dem-

onstrated that sleep fragmentation seen in elderly patients was due

to more frequent awakenings, but the wake bouts were unchanged

in duration, suggesting that the transition back to sleep was

unaffected by age[18]. These studies increasingly suggest that

standard metrics of sleep architecture and fragmentation/arousal

can be complemented by assessing the distribution of stage

durations and transition probabilities, in hopes of providing better

correlations with disease states and clinical symptoms.

Given the increasing realization that the percentage of time in a

given stage may be less important than their distribution dynamics

across the night, several groups have considered sleep architecture in

terms of the statistical distributions of sleep stage durations. In fact,

measurements of sleep in rodents, cats, and humans suggested that

the duration of sleep bouts appear to follow mono-exponential

kinetics, with species-specific time constants governing the time spent

in a given bout of sleep[19,20]. However, the mono-exponential

models often did not fit well over the entire range of bout durations,

suggesting that a more complex model may be required. Wake bout

duration kinetics remain controversial, being described as either an

exponential process[21], or a power law process[19,20,22]. Whereas

exponential distributions imply stochastic (probabilistic) state transi-

tions characterized by a time constant of ‘‘decay’’ or exit from a

particular state, a power law distribution implies a so-called scale-free

(or fractal) process, with no characteristic time scale of measurement.

Connecting the rapidly growing basic science understanding of sleep-

and wake- promoting brain centers to the behavioral manifestation of

arousal state transitions requires improved understanding of

transition dynamics. To accomplish this, we analyzed hypnograms

from the large SHHS database, to answer the following questions: 1)

what is the best model of sleep stage transition dynamics; 2) is a single

night of data sufficient for fitting and model discrimination; 3) how

does sleep fragmentation, such as that caused by OSA, alter the

temporal dynamics?

Our results demonstrate that multi-exponential fitting is

superior to routine mono-exponential fitting, but also show that

a single night of sleep contains insufficient transitions to

characterize these dynamics. Wake bout distributions may be

fitted by either a multi-exponential or a power law model. OSA

alters the dynamics by accelerating the decay of REM and NREM

bout durations, reflecting sleep fragmentation despite unchanged

summary metrics of state percentages.

Results

Characterizing sleep architecture dynamics
The summary statistics obtained from the PSG data for the

three patient groups are presented in Table 1. Note that despite

large differences in the AHI (1.8 vs 8.6 vs 47.4) and arousals, the

percent sleep efficiency and the N1 percentages were not different.

The differences in percentages of REM, N2 and N3 sleep did

reach significance: N2 showed a small increase in percentage

across mild and severe apnea; REM and N3 showed the inverse

pattern.

We examined the sleep architecture dynamics by focusing on

the distribution of bout durations of WASO, REM, and NREM

sleep. This was accomplished by generating frequency histograms

for each stage, a common technique that allows visualization of

data distributions, as well as fitting with functions such as

exponential and power law models. These plots are obtained by

collecting the relative number of events (y-axis) occurring in each

‘‘bin’’ (x-axis), defined here in single epoch increments of 30

seconds each. Figure 1 illustrates the frequency histograms of

WASO, NREM sleep, and REM sleep bout durations for the

control group. In these panels, ‘‘NREM’’ does not distinguish sub-

stage composition (that is, transitions within NREM sub-stages are

ignored, and NREM is taken as a single stage). Exponential fitting

of the duration distributions for each stage was performed (see

Methods). In each plot, the best fit single exponential function is

overlaid for visual inspection of goodness of fit. In addition, the r2

values and the residuals (subtracting the fitted line from the data)

are shown in each case. Despite the high r2 values (0.93–0.99),

visual inspection of the WASO, overall NREM sleep and NREM

sub-stage plots shows that the best single exponential function is

not adequate: it emphasizes the rapid decay phase (consisting of

brief events, which were more commonly observed) but entirely

misses the longer duration events (that occur less frequently).

Therefore, despite its common use (see, for example, ref [22]), r2

values as a measure of goodness of fit should be used with caution

for such distributions. We show the traditional four NREM sub-

stages to determine possible differences in dynamics that could

explain the multi-exponential pattern seen in the global NREM

metric, although clinically it has been determined that stages 3 and

4 should be considered a single state (called N3). Therefore, for the

analysis shown in Figure 1, we assessed additional transitions not

currently recognized in the clinical scoring guidelines. The

number of NREM4 bouts was ,2% of total bouts in this control

cohort.

The residuals (Figure 1) provide an alternative view of how

different the fitted line is from the actual data, and it also reveals

why the r2 values can appear statistically favorable (close to 1.0)

despite being visually sub-optimal. Although it appears that the

mono-exponential curve matches the fast decay but ignores the

slow decay, in fact the residuals demonstrate the opposite:

systematic deviations between the fitted line and actual data were

most prominent during the fast decay (short duration bins). The

absolute y-axis magnitude of the long duration ‘‘tail’’ is small, and

thus the residual between the fit and the data is small for the

majority of bin sizes, even though the fit completely misses this

portion of the bout distribution. Therefore, r2 values remain high,

and overall residuals low, despite the sub-optimal single exponen-

tial fit. Assessing the normality of the residuals does not offer

clarification of this fitting issue, as the distribution of residuals fails

normality testing even for a single-exponential fit of 100,000

simulated bout durations drawn from a single exponential

distribution (not shown).

Next we compared the single-exponential fits against more

complex fits that included the sum of up to 4 exponential

functions. For each stage’s bout distribution, the fits were

compared pair-wise (1-vs-2, 2-vs-3, and 3-vs-4) using a sum-of-

squares F-test, as well as Akaike’s Information Criteria (AIC) (see

methods). For all stage distributions, these two metrics agreed on

the best number of exponentials required to fit the distribution.

For WASO and NREM distributions, the best fit was obtained

with the sum of 3 exponential functions, while for REM, the best

fit was the sum of 2 exponentials (Table 2). The fits for NREM

sub-stages (NREM1-NREM4) are shown in Table 3, for

comparison. Clearly the 3 exponentials of the NREM bouts

Sleep Architecture Dynamics
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(sub-stages not considered) is not simply reflective of a sum of

mono-exponential substages, since 2-exponential fits were required

for NREM1-NREM3. Sample size considerations for fitting of

frequency distributions.

We also fit randomly selected subsets of the control group to

address the following questions: 1) Does the appearance of

multiple exponential functions imply heterogeneity within the

control group; and, 2) how different are the resulting fit

parameters when the sample size is decreased by more than a

factor of 10? The frequency histograms of four randomly selected

groups of 30 control individuals are shown in Figure 2. The

overlaid best fit single exponential function is visually sub-optimal

in these subsets, similar to fits of the full datasets seen in Figure 1.

The optimal number of exponentials was 2 (instead of 3 found for

the full dataset) for WASO across all four groups. The optimal

number of NREM exponentials was 3 for three of the four groups,

and 2 exponentials were optimal for the REM distributions across

all four groups (similar to the full dataset). The failure to detect the

third exponential from the WASO may be related to the very

small relative proportion of these long-duration events.

When only a single night of stage data was considered, the

frequency histograms were clearly under-sampled: fitting showed

variability between individual patients (Figure 3A), and for REM

bouts, convergence was often not possible. The distribution of

WASO, NREM, and REM sleep bout lengths is plotted for four

randomly selected individuals from the control group, illustrating

that variability arises when events are under-sampled (Figure 3B-

D). Interestingly, these single-night data sets may even appear to

Table 1. Group demographics and sleep-related data.

Variable Control Mild OSA Severe OSA
ANOVA
F(2, 1207), p Tukey

N 376 496 338

Age 68.266.3 63.8610.3 63.7610.5 30.43, ,0.001 1.2, 3

Sex (% males) 35.6 60 70.7 * 95.5, ,0.001

Race (% Caucasian) 85.4 73.8 74.3 *7.91, ,0.001

BMI (kg/m2) 26.364 30.165.4 32.465.8 128.5, ,0.001 3.2,1
2.1

Anti-HTN use (%) 0 53.6 54.4 *178.8, ,0.001

Systolic BP (mm Hg) 125.2617.2 129.1619.2 131.7619.4 10.7, .0.001 2.1
3.1
3.2

Diastolic BP (mm Hg) 70.6610.2 74.2610.6 78.2613.1 40.4, ,0.001 3.1,2
3.2

Diabetes (%) 0 9.5 5.9 * 3.54, 0.06

Angina (%) 0 9.5 9.5 * 51, ,0.001

Myocardial infarction (%) 0 10.9 7.1 * 47.7, ,0.001

CHF (%) 0 2.6 1.8 * 24.9, ,0.001

ESS 4.962.2 13.162.8 9.864.9 610.6, ,0.001 2.1,3
3.2

Sleep efficiency (%) 81.2611.1 81.7610.2 79.4611.2 2.38, 0.09 N.A.

Sleep Latency (min) 22.7623.9 23.1622.5 22.9621.4 0.02, 0.9 N.A.

Total sleep time (min) 360664.8 326.5661.9 344.2661.7 53,9, ,0.001 1.2,3
3.2

N1 (%) 5.864.2 5.864.3 6.465.1 2.5, 0.08 N.A.

N2 (%) 54.9611.9 59.3610.7 63.1611.9 44.7, ,0.001 3.1,2
2.1

N3 (%) 19612.3 15.5611.4 13.2611.2 22.2, ,0.001 1.2,3
2.3

REM (min) 20.365.8 19.466 17.366.4 23.2, ,0.001 1.3
2.3

REM latency (min) 85.2653.7 86656.4 102.6669.3 8.81, ,0.001 3.1,2

Arousal index – total 17.368.6 1968.9 36.4616.4 302.3, ,0.001 3.1,2

Arousal index – NREM only 18.269.3 19.769.6 38617.3 284.2, ,0.001 3.1,2

Arousal index – REM only 13.668.7 15.769.7 27.3616.8 135.1, ,0.001 3.1,2
2.1

RDI 23.6614 36.3613.5 71.9617.2 1020.2, ,0.001 3.1,2
2.1

AHI 1.861.4 8.662.5 47.4616.4 2795.3, ,0.001 3.1,2
2.1

*Pearson Chi2 95.5.
Values are mean 6 SD. BMI, body mass index; CHF, congestive heart failure; BP, blood pressure; HTN, hypertension; ESS, Epworth Sleepiness Scale.
doi:10.1371/journal.pone.0011356.t001
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have a Gaussian distribution (Figure 3D). To test this issue of

statistical under-sampling of exponential processes, we simulated

sleep bout durations drawn from a mono-exponential distribution:

6 of 10 sampling trials passed normality testing when the number

of events was 10 per trial (Figure 3E), while only 2 of 10 trials

passed normality testing when the number of events per trial was

30 (Figure 3F), and none passed when the number of events per

trial was .75 (not shown). These results illustrate a major

statistical concern regarding attempts to describe bout distribu-

tions with insufficient samples (such as a single night of sleep).

The effect of OSA on sleep architecture dynamics
The optimal number of exponential functions was 3 for NREM,

and 2 for REM bout durations, regardless of apnea presence or

severity. The optimal exponential fits are shown for NREM and

REM bouts across all three cohorts in Figure 4. For NREM and

REM bout durations, the analysis detected significant differences

not only in the time constants associated with the exponential

functions, but also in their relative contributions, as indicated by

the y-axis intercept of each component. For example, the faster

overall decay of the REM bout distributions with OSA was

attributed to faster time constants (particularly of the fast

exponential) as well as an increase of the relative contribution of

the fast component (at the expense of the slow component). The

changes in bout distribution dynamics was not accounted for by a

change in the representation of males versus females in the control

versus OSA groups (Supplemental Material, Table S1). Although

we did not match the groups for other factors such as medications

or medical illness, which may also affect sleep architecture, the

pattern of REM . NREM fragmentation illustrated by our

analysis fits well with the hypothesis that sleep apnea accounts for a

large part of the observed changes in transition dynamics.

Given the common practice of fitting single exponential

functions to sleep-wake bout duration data, we calculated how

the weighted decay time constants (weighted according to their Yo

values) from our multi-exponential fits would compare to this

technique of fixed single exponential fitting. The weighted time

constants of the REM sleep multi-exponential decays were 12.8,

8.6, and 4.5 epochs for control, mild OSA, and severe OSA,

respectively (single exponential fits: 14.6, 10.8, 4.8 epochs,

respectively). The weighted NREM sleep multi-exponential decays

were 4.7, 2.9 and 2.4 epochs, respectively (single exponential fits:

Figure 1. Frequency histogram analysis of bout durations in the control group. The relative frequency of bouts in the control group is
plotted against the duration of bouts (in bins of 30-second increments on the x-axis) for WASO (A), NREM (B), REM sleep (C) and sub-stages of NREM
sleep (D) bouts. In each panel, the best fit single-exponential function (red) is overlaid, and the residuals (difference between data and fit) are plotted
beneath each histogram.
doi:10.1371/journal.pone.0011356.g001
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4.2, 3.5, and 2.2 epochs). These weighted decay time constants are

similar to the values obtained for the best single exponential fit to

the data. OSA clearly affects the best fit mono-exponential time

constant (whether by forcing a mono-exponential fit or by

calculating a weighted average of a multi-exponential fit).

Although mono-exponential fitting can distinguish sleep architec-

ture in the control cohort versus mild OSA and severe OSA, our

intention here is not to suggest exponential fitting as a diagnostic

tool for detecting OSA, but rather to illustrate the complex

dynamics underlying sleep fragmentation, using OSA as a prime

example of such pathological architecture.

Fitting frequency histograms with the power law
function

Several groups have reported that wake bout durations are

best described by a power law[19,20,22]. We therefore

performed power law fitting of the control and OSA frequency

histograms of WASO (Figure 5). While a linear appearance on

log-log plotted data suggests a power law process, such linearity

should be considered necessary but not sufficient. For example,

although a single exponential decay appears downwardly

convex on a log-log plot (and linear on a semi-log plot), a

multi-exponential process may appear linear on a log-log plot.

This can be seen in the WASO bout distributions, for the entire

control population (Figure 5A) and a randomly chosen 30-

patient subset (Figure 5B), which appear linear on a log-log plot

but are also well-fit by a 3-exponential process. However, the

true underlying distribution of wake bouts is of course not

known. Therefore, given the uncertainty, we generated

simulated bouts whose lengths were drawn from three known

exponential distributions to answer the question: can a known

multi-exponential function appear linear (that is, power-law-

like) on a log-log plot?

Parameters were chosen to imitate the actual time constants and

relative proportions seen in the fitting of the WASO distributions in

the control population. This simulation procedure was repeated

using three sample sizes that differed by a factor of 10, the largest of

which was similar to the total pooled sample size for WASO in

the control group. This dataset visually resembled a power

law distribution, appearing linear on the log-log plot shown in

Figure 5C. The power-law fitted function is also shown

in Figure 5C, and the 3-exponential fit is shown for comparison

in Figure 5D. Formal comparison between a power law and 3-

exponential function revealed that the 3-exponential function was

favored for n = 1000 and n = 10,000 samples, while the best

function was ambiguous for n = 100. For the comparison between a

power law and the sum of two exponential functions, a power law

was favored for n = 100 and n = 1000 (two-exponential was favored

for n = 10,000). The sum-of-squares and AIC methods differed in

some cases, a testament to the potential ambiguity associated with

choosing between different fitting functions, even when the samples

were known to be drawn from exponential distributions.

Discussion

This study complements and extends previous work on the

sleep-wake dynamics in several respects. First, sleep-wake state

transition probabilities are more complex than previously

recognized. The temporal stability of NREM and REM sleep

clearly requires more than a single-exponential function to

describe the bout distributions [19,20,23]. Second, our simulations

show that multi-exponential distributions may mimic a power law

distribution, the typical function used to describe wake bout

durations[19,20,22]. Third, we demonstrate that one night of data

is not an adequate sample of sleep-wake transitions to assess

transition dynamics statistically using this distribution fitting

method. Finally, we show that sleep fragmentation seen in OSA

Table 2. Exponential Fitting Parameters.

Control Mild OSA Severe OSA

WASO

Tau-Fast 0.60 (0.59–0.61) 0.53 (0.53–0.54) 0.53 (0.52–0.53)

% Fast 94.5% 93.2% 97.9%

Tau-Medium 3.1 (2.9–3.2) 2.2 (2.1–2.2) 3.7 (3.6–3.8)

% Medium 5.4% 6.5% 2.1%

Tau-Slow 16.1 (14.1–18.7) 14.6 (13.8–15.5) n/a

% Slow 0.3% 0.3% n/a

NREM

Tau-Fast 1.7 (1.6–1.8) 0.9 (0.8–0.9) 1.0 (1.0–1.1)

% Fast 77.3% 75.3% 82.8%

Tau-Medium 7.8 (6.9–9.0) 5.2 (4.9–5.5) 4.8 (4.6–5.1)

% Medium 18.2% 21.6% 15.2%

Tau-Slow 44.1 (40.0–49.1) 37.6 (35.2–40.3) 32.8 (30.6–35.4)

% Slow 4.4% 3.1% 2.0%

REM

Tau-Fast 3.8 (2.8–5.8) 2.6 (2.2–3.0) 1.9 (1.8–2.0)

% Fast 40.5% 57.5% 81.9%

Tau-Slow 19.0 (17.4–20.9) 16.8 (15.8–18.0) 16.3 (15.3–17.6)

% Slow 59.5% 42.5% 18.1%

Tau values (in units of ‘‘epochs’’) are given as mean with the 95% confidence
interval in parentheses.
doi:10.1371/journal.pone.0011356.t002

Table 3. NREM sub-stages.

NREM1

Tau-Fast 1.3 (1.1–1.4)

% Fast 93.8%

Tau-Slow 3.6 (2.1–11.5)

% Slow 6.2%

NREM2

Tau-Fast 1.1 (1.1–1.2)

% Fast 90.7%

Tau-Slow 10.8 (10.3–11.4)

% Slow 9.3%

NREM3

Tau-Fast 0.69 (0.67–0.71)

% Fast 94.0%

Tau-Slow 4.3 (4.0–4.6)

% Slow 6.0%

NREM4

Tau 0.79 (0.74–0.84)

Tau values (in units of ‘‘epochs’’) are given as mean with the 95% confidence
interval in parentheses.
doi:10.1371/journal.pone.0011356.t003
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involves accelerating the rate of ‘‘decay’’ of NREM and REM

sleep bout durations.

Clinical considerations regarding sleep stage transition
dynamics

Although it is common for sleep stages to be presented as the

average duration of time spent in wake, REM, or NREM sleep

stages, metrics such as mean and median may not be informative if

the distributions are not Gaussian, particularly if they are highly

nonlinear such as exponential or power law distributions. From a

‘‘biomarker’’ standpoint, the pattern and timing of stage

transitions may provide clinical insight into fundamental questions

about what it means to have ‘‘refreshing’’ sleep than summary

stage metrics, although this speculation remains to be tested. REM

sleep and SWS have been implicated in different types of learning

and memory[24,25], although the correlations of percentages of

these or other sub-stages with subjective daytime symptoms or

objective sleepiness is typically modest when present at all, as

Figure 2. Frequency histograms of random control subgroups. The relative frequency of bouts from four groups of n = 30 randomly chosen
individuals selected from the control dataset. Each row represents a different group. The relative frequency of bouts is plotted against the duration of bouts
(30-second epoch bins) for WASO (column A), NREM (column B) and REM sleep (column C) bouts. The best single exponential fit is overlaid in red.
doi:10.1371/journal.pone.0011356.g002
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discussed above. One possibility is that the pattern of transitions is

important, and accurate characterization of stage stability (by

virtue of bout duration or transition probability fitting) is an

important step in this direction. Given the wide spectrum of

subjective daytime symptoms (and poor correlation with objective

MSLT data) across different degrees of OSA[5,7], it is worth

considering these alternative tools to evaluate PSG data.

Whether different types of fragmentation occur in different

pathological states, or with different clinical symptoms, remains to

be explored. Although most of the published bout duration

analysis has focused on the presence or absence of OSA, recent

data suggests that sleep stage stability may be associated with

daytime symptoms in populations with syndromes of fatigue or

pain[16,17]. Non-refreshing sleep is a common complaint, with

Figure 3. Effects of under-sampling on analysis of bout duration distributions. The relative frequency histograms of WASO (A1) NREM (A2)
and REM sleep (A3) bout durations are shown for a single, randomly selected patient from the control group for comparison with histograms from
larger samples (Figures 1 and 2). The best single exponential fit is overlaid in red. Bout durations from four randomly selected individuals, are shown
in panels B–D, including the single patient shown in panels A1–3 (which corresponds to patient #4 in panels B–D), to illustrate how the distributions
can visually or statistically (asterisk) be mistaken as Gaussian. Under-sampling of simulated known monoexponential data leads to common mis-
classification of the distribution as Gaussian (E; asterisks), and such mis-classification decreases as the number of samples increases (F).
doi:10.1371/journal.pone.0011356.g003
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many potential etiologies spanning medical, neurological, and

psychiatric domains[26,27]. Although initially proposed decades

ago, there is renewed interest in transition-based approaches to

quantify sleep architecture [14,15]. Indeed, if there are different

subtypes of fragmentation, or stage transition patterns are

important, summary PSG measures will miss these clues. Here,

and elsewhere[14,15], the pattern of stage stability is clearly

different in patients with or without OSA – despite minimal

differences apparent in summary statistics such as stage percent-

ages. From a fitting standpoint, our results demonstrate that

standard mono-exponential functions do not capture the bout

distribution dynamics of WASO, NREM or REM sleep. One

interpretation of the multi-exponential process is that there is a

balance between sleep stability and sleep satiation. For example,

some degree of instability is evident in the proportion of brief

events in the fitting, even in healthy control subjects. Longer

Figure 4. Multi-exponential fits of bout durations and the impact of mild versus severe OSA. Frequency histograms are shown for WASO
(A), NREM (B), and REM sleep (C) bouts. Control distributions (black) are compared with those of mild OSA (green) and severe OSA (red). To illustrate
visually the goodness of fit, the NREM (row D) and REM (row E) sleep histograms are shown separately, along with the time constants (tau) and %
contribution of each exponential function. For NREM sleep, the optimal number of exponentials was three, while for REM sleep, the optimal number
was two, regardless of OSA severity. Note the improved residual value patterns, compared to those of the mono-exponential fits from Figure 1.
doi:10.1371/journal.pone.0011356.g004
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duration exponentials, in contrast, reflect more stable persistence

of state. Satiation results in the culmination of stable sleep state by

increasing the tendency to awaken over time.

Our results also emphasize the requirement for sampling far

more than one night of sleep to adequately quantify bout duration

distributions. Cost and inconvenience prohibits more than one or

two nights of sleep in the laboratory setting for individual patients.

Whether improvements in home monitoring can offer an

alternative, which would allow longitudinal assessments of sleep

architecture for individual patients, remains to be explored.

Although the within-subject variability is likely less than between-

subject variability, the small number of transitions per night

suggests the importance of extended monitoring, likely in the

home setting.

Statistical considerations regarding bout duration
analysis

Statistical analysis of sleep stage percentages typically assumes a

Gaussian distribution, but some studies report mono-exponential

distribution of sleep bout durations [19,20]. We tested the

possibility that multiple exponential processes describe sleep-wake

stage distributions. The implication of multiple exponential

functions describing these distributions is that multiple transition

probabilities are involved. Although the ‘‘optimal’’ number of

Figure 5. Power Law analysis of WASO bout distributions. The WASO frequency histogram from the control group is shown in log-log display
(A), with the fitted power law overlaid in red. A 30-patient subset of WASO is shown in panel B for comparison. Various size samples drawn from three
simulated exponential distributions (with time constants of 1, 5, and 25 epochs, chosen to produce relative contributions in exponential fitting of
,95% fast, 4% intermediate, and ,1% slow) are shown in log-log plot (C) and linear plots (D) for comparison of exponential and power law fitting.
doi:10.1371/journal.pone.0011356.g005
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exponentials depends on the sample size and other statistical

considerations, clearly the mono-exponential distribution is

insufficient. As seen at the biochemical level (for example, in

enzyme conformation switching or ion channel gating), the

duration of time spent in an observed or ‘‘phenotypic’’ state (such

as visually scored REM sleep) may demonstrate multiple

underlying rules or ‘‘generator’’ processes (such as may be

revealed by multi-exponential fits). Consider by analogy two

coins, one that is fair (heads arising with 50% probability), and one

that is unfair (say, 90% chance of heads), but the heads and tails of

each coin appear visually identical. Because each phenotypic state

(heads or tails) has two generators (one for the fair coin, one for the

biased coin),the distribution of repeated observations will include

contributions of both generator rules. In the same way, a visually

identified sleep stage (phenotypic state) may in fact be governed by

more than one generator process. Failure to recognize this

distinction (such as occurs when one employs a probability

matrix[23]) is equivalent to forcing a mono-exponential fit, and

may limit the potential ability to map fragmentation patterns to

clinical symptoms or pathology. Note that, in the case of NREM

bout durations, the 3-exponential fitting did not result from a

simple addition of mono-exponential NREM sub-stages; in fact

our data suggest that these sub-stages may themselves be governed

by multiple generators.

Our results identify an important statistical limitation in the

commonly employed r2 value, which reports excellent (.0.9)

values despite largely missing the long tails of the distributions.

Moreover, analysis of residuals between the fitted curve and the

actual data, often used to test the goodness of fit, also under-

weights the poor fitting evident in the long tail events. This occurs

because of the relatively low probability of long events, yielding

small residual values even for forced mono-exponentials that miss

long events (see Figure 1).

Finally, although there is ongoing interest in fitting wake bouts

to a power law distribution, the distinction between a power law

and a multi-exponential distribution is not always straightforward.

Indeed, simulations showed that a known multi-exponential

process can visually and statistically resemble a power law. This

has mathematical implications for sleep transition modeling. For

example, if all sleep-wake bout durations are considered to be

exponential or multi-exponential, then all transitions of the

hypnogram may be simulated using a Markov chain model.

Although there are several limitations, the appeal of Markov

models is that stage transitions are considered probabilistic, and

certain transitions may be stabilized or destabilized by different

neural circuits or neuromodulators [22,28,29].

Physiological implications for exponential bout durations
The transition between sleep and wake (and between REM and

NREM sleep) has been compared to a ‘‘switch’’ consisting of

reciprocal inhibition between neurons whose firing favors one or

another state[2,30]. Indeed, optogenetic stimulation of orexin

neurons in transgenic mice increased the probability of transition

from sleep to wake[31]. Whether detailed transition analysis of

existing animal lesion studies targeting specific sleep- or wake-

promoting nuclei can shed additional light on the neural circuitry

underlying the transition probability dynamics remains to be seen.

From the standpoint of future sleep architecture ‘‘fingerprint-

ing’’, there is potential for use of Markov chain models[23,32,33],

the parameters of which could be extracted from sleep architecture

information. For example, disease states (or lesion sites) could be

associated with changes in the number of exponential functions

describing a given stage distribution, which stage transitions are

possible, and the probabilities governing each transition. Regard-

ing the homeostatic and circadian influences on state transition

probabilities, analysis of sleep dynamics in humans subjected to

forced desynchrony protocols may prove important. The ultimate

goal is to link sleep architecture patterns to anatomical,

physiological, behavioral, and pathophyisological aspects of sleep

and wake function.

Conclusion
Clinical correlations between daytime complaints and poly-

somnographic metrics of disease severity are not always straight-

forward, due in part to inter-subject variability, largely subjective

complaints, variable intrinsic tolerance to sleep disruption, and the

short duration and non-natural setting of routine clinical

monitoring. Even OSA-mediated fragmentation can be missed

in routine clinical metrics (such as stage percentages). The key

concept is that seemingly complex and variable manifestations of

‘‘fragmentation’’ may in fact possess objective and identifiable

underlying statistical structure, which may offer opportunity for

improved correlation with clinically relevant endpoints.

Materials and Methods

Database cohorts
Three groups of patients were selected from the Sleep Heart

Health Study, a large database of home-based polysomnography

(PSG) in over 6000 patients[34]. We have obtained Category IV

Institutional Review Board (BIDMC) approval for use of the data

obtained from this database, the data of which is anonymous and

thus we do not require additional consent. The pre-defined groups

included controls (defined as AHI,5, ESS,10, no medications

and no cardiovascular co-morbidities), and two groups with sleep

disordered breathing: mild OSA (AHI 5–15), and severe OSA

(AHI .30). The duration of time spent in any stage, measured in

units of 30-second epochs, was analyzed for each group, including

wake (after sleep onset; WASO), NREM1, NREM2, NREM3,

NREM4, and REM sleep stages. We also considered NREM as a

single stage in separate analyses (ignoring transitions between

NREM sub-stages). Note that for the clinical characteristics in

Table 1, we used the accepted clinical definitions of NREM sleep

sub-stages (N1-N3), but for the exponential fitting, we used the

traditional 4 stage classification, as originally reported in the

SHHS. Note also that we did not control statistically or attempt to

match the cohorts initially for differences in age, sex, medical

comorbidities, or medications (as was done for example in Swihart

et al[15]). Differences in these factors are illustrated in Table 1

(using Chi2 or ANOVA as appropriate). Because of the larger

difference in M:F proportion across groups, we did re-analyze the

exponential fitting of the control cohort by sex (Supplemental

Material, Table S1). Although small differences are evident, the

change in proportion of M:F in the OSA groups does not account

for the observed differences reported in the main text. In

particular, for example, the REM bout durations, which show

the most marked impact of OSA, had similar parameters.

Bout duration analysis and curve fitting
All bouts of a given stage from each subject groups were

combined for statistical analysis. Frequency histograms of bout

durations were generated by Prism (GraphPad Software, LaJolla,

CA, USA). Bin width was one epoch. The relative frequency of

bouts in each bin was calculated, and the resulting histograms

were normalized to the maximal relative frequency (which was

always in the shortest bin) before fitting routines were undertaken.

All stage distributions, in each clinical group, failed three tests of

normality (D’Agostino-Pearson, Shapiro-Wilk, and Kolmogorov-
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Smirnoff). Each curve was fitted first with a standard exponential

decay function: Y = Yo * e2kX + C, where Yo is the Y-intercept

value, k is the rate constant describing the rate of decay of the

function, X is the time (in units of epochs), and C is a plateau value

(which we forced to zero). Fitting constraints included positive k

values (required for a decay), and zero C value because there is no

biological reason to consider otherwise. For multiple exponential

fits, the equation involves a linear sum of i components defined by

[Yoi * e2kiX] values, the Yo of which corresponds to the intercept of

each component. Although we refer to this term as the ‘‘relative

contribution’’ of that component, it reflects neither the number of

events associated with that time constant (which can far exceed the

coefficient proportion), or the area under the curve of that

exponential decay (which is biased against fast time constants).

Confidence intervals are shown to allow comparison of each

parameter between the three cohorts.

Goodness of fit was compared between the best single-

exponential function and the sum of i = 2, 3 or 4 exponentials,

using in each case a non-linear sum-of-squares F-test (which

considers how well a fitted curve matches the data) and Akaike’s

Information Criteria (AIC) (which considers which of two

functions fits the data better, but does not consider the goodness

of fit per se), using built-in Prism routines. No weighting of residuals

was implemented (exponential fits did not converge if Y-value

weighting was used). Each function’s goodness of fit was compared

sequentially: 1 versus 2 exponential components, then 2 versus 3,

and so forth, until the additional component no longer

significantly improved the fit by F-test criteria, or the algorithm

failed to converge within 3000 iterations. Higher numbers of

exponentials were not tested because the sum of 4 exponentials

never provided a significantly better fit than 3 exponentials. The

optimal exponential fit was then compared with the fit provided by

a power law: Y = A * XB, where A is a constant, X is time (in units

of epochs), and B is the ‘‘critical’’ or scaling exponent

characterizing the power law. This was also subject to both non-

linear sum-of-squares, and AIC criteria. Note that Prism fits the

function to the actual data, rather than fitting a linear regression to

the semi-log or to the log-log plotted data.

Simulations: The only simulated data appears in Figures 3 (D,

E) and 5. To generate simulated bout lengths, we used MatLab

(MathWorks, Natick, MA, USA): the ‘‘exprnd’’ function is a

random number generator following a single exponential distri-

bution specified by a time constant of decay; the ‘‘randsample’’

function was used to draw from the generated distributions. These

simulation bout lengths were exported for analysis in Prism as

above.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0011356.s001 (0.04 MB

DOC)
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