Preferential Budding of Vesicular Stomatitis Virus from the Basolateral Surface of Polarized Epithelial Cells Is Not Solely Directed by Matrix Protein or Glycoprotein

Citation

Published Version
doi:10.1128/JVI.01658-15

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23993609

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Preferential Budding of Vesicular Stomatitis Virus from the Basolateral Surface of Polarized Epithelial Cells Is Not Solely Directed by Matrix Protein or Glycoprotein

Eugene Drokhlyansky, a Timothy K. Soh, b Constance L. Cepko a

Department of Genetics and Department of Ophthalmology, Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts, USA; Department of Microbiology and Immunobiology, Program in Virology, Harvard Medical School, Boston, Massachusetts, USA

Vesicular stomatitis virus has been shown to bud basolaterally, and the matrix protein, but not glycoprotein, was proposed to mediate this asymmetry. Using polarized T84 monolayers, we demonstrate that no single viral protein is sufficient for polarized budding. Particles are released from the apical and basolateral surfaces and are indistinguishable, indicating that there is no apical assembly defect. We propose that aspects of host cell polarity create a more efficient budding process at the basolateral surface.

Many viruses have distinct entry and budding sites in polarized epithelial cells (1–3). Vesicular stomatitis virus (VSV) is the prototypic nonsegmented negative-strand RNA virus and buds preferentially from the basolateral surface of polarized epithelial cells. This budding preference correlates with the basolateral localization of its glycoprotein (G) (4). However, mislocalization of G did not change this phenotype, and thus it was proposed that the matrix protein (M) dictates preferential VSV budding (5). In this study, we demonstrate that neither G nor M alone can account for this bias.

Recombinant VSV (rVSV) was tested for infection and budding preference from the polarized human epithelial T84 cell line. T84 monolayers were infected after polarization on collagen-coated Transwell supports, with polarity demonstrated by a trans-epithelial resistance (TER) of >1,000 Ω and confirmed by proper localization of the apical tight-junction marker ZO-1 (6), Golgi compartment marker GP130 (7, 8), and the nucleus (7) (Fig. 1A). rVSV infected the basolateral surface 62 ± 14 (n = 4) times more efficiently than the apical surface. Postinfection, rVSV was found to bud preferentially from the basolateral surface (Fig. 1B). Infectious virus appeared initially in the basolateral compartment but was later detected in the apical chamber, with cells maintaining a tight monolayer. Both infection and budding preferences are similar to previous observations with MDCK cells (9). Monolayer integrity was monitored by TER and small-molecule diffusion using medium with or without phenol red in complementary culture compartments. Cells maintained high TER and limited small-molecule diffusion through 12 h postinfection (hpi). Subsequently, TER gradually dropped, reaching 150 Ω at 22 hpi and loss of TER at 24 hpi, when phenol red diffusion was observed (data not shown). Immunocytochemistry analysis with previously characterized antibodies was used to identify the subcellular localization of VSV proteins (10, 11) (Fig. 1C). The nucleocapsid protein (N), phosphoprotein (P), and large polymerase protein (L) have been reported to localize to inclusion bodies throughout the cytoplasm (12). Likewise, we observed N and P in a nonpolarized distribution (Fig. 1C), demonstrating that replication and transcription were not polarized. Similarly, M was found to be cytosolic and membrane bound throughout the apical and basolateral compartments, indicating its nonpolarized distribution. This observation contrasts with previous findings in which M was basolaterally localized in MDCK cells (13). While this localization may not be universally true, it demonstrates that polarized M localization is dispensable for polarized budding. In contrast, G was predominantly basolateral (Fig. 1C), as previously shown (4, 14).

Since G was the only polarized VSV protein, we tested whether its absence might alter VSV budding. We used an rVSV with the G coding sequence deleted and enhanced green fluorescent protein (eGFP) in the first position (rVSV eGFP ΔG). This virus was grown in BSR T7/5 cells with G supplied by transfection (Fig. 2A). To assay budding in T84 monolayers, newly synthesized rVSV eGFP ΔG virions from the apical and basolateral chambers were radiolabeled (Fig. 2B) and analyzed via low-bis SDS-PAGE and autoradiography (Fig. 2C) with the N protein band quantified by ImageQuant TL v7 (GE Healthcare, Piscataway, NJ). This assay revealed that rVSV and rVSV eGFP ΔG preferentially bud basolaterally. To determine if this bias was due to the relative basolateral and apical surface areas, these were measured with ultrathin-section transmission electron microscopy (TEM) of cells (15) and ImageJ (U.S. National Institutes of Health, Bethesda, MD; http://rsb.info.nih.gov/ij/). The basolateral-to-apical area ratio was 3.1 ± 0.2 (n = 31) and cannot account for the differential budding seen with both viruses (Fig. 2C). We confirmed that G deletion...
does not alter the localization of other viral proteins (Fig. 2D).
These data demonstrate that G does not dictate the preferential
site of virus production (5).

We tested whether preferential budding was due to an inability
of VSV to assemble and bud from the apical surface. Titration of
supernatant from the apical surface revealed infectious virions
(Fig. 1B). Particles released from both surfaces were indistinguish-
able by negative-stain TEM (Fig. 3A). To examine budding at the
plasma membrane, we limited particle release by using a clone
harboring mutations in the M late domains (rVSV M LD
PPPY and PSAP mutated to AAPA and AAAA, respectively (16,
17). Ultrathin-section TEM of cells infected with rVSV M LD−
revealed bullet-shaped virions on both surfaces (Fig. 3A).

We next examined the composition of particles from both cell
surfaces. Although glycosylation has been shown not to determine
the segregation of G (18), it is possible that G glycosylation differs
in virions released from the two surfaces. Peptide-N-glycosidase F
(PNGase) treatment of particles from the apical and basolateral
compartments showed similar glycosylations (Fig. 3B). Using N as
a measure of particles, the average amounts of G and M per par-

![FIG 1](image.png)

Polarized VSV Budding Is Not Dictated by M or G

November 2015 Volume 89 Number 22
Journal of Virology
jvi.asm.org 11719
article were not found to differ significantly (Fig. 3C) and the relative numbers of basolateral and apical particles per PFU were not significantly different (2.3-fold ± 1.1-fold; *P > 0.05 [Student’s t test]; n = 5).

The factors that trigger VSV assembly and budding are not known. Virions can be produced without G, demonstrating that G is dispensable for assembly (19). However, sequences in G increase budding efficiency (20, 21), and viral ribonucleoprotein (vRNP) localization to G microdomains has been proposed to initiate assembly (22). In addition, the trigger for condensation of the open vRNP into the nucleocapsid-M protein complex is unknown. We show that budding is polarized in the presence or absence of G and that the localization of other VSV proteins cannot account for this phenotype. Additionally, we demonstrate

FIG 2 Test of the requirement of G for directional budding. (A) Schematic for growth of rVSV and rVSV eGFP ΔG with G supplied in trans. (B) Time line of infection, radiolabeling, and collection. (C) Concentrated virus from 12 hpi was analyzed by SDS-PAGE. Note that 1/20 of the rVSV, relative to rVSV eGFP ΔG, from basolateral (Bl) budding was loaded for clarity. The basolateral lane of rVSV eGFP ΔG contains a cellular band (*) with mobility similar to that of G that also appears after mock infection. Both rVSV and rVSV eGFP ΔG had significantly more N in the basolateral chamber (Student’s t test *P values of <0.01 and <0.05, respectively; n = 5). Ap, apical. (D) T84 cells were infected with rVSV eGFP ΔG and analyzed by confocal microscopy for the proteins indicated. Cross sections and three-dimensional renderings are shown. The lack of G was verified by immunocytochemistry analysis, and consequent defective virus production was confirmed by titration (data not shown). The scale bars represent 10 μm.
tension differences (23). It is possible that generation of the high membrane curvature in VSV particles requires a low-tension environment.

ACKNOWLEDGMENTS

We thank Maria Ericsson, Elizabeth Benecchi, and Louise Trakimas for their expertise and preparation of TEM samples at the Harvard Medical School Cell Biology Conventional Electron Microscopy Facility. We thank Wayne Lencer for his expertise on epithelial cells and Meredith O’Hear for the preparation of T84 cells at the Children’s Hospital, Boston, Epithelial Cell Biology Core. The anti-N (10G4), anti-M (23H12) and anti-G (IE2) antibodies were kind gifts from Douglas Lyles. We thank the staff of the Nikon Imaging Center at Harvard Medical School, Boston, for their expertise and use of their equipment.

This work was supported by National Institutes of Health grants R01 NS083848 (C.L.C.) and F31 AG041582 (E.D.) and the Natural Sciences and Engineering Research Council of Canada (T.K.S.).

REFERENCES


