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dynamics in the gut microbiota
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Microbial population growth is typically measured when cells can be directly observed, or

when death is rare. However, neither of these conditions hold for the mammalian gut

microbiota, and, therefore, standard approaches cannot accurately measure the growth

dynamics of this community. Here we introduce a new method (distributed cell division

counting, DCDC) that uses the accurate segregation at cell division of genetically encoded

fluorescent particles to measure microbial growth rates. Using DCDC, we can measure the

growth rate of Escherichia coli for 410 consecutive generations. We demonstrate experi-

mentally and theoretically that DCDC is robust to error across a wide range of temperatures

and conditions, including in the mammalian gut. Furthermore, our experimental observations

inform a mathematical model of the population dynamics of the gut microbiota. DCDC can

enable the study of microbial growth during infection, gut dysbiosis, antibiotic therapy or

other situations relevant to human health.
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A
nimals rely on their associated microbial communities to
aid with digestion, immunity, and other aspects of
physiology1–3 and disease. To understand the structure

and dynamics of the microbiota, researchers use metagenomics,
metatranscriptomics and metabolic profiling4–6 to measure the
response of the gut microbiota to changes in diet, health or
environment7–10. These methods provide a birds-eye correlative
view of the microbiota, but cannot be used to directly measure the
growth rates of individual taxa. In particular, 16S recombinant
DNA sequencing can only detect relative changes in frequency
within a mixed gut population—a convolution of growth,
death and competition with other microbes in the community.
Recent work has indicated that the structure of the gut microbiota
can change in o24 h in response to changes in diet or antibiotic
therapy, but the mechanisms driving such changes remain
largely mysterious8 because the in vivo growth characteristics of
distinct gut microbes cannot be directly measured. To better
understand the growth dynamics of the gut microbiota, it is
paramount to deconvolve the effects of growth, death and
competition, and thus new methods are needed to directly
measure these quantities in the mammalian gut.

Mark and recapture, in which organisms are first marked and
then sampled later, is used by ecologists to measure the growth rate
of wild populations11. The fraction of individuals containing the
mark on resampling allows for the change in population size to
be estimated. Mark and recapture has been applied to study
many animal populations, but methods for phenotypically marking
bacteria (for example, superinfecting bacteriophage or temperature-
sensitive plasmids) are limited by indirect measurement, stability
and host range12–15. Such methods are capable of providing
qualitative estimates of growth rate, but cannot be used to
determine the number of elapsed generations precisely. In
addition to phenotypic marking, sequence tagging methods such
as wild-type isogenic tagged strains and sequence tag-based analysis
of microbial populations have been recently developed16,17. These
methods indirectly measure the growth rate of a population, but are
very useful for elucidating population dynamics (such as population
bottlenecks) during pathogen infection.

In addition to marker-based methods, markerless methods such
as fluorescent hybridization to ribosomal RNA, and the peak-to-
trough ratio based on next-generation sequencing have been used
to study microbial populations where marking is not feasible18,19.
Of these, the peak-to-trough ratio is especially exciting because it
allows for the growth rates of many native microbiotal strains to be
measured simultaneously from a metagenomics sample19.
Furthermore, when genetic modification is possible, it often
facilitates downstream measurement. For example, fluorescence
dilution or the TIMER protein can be used to measure cell-to-cell
heterogeneity in growth rate, without the expense of next-
generation sequencing20,21. One limitation of fluorescence
dilution and TIMER-based methods is that they work best in
aerobic tissues due the oxygen-dependent nature of fluorescent
protein maturation. As such, these methods have been primarily
used to study Salmonella infection, which occurs in aerobic
tissues20,21. For a detailed comparison of various methods for
measuring in vivo population dynamics, see Supplementary Table 1.

Here we use a synthetic mark and recapture11 strategy at the
microbial scale that enables us to count bacterial cell divisions. In
contrast to synthetic stimulus counters, which move between
predefined states in response to a series of chemical stimuli22, our
method relies on inert particles that accurately segregate when
cells divide, leading to an exponential decrease in the fraction of
cells containing a particle over time. By measuring the
distribution of particles in a population of cells, one can
determine the number of elapsed generations. Thus, we call our
method distributed cell division counting (DCDC).

Results
Implementing DCDC in Escherichia coli. To implement DCDC
(Fig. 1), we placed a series of self-assembling proteins (SAPs,
which include bacteriophage shell proteins and bacterial
microcompartment proteins) fused to a red fluorescent
protein (mRFP1, hereby referred to as RFP) under control of the
arabinose-inducible promoter in E. coli (Fig. 1b). After induction,
‘on’ cells express a fluorescent fusion protein that self-assembles
to form a single bright particle per cell; the inducer is then
eliminated to prevent further particle production (Fig. 1b).
We thus overcome the limitations of other microbial marking
strategies by using inert, highly stable particles that do not confer
any cellular growth burden and whose expression is tightly
controlled by a single induction event. Chemical labelling
methods, such as the dye Carboxyfluorescein succinimidyl ester,
rely on analogue fluorescence measurements and are limited by
the dynamic range of detection23–25 and heterogeneity in cell size.
For these reasons, Carboxyfluorescein succinimidyl ester has been
primarily used to study the proliferation of immune cells, which
are large and homogenous in size. Unlike chemical labelling
methods, DCDC is limited only by the number of cells counted
and the false-positive rate (see below).

Individual, bright particles with distinct segregation character-
istics can be expressed in E. coli (Fig. 1c). We designed 10 variants
of DCDC using an arabinose-inducible promoter to express a
variety of proteins known to self-assemble in bacterial cells,
including bacteriophage and bacterial microcompartment (BMC)
proteins26–29; 6 of these variants produced bright particles
(Fig. 1d, Supplementary Fig. 1). Of these, four variants
(P12–P9, CsoS1A, EutM, PduA) had one bright particle in the
majority (60–80%) of cells after 3 h of induction (Fig. 1d). The
other two variants (CbbL and T4.gp23) had multiple particles per
cell or heterogeneous particle sizes (Supplementary Fig. 1). ‘On’
cells were between 20- and 200-fold more fluorescent than ‘off’
cells when measured by flow cytometry (Fig. 1e).

DCDC has a very low false-positive rate. To measure the
performance of our DCDC designs, we calculated receiver
operating characteristic curves from the flow cytometry data by
systematically varying the threshold between ‘on’ and ‘off’ cells
(Fig. 1f). We observed that two designs (P12/P9 and CsoS1A) had
more than 1,000 true positives per false positive, which was much
higher than the other two designs (EutM and PduA), which had
about 100 true positives per false positive (Fig. 1g). To further
winnow the number of designs, we compared the induction
kinetics of the P12/P9 and CsoS1A designs. The fluorescence
distribution increased monotonically for both designs, the P12/P9
design has slower kinetics than the CsoS1A design, which should
result in fewer false positives for a given amount of spurious
production (Fig. 1h). To determine the optimal induction
duration, we calculated the area under the receiver operating
characteristic curve. We used the induction time course data for
the P12/P9 design from panel h to perform our analysis (Fig. 1i).
This analysis indicated that we can classify ‘on’ and ‘off’ cells with
an area under the curve 40.99 after 4 h of induction.

Testing DCDC in vitro. DCDC can track at least 10 consecutive
cell divisions during exponential growth. We tested DCDC by
inducing cells for 4 h with arabinose, washing them 3� with
phosphate-buffered saline (PBS), then diluting 1:1,000 in fresh
medium. To maintain exponential growth, cells were diluted
every 2 h into flasks containing fresh Lysogeny Broth (LB)
medium (Fig. 2a). As expected, we observed an exponential
decreases in the fraction of ‘on’ cells over time after a short lag
phase (Fig. 2b). We further tested DCDC using a custom-built
turbidostat (Fig. 2c, Supplementary Fig. 2a) to automate growth
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curve collection and maintain cells in exponential growth for a
defined number of generations. After 4 h of induction in
arabinose-containing rich medium, B70% of cells were in the
‘on’ state. The cells were then washed and diluted into defined
medium to terminate particle production, thereby allowing us to
track cellular divisions. We measured the fluorescence of cells at
discrete time points using flow cytometry (Fig. 2d, data are
plotted on a log–log scale) and calculated the fraction of ‘on’ cells
over time (Fig. 2e). The bacterial populations initially take one or
two generations to adapt to the new growth conditions after
which cultures reach maximal exponential growth rates. By fitting
a line to the log2 of the fraction of ‘on’ cells, we calculate a
doubling time of 33.8 min, which is only about 3% longer than
the doubling time based on optical density (32.9 min, Fig. 2f).
This difference corresponds to less than one half of one doubling
over the course of the experiment.

DCDC is robust to large changes in growth rate. We varied the
carbon source and temperature and measured the change in
bright fraction over time in turbidostats (Fig. 2g). We fit an
exponential decay (lines) to the coloured points during which
cells were growing exponentially. Across this wide range of
temperatures and conditions, the fraction of ‘on’ cells decreased

exponentially, as expected. At slower growth rates, the doubling
time calculated from slope of the log2 of the fraction of ‘on’
cells was longer than the doubling rate as measured by optical
density, but this can be accounted for using a quadratic
calibration curve (Supplementary Fig. 2d). Thus, DCDC can
measure generation times across an order of magnitude (0.5–5 h),
which corresponds to a 512-fold difference in population size per
generation (210/29¼ 512).

Detailed analysis of the performance of DCDC. DCDC particles
segregate faithfully. We observed exponentially growing cells
using an agar pad on top of a coverslip using time-lapse fluor-
escence microscopy. Over time, individual, labelled cells formed
microcolonies in which only one cell was labelled with a counting
particle (Fig. 3a; Supplementary Movie 1). We determined the
extent of particle splitting and false production by measuring
the number of fluorescent particles in each frame of the movie.
In 90% of frames, only one bright particle was observed (Fig. 3b).
In the remaining 10% of frames, one ‘main’ bright particle and
one or two dim particles were observed. We calculated the ratio of
brightness between the brightest and second-brightest particles in
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Figure 1 | Implementing DCDC in E. coli cells. Stimulus counters switch between discrete states in response to specific triggers22,35, whereas distributed

counters are induced and then an observable element (for example, a bright particle) autonomously segregates as cells divide (a). The number of elapsed

generations is encoded as the ratio of the number of particles to the number of cells. DCDC was implemented using a self-assembling protein (SAP) fused

to a red fluorescent protein (RFP) under control of an arabinose-inducible promoter (PAra), producing monomers that self-assemble into a bright,

fluorescent particle (b). After the cells are washed, particle production ceases but existing particles remain. We started with 10 designs for DCDC, and

determined the best design as outlined in the schematic (c). To verify expression, cells were imaged after 3 h of induction with 1 mM arabinose using

confocal microscopy (d, scale bar, 1mm) and analysed using flow cytometry (e). The flow cytometry data from (e) were analysed using a range of

thresholds between bright and dark cells (f) to create a receiver-operating characteristic curve36, which plots the true positive rate versus the false-positive

rate for varying thresholds (g). The two best-performing designs were analysed by flow cytometry after an induction time course (h). To determine the

optimal induction time, we calculated the area under the receiver operating characteristic curve for the P12/P9 design (i).
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all of the frames with at least two particles, and found that the
fold change between the main particle and the next brightest
particle was always 420 (Fig. 3c). As a result, we could
differentiate between bright, positive cells and false positives. In
most cases, the dim particles originated from cells that did not
contain a particle, suggesting in rare cases that these extra
particles are being produced de novo rather than splitting from
existing particles. Together, this analysis suggests that DCDC is
robust to segregation errors and false particle production.

DCDC does not incur a fitness cost on cells. We grew cells
under three different conditions: no induction, continuous
induction and induction followed by a wash (Fig. 3d) to
determine whether particle expression affected growth rate. After
growth in the presence or absence of inducers, we diluted cells
1:1,000 in fresh medium and measured their subsequent growth
by monitoring the optical density 600 (OD600) over time (Fig. 3e).
We observed similar growth curves under all three conditions,
indicating that particle expression does not affect the growth rate
of cells. Thus, we conclude that particle production does not
introduce a growth burden on cells.

DCDC is sensitive to false production but not particle splitting,
degradation or differential growth rates. We created a mathema-
tical model in which particle splitting, degradation and false
production occur in exponentially growing cells (Fig. 3f and
Supplementary Fig. 3). We used our model to determine the
maximum dynamic range in generations and found that the
dynamic range was inversely proportional to the log2 of the false
production rate (Fig. 3g). We also examined the effect of growth-
rate difference between ‘on’ and ‘off’ cells, and determined that
such growth rate differences have only a transient effect on the
average growth rate of the population because the fraction of ‘on’
cells decreases exponentially over time (Fig. 3h). Thus, the
performance of DCDC is not sensitive to differences in growth
rate between ‘on’ and ‘off’ cells, and as established in Fig. 3e such
differences do not exist in practice. Finally, we examined the

relative contributions of particle splitting, particle degradation
and false particle production to the counting error. We found that
particle splitting and degradation are important for the first few
generations, but in the long run, false production dominates as a
potential error source (Fig. 3i), which could lead to under-
estimates of the actual growth rate (Supplementary Fig. 2d).
However, our modelling indicates that the maximum false
production rate K�fp is equal to the steady-state on/off ratio (see
Methods section for details), which based on our turbidostat
experiments (Fig. 2e,g) is typically less than 1 in 1,000. Therefore,
we do not expect false production to have a large effect on
counting accuracy when the on/off ratio is greater than K�fp.

Using DCDC to measure the growth of gut microbes. DCDC
can be implemented in gut microbes. We modified a naturally
occurring E. coli strain isolated from the mouse gut30 to contain a
DCDC plasmid and a chromosomally integrated constitutively
active superfolder green fluorescent protein (sf GFP) gene, yielding
the strain PAS418 (Fig. 4a). This enabled us to distinguish our
engineered microbes from the native gut microbiota by flow
cytometry or microscopy. PAS418 cells expressed RFP particles
(Fig. 4b, Supplementary Fig. 4a) after induction with arabinose.
Background particle expression was low (0.15 %) in the absence
of induction, as measured by flow cytometry (Fig. 4c). The
efficacy of DCDC in PAS418 was first determined in vitro by
growing PAS418 in our custom turbidostat under a variety of
growth conditions and measuring growth rates over eight
generations (Fig. 4d, Supplementary Fig. 4b). As was observed
with a lab E. coli strain (Fig. 2g), the fraction of ‘on’ cells
decreased exponentially over time across several different growth
conditions. We also tested DCDC by periodically diluting cells
grown in flasks in LB at 37 �C (Fig. 4e), and the device functioned
as expected (Fig. 4f). Thus, DCDC is functional in PAS418, a
naturally occurring mouse gut bacteria.
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We used DCDC to directly quantify the dynamics of the
microbiota during colonization in the gut. To determine the
relative influences of growth, death and removal on microbiotal
populations, we conducted a series of experiments in which
PAS418 cells were introduced into mice by oral gavage and their

growth rate was subsequently measured using DCDC by
sampling the faeces every 2 h after gavage (Fig. 4g). We first
determined the rate of removal by monitoring the fraction of
bacteria in the faeces that were GFPþ every 2 h after gavage
(Fig. 4h). Green (GFPþ ) bacteria were first observed 4 h after
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gavage, and after 6 h the fraction of green bacteria decreased.
Thus, the median transit time was 6 h corresponding to a removal
rate of 1/6 h�1.

Microbes can divide rapidly in the mammalian gut. We
measured the growth rate of PAS418 in the mouse gastro-
intestinal tract by introducing induced PAS418 cells into n¼ 4
mice by oral gavage (Fig. 4i, Supplementary Fig. 4c). We fit lines
to the log2 of the red/green fraction, and found that the doubling
time was 2.91±0.06 h. As a negative control, we introduced
uninduced PAS418 cells into n¼ 4 mice by oral gavage, and
observed that fewer than 1% of bacteria were reinduced in the
gastrointestinal tract based on our measurements of the log2 of
the R/G fraction (Fig. 4j, Supplementary Fig. 4d). Data from a
replicate experiment indicated a similar doubling time of 2.74 h
(Supplementary Fig. 5).

Mathematical modelling of growth dynamics in the gut. Our
experimental data capture the growth dynamics during the initial
phase of colonization in the gut, but over the next few days, the
steady-state population size of PAS133 (the gut isolate we engi-
neered to enable DCDC) is much lower than the initial popula-
tion size30. To investigate the forces that might shape the
long-term population dynamics of PAS418 and related strains
in the mammalian gut, we constructed a mathematical model.
The simplest version of the model accounts for growth (at a rate
of 1/3 h�1, based on our measurements), removal (at a rate of
1/6 h�1, based on our measurements) and death (an unknown
parameter that we vary in the model) using differential equations
(Fig. 5a). Such a model is inherently unstable (aside from a trivial
stable solution where the population size is zero); the population
will either grow or decay exponentially over time, unless the
growth, death and removal rates balance each other, which is a
bifurcation point.

Our simplest model does not consider nutrient limitation in
the gut, so we introduced a logistic growth term to account for
this (Fig. 5b). Such a model does produce a steady-state
population, but only when the population initially increases
in size or remains constant, which is inconsistent with
experimental observations that the steady-state population size
of PAS133 is much lower than the initial population size30.
Furthermore, we know that the bacteria do not initially
start above their carrying capacity because they are able to
grow rapidly during the first 12 h after gavage (Fig. 4i), and
we introduce the bacteria at a density of 108 ml�1, which is
about 10 times lower than the estimated carrying capacity of
109 c.f.u. ml�1, based on previous measurements of bacterial loads
in mouse faeces30,31.

Competition between bacteria does not explain the observed
population dynamics. We introduced a second bacterial species to
our model that grows logistically and is removed at a constant
rate. In this model, mutual interactions between the two species
can be antagonistic or sympathetic, and we systematically vary
the strength and sign of the interactions. For simplicity, we
consider symmetric interactions, and death is mediated by
interactions between the strains. We show the population
dynamics for one of the species over time with varying interaction
strengths and signs (Fig. 5c). Broadly, the results fall into
three categories: both species grow exponentially, both species
decline exponentially and a regime in which both species exist in
the steady state. As in Fig. 5b, stability is only observed when the
population does not initially decline over time. Thus, competition
does not produce dynamics that are consistent with our
observations.

Finally, we considered the effects of adaptation on the
population dynamics of gut microbes. In this model, some bacteria

alter their gene expression over time such that the steady-state
death rate is lower than the initial death rate. This means that
initially, the population decreases in size, but eventually stabilizes
as the microbes adapt to their new environment (Fig. 5d). The
extent of the initial drop in population size depends on the initial
death rate, which we varied from 0 to 10 h�1. If the initial death
rate is low, the initial population drop is small, and eventually the
population recovers to its carrying capacity, whereas if the long-
term death rate (which we varied from 0 to 1/3 h�1) is too high,
the population crashes. In between these extremes, the model
produces population dynamics that are qualitatively similar to
experimental observations that several days after gavage, PAS133
stabilizes at a low population level and maintains that population
level for a long time30. However, the model in Fig. 5d does not
consider competition with other species, or other forces that could
shape the exact size the population reaches in the steady state. A
model with adaptation is able to qualitatively reproduce the
observed population dynamics of the gut microbiota, but models
without adaptation only do so with a narrow range of initial
conditions. This suggests that the dynamics of death could be a key
difference between the initial population that colonizes the gut and
the population that resides there in the long term.

Discussion
In summary, we have developed a new method, DCDC, which
allows us to infer the population dynamics of microbes in a
natural setting where birth and death are not directly observable.
Mathematical modelling indicated that the ability to draw such
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Figure 5 | A simple model of the population dynamics of the gut

microbiota. We first consider a model with constant growth and removal

rates and variable death rates from 0 h�1 to 1/3 h�1 (a). We then consider a

model with logistic growth, a constant removal rate and variable death rates

from 0 h�1 to 1/3 h�1 (b). Finally, we consider a model with two separate

species, each of which grows logistically and has a constant removal rate (c).

In this model, death is mediated by positive or negative interactions between

the species, which are systematically varied from �1 (strong, negative

interactions) to 1 (strong, positive interactions). We also consider a model with

logistic growth, constant removal and a death rate that exponentially decays to

a constant rate (d). Here we vary the final death rate from 0 h�1 to 1/3 h�1.
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inferences depends crucially on non-replication of the mark and
from extremely low false-positive and false-negative measurement
rates. Previously, Benjamin et al.32 attempted to use a
temperature-sensitive episomal element as a non-replicating
mark in Salmonella, but could not quantitatively measure
growth rates because replication was not completely shut off at
body temperature. Using our system, we found that a murine
E. coli strain residing in the mouse gut divided twice as fast as the
removal rate by defecation. This, combined with previous
measurements of the small steady-state population size of the
PAS133 strain30, implies that a significant number of PAS418
cells in the gut are lost to death. Furthermore, the long-term
stability of PAS133 in the gut suggests that it may be able to adapt
to the conditions in the gut, as indicated by our model (Fig. 5d). It
is also possible that adaptation of the removal rate could lead to a
steady-state population in the gut, but this is less biologically
plausible. The removal rate is largely determined by the frequency
and amount of defecation, which is a function of diet and gut
physiology. It is also conceivable that nutrient limitation alone
could lead to an initial decrease in population size followed by
stability, but this only is feasible when the initial population size is
near the carrying capacity. Since we introduced our bacteria at
about 1/10 of the carrying capacity, the initial conditions for the
nutrient limitation model are not satisfied. More generally, it is
unlikely that a newly colonizing bacterial species will have an
initial population size close to the carrying capacity, as this would
imply that colonization has already taken place. That said, it is
important to emphasize that our modelling is not exhaustive—
other models could explain the observed population dynamics—
but rather serves to illustrate a possible scenario that could
explain our experimental observations.

Our method should be easily applied to other species in the
microbiota so long as the species can be genetically modified to
express a self-assembling protein fusion under control of an
inducible promoter. Obligate anaerobic bacteria will be a
particular challenge due to the use of oxygen-dependent
fluorescent proteins, but this could be circumvented using a
non-oxygen-dependent fluorophore such as the iLOV protein33.
In addition, the dynamic range of DCDC is set by the number of
generations, so should function in microbes with longer
colonization times or slower growth rates. Through additional
experimental and computational investigations using DCDC and
other methods, it should be possible to further elucidate the
complex population dynamics of the gut microbiota.

Methods
Strains, plasmids and bacterial culturing. For a list of strains and plasmids used
in this study, see Supplementary Table 2. For plasmid maintenance, ampicillin was
used at a final concentration of 100 mg ml�1, streptomycin was used at a final
concentration of 300 mg ml�1. Unless indicated otherwise, cells were grown in LB
media. Plasmids (see Supplementary Fig. 7 for a reference plasmid map) were
constructed using PCR with Q5 or Phusion polymerase (New England Biolabs) and
Gibson assembly (see Supplementary Table 3 for a list of primer sequences used).
QIAprep spin or QuickLyse kits (Qiagen) were used for isolating DNA, and DNA
Clean & Concentrator-5 kits (Zymo Research) were used for PCR purification.
Plasmid inserts were confirmed via Sanger sequencing (Eton Bioscience).

In vitro counting experiments. E. coli DP10 cells were grown overnight in LB
medium supplemented with ampicillin and back-diluted 1:100. After 1.5–2 h of
growth, cells were induced for 3–4 h with 1 mM arabinose, then washed once with
1� PBS and concentrated 10-fold by centrifugation. 1 ml of cells was inoculated
into 1 l of medium (described below) in a turbidostat bottle. In some experiments,
we grew cells exponentially in LB medium in flasks (shaken at 250 r.p.m. at 37 �C),
and diluted cultures 1:4 (for DP10) or 1:8 (for PAS418) into fresh, pre-warmed LB
medium every hours to maintain exponential growth.

To monitor bacterial growth over many consecutive generations, we
constructed a home-made turbidostat, which we named the ‘Evolvulator’. Each
Evolvulator consisted of an Ethernet microcontroller fitted with a custom-designed
daughterboard capable of connecting to and controlling various components (see

Supplementary Tables 4 and 5 for parts lists). An light-emiting diode (LED) and
photodiode were used to measure the OD of cells grown in a 1 l glass bottle. Since
the 1 l bottle has a light path length of B10 cm, we chose a LED that emits light at
527 nm to minimize absorption of the light by the water. Cells were stirred using a
magnetic stir bar inside the bottle and a magnet mounted on a computer fan;
stirring speed was modulated using a potentiometer (POT0) to control voltage to
the fan via pulse width modulation. The Evolvulator chassis was constructed from
laser-cut 3 mm acrylic. Fresh medium was supplied by gravity flow from a 20 l
carboy, governed by an electromechanical pinch valve. Custom server software
written in Python and utilizing the Twisted event-driven network engine was
developed to control a feedback loop, run on a Zotac ZBOX HD-AD02 with
Ubuntu 11.10 installed. A web interface was constructed using Java and HTML,
allowing the user to monitor OD in real time, as well as modify experimental
parameters such as target OD, variance around target OD, and blank OD sensor
reading. Photodiode readings and valve state information were saved to a SQL
database stored locally on the control server. Samples were collected from the bottle
using a syringe at regular intervals. All server code and design schematics can be
accessed at the following GitHub repository: (see Supplementary Software 1,
https://github.com/Wyss/evolvulator.git).

The LED on each Evolvulator device was calibrated via potentiometer
adjustment (POT1) to a single photodiode to ensure that the intensity of emitted
light was comparable between devices. After LED calibration, each device-specific
photodiode was then calibrated against an in-house NanoDrop 2000c
spectrophotometer (Thermo Scientific) to eliminate device-to-device differences on
OD readings due to inherent manufacturing tolerances of the electrical
components. Specifically, calculated Evolvulator ODs were plotted against
NanoDrop ODs to generate a calibration curve (Supplementary Fig. 2b). Since the
relationship of Evolvulator OD to NanoDrop OD was not linear, we fitted a
polynomial trend line to the data that was forced through the origin. The resulting
device-specific coefficients were then used to calculate NanoDrop equivalent ODs
from raw sensor data collected during a given experiment. We wrote custom
Python and Matlab scripts to extract and analyse photodiode sensor and valve
activity data from the databases generated during an experiment. Generation times
were calculated after every bioreactor dilution event. Briefly, % transmittance was
calculated using equation (1). NanoDrop equivalent OD was then calculated using
equation (2). The Ln(OD) was then plotted and the slope of this exponential
growth curve was extracted using the polyfit Matlab function. Generation times
were then calculated using equation (3).

Equations:

% transmittance ¼ current sensor readingð Þ
ðmaximum sensor readingÞ ð1Þ

NanoDrop Equivalent OD ¼C1 � log10 % transmittanceð Þ2
� �

þC2 � log10ð% transmittanceÞ
� �

ð2Þ

C1 and C2 in equation (2) represent the device-specific coefficients calculated from
device calibrations.

Generation Time ¼ lnð2Þ
slope of ln ODð Þplot

ð3Þ

For the experiments shown in Fig. 2b,c, and Supplementary Fig. 2c, we used a
minimal media containing 135.6 g of disodium phosphate, 60 g of monosodium
phosphate, 10 g of sodium chloride, 20 g of ammonium chloride, 80 g of glucose
(0.4% w/v), 100 g of casamino acids (0.5% w/v), 202.2 g of potassium nitrate (final
concentration: 100 mM), per 20 l carboy. The media was supplemented with
magnesium sulfate (final concentration: 1 mM), thiamine hydrochloride (final
concentration: 1 mg ml�1), and calcium chloride (final concentration: 100mM).

For the experiments shown in Fig. 2d and Supplementary Fig. 2d, we used M9
salts supplemented with potassium nitrate (final concentration: 100 mM),
magnesium sulfate (final concentration: 1 mM), thiamine hydrochloride (final
concentration: 1 mg ml�1) and calcium chloride (final concentration: 100 mM). We
varied the carbon source, amino acid mixture and temperature. We used the
following combinations: glucose (0.4% w/v) and casamino acids (0.5% w/v) at
37 �C, glucose (0.4% w/v) and leucine (final concentration: 1 mM) at 37 �C, glucose
(0.4% w/v) and leucine (1 mM final concentration) at 23 �C, glycerol (0.4% w/v)
and leucine (final concentration: 1 mM) at 23 �C.

For the experiments shown in Fig. 4d, we used M9 salts supplemented with
glucose (0.4% w/v), casamino acids (0.5% w/v), potassium nitrate (final
concentration: 100 mM), magnesium sulfate (final concentration: 1 mM), thiamine
hydrochloride (final concentration: 1 mg ml�1), and calcium chloride (final
concentration: 100 mM). Cells were grown at 37 �C.

For the experiments shown in Fig. 4d and Supplementary Fig. 4b, we used M9
salts supplemented with potassium nitrate (final concentration: 100 mM),
magnesium sulfate (final concentration: 1 mM), thiamine hydrochloride (final
concentration: 1 mg ml�1), and calcium chloride (final concentration: 100 mM). We
varied the carbon source, amino acid mixture and temperature. We used the
following combinations: glucose (0.4% w/v) and casamino acids (0.5% w/v) at
37 �C, glucose (0.4% w/v) and leucine (final concentration: 1 mM) at 37 �C, sodium
gluconate (0.4% w/v) and leucine (final concentration: 1 mM) at 37 �C.
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For the experiments shown in Supplementary Fig. 2d, we compared the
doubling time based on optical density (tOD, calculated as described above) with
the doubling time based on the decrease in the fraction of ‘on’ cells (tON, calculated
based on the slope a linear fit to the log2 of the fraction of ‘on’ cells, using the red
data points). We observed an initial adaptation to new growth conditions (slower
decrease in the ‘on’ fraction) at the beginning of each time course. We also
observed a slower decrease in the ‘on’ fraction towards the end of each time course,
due to either spontaneous particle production or false positives. If no particles are
being produced after induction, we expect the two measures of doubling time to be
identical, namely tOD¼ tON. However, particle production (via leaky expression or
particle splitting) will generally cause tON to be larger than tOD. We introduce a
term a to account for this production, which is defined as the difference in growth
rates as calculated by optical density and DCDC, such that aþ 1/tON¼ 1/tOD. In
Supplementary Fig. 2d, we calculated a¼ 1/24.

In vivo counting experiments. E. coli PAS133 was transformed with pCAM10A,
then the chromosomally integrated sfGFP construct was transferred via P1vir
transduction from E. coli PAS143, a strain characterized by Brian Chin (Harvard
Medical School; current affiliation, Sysmex Inostics; unpublished). This new strain
was termed PAS418.

Female, 10-week-old, BALB/c mice were obtained from Charles River
Laboratories, and allowed to acclimate for 1 week. Orally administered E. coli
generally will not colonize the gut unless the endogenous bacteria are inhibited.
Therefore, supplemented the drinking water of the mice with 5% sucrose and
0.5 mg ml�1 streptomycin to reduce the endogenous flora 1 day before oral
administration of engineered E. coli34. Engineered E. coli were cultured overnight in
M9 supplemented with 0.4% (w/v) glucose, 0.5% (w/v) casamino acids and
ampicillin. We used 2% (w/v) arabinose for overnight induction. Approximately 107

engineered E. coli cells from the overnight culture were washed in PBS and
administered to each mouse via oral gavage. Faecal samples were collected every two
hours by isolating mice in sterile plastic containers for B3 min until at least three
faecal pellets were produced. Faecal pellets were suspended in 1 ml PBS, diluted 1:10
in PBS and centrifuged at 50g for 20 min. 600ml of supernatant was removed and
stored at 4 �C until flow cytometry analysis, which was performed within 24 h of
sample collection. Throughout all experiments, mice were fed a grain-based chow
without arabinose (ssniff EF R/M Control feed, ssniff-Spezialdiäten GmbH, Soest,
Germany) ad libitum. Throughout our experiments, the animals did not present any
signs of pain or stress. Our animal protocol was approved by the Harvard Medical
Area Standing Committee on Animals, protocol 04966.

Growth rate comparisons. E. coli DP10 and PAS418 cells were grown overnight
in LB medium. PAS418 cells were induced overnight with 2% (w/v) arabinose, and
DP10/pCAM10 cells were induced for 4 h with 1 mM arabinose. Cells were washed
three times in 1� PBS, and then diluted 1:1,000 in fresh LB medium. 150ml of
diluted cells were transferred to 96-well microplates (Corning) with 100 ml of
mineral oil overlaid on top to prevent evaporation. The plate was incubated in a
Perkin Elmer Victor 3 V 1420 multilabel plate reader at 37 �C and medium shaking
was performed for 8 h, and the optical density at 600 nm was recorded every 5 min.

Confocal microscopy. E. coli cells were imaged using a Nikon Ti motorized inverted
microscope equipped with 100� Plan Apo NA 1.4 objective lens, combined with a
Yokagawa CSU-X1 spinning disk confocal with Spectral Applied Research Aurora
Borealis modification. For mRFP1 imaging, a 100 mW 561 nm solid state laser with a
quad pass dichroic mirror (Chroma) and a 620/60 emission filter (Chroma #858). For
GFP imaging, a 488 nm solid state laser with a quad pass dichroic mirror (Chroma)
and a 525/50 emission filter (Chroma #852) was used. Imaging was performed with a
Hamamatsu ORCA-AG cooled charge-coupled device camera. Metamorph software
was used for image acquisition. For z-stacks, seven optical sections with a spacing of
0.5 microns were acquired, and are displayed as maximum z-projections. Brightness
and contrast were adjusted uniformly using ImageJ version 1.48. These images are
shown in Figs 1 and 4, Supplementary Figs 1 and 4

Time-lapse microscopy. Samples were placed in a MatTek dish, covered by a 2%
agarose pad containing M9 medium supplemented with 0.4% (w/v) glucose and
0.5% (w/v) casamino acids. A low density of cells was used to allow for the for-
mation of well-separated microcolonies. Time-lapse images were acquired using a
Nikon TE-2000 microscope with a 100� 1.4 numerical aperture phase objective
with an ORCA-ER charge-coupled device camera (Hamamatsu Photonics,
Hamamatsu, Japan). Illumination was provide from a Lumencor LED fluorescence
illuminator. NIS-Elements AR version 4.20.00 was used to control the microscope
and camera during acquisition. In general, we acquired frames every 5 min using
no more than 50% of the maximum power on the Lumencor to minimize the
effects of photobleaching. These images are shown in Fig. 3.

Flow cytometry. E. coli cells were analysed using a BD LSRII flow cytometer with
a High-Throughput Sampler. A 594 nm laser and 630/22 filter was used for mRFP1
detection. A 488 nm laser and 525/50 filter was used for GFP detection. Cells
were gated by forward and side scatter to exclude doublets. Samples were run at
r2,000 events per s to ensure accurate detection. When necessary, cells were

concentrated by centrifugation at 5,000g for 10 min and the resulting pellet
resuspended in a smaller volume. For the in vitro experiments shown in Fig. 2,
tubes were used; the high-throughput sampler was used in other experiments.
Control experiments were performed with alternating bright and dark wells to
ensure minimal carryover between wells. Flow cytometry data were analysed using
FlowJo v. 10.6, or custom MATLAB scripts (Mathworks, Natick, MA;
Supplementary Software 2).

Error rate modelling. We constructed a mathematical model to better understand
the effects of particle degradation, splitting or false production on counting error.
This model considers particles and cells separately. Suppose we have p particles in n
cells. Then we can write down the following differential equations to describe the
dynamics of particles and cells:

dp
dt
¼ Ksplit � pþKfp n� pð Þ� p

tp

dn
dt
¼ mB � pþ mDðn� pÞ

In the above equations, Ksplit is rate at which particles split, Kfp is the rate at which
particles are produced in the absence of induction, tp is the inverse of the rate of
particle decay, mB is the growth rate of bright cells, and mD is the growth rate of
dark cells. For a reaction diagram, see Supplementary Fig. 3.

In the model, we assume that there can only be one particle per cell. Hence,
there are p cells which contain particles, and n�p which do not contain particles.
We denote these as ‘bright’ and ‘dark’ cells, respectively. Using the model, we can
calculate (1) the dynamic range of DCDC, (2) the effect of unequal growth rates
between bright and dark cells and (3) the relative contributions of particle splitting,
degradation and false production over time.

In order for counting to function, we must have a separation of timescales
between the particles and the cells. If cellular dynamics do not occur faster than
particle dynamics, then the ratio of particles to cells will reflect production,
degradation or splitting of the particles rather than growth and division of the
population of cells being measured. In other words, the cells must be growing much
faster than the net production (or decay) of particles. Based on our time-lapse
microscopy and turbidostat experiments, we have observed that particles are stable
for multiple days, and that particle production is much slower than cell division.
Thus, we can safely assume that as t !1, n� p.

(1) To determine the dynamic range, we calculate the steady-state ratio pf p/n
at time goes to infinity. To start, we normalize time relative to the growth rate of
dark cells

dp
dt
¼ K�split � pþK�fp n� pð Þ� p

t�p

dn
dt
¼ m�B � pþ n� p

Where the asterisks indicate that the rate constants are normalized per division (or
per generation). We first consider the case where dp

dt � 0. In this case, n will increase
exponentially and p will remain constant as t !1. Thus, the ratio p

n! 0 as
t !1 in this case. The more interesting case is when dp

dt 40. It is fairly obvious
that dn

dt 40 because n4p. Thus, as t !1, both p and n will go to infinity. Since we
are interested in the ratio p/n, we can use L’Hospital’s rule:

lim
t!1

p
n
¼ dp=dt

dn=dt
¼

K�split � pþK�fp n� pð Þ� p
t�p

m�B � pþ n� p

We know that at the steady state p� n, usually by at least a factor of 100, thus, we
can simplify by dividing everything by n:

lim
t!1

p
n
¼

K�split �
p
n þ

K�fp n� pð Þ
n � p=n

t�p

m�B � p=nþ n=n� p=n
	 0þ K�fp n� pð Þ

n � 0
0þ n

n � 0
	 K�fp

Thus, the dynamic range of DCDC is limited entirely by the false production rate.
(2) If we normalize dn/dt so that we are looking at relative population growth,

we see that

1
n

dn
dt
¼ m�B � 1
� � p

n
þ 1

There is a trivial solution where m�B ¼ 0, and then nothing grows. Otherwise, this
describes an exponential decay towards 1 (since eventually n� p), which is the
growth rate of dark cells. So, even if there is an initial difference between the
growth rate of bright and dark cells, it will rapidly correct itself over time.

(3) This is similar to (2) but with the dp/dt equation:

1
n

dp
dt
¼ K�split �

p
n
þK�fp

n� pð Þ
n

� p=n
t�p

And we can see that splitting and degradation exponentially decrease in
importance over time, whereas false production asymptotically increases towards
its maximum value of Kfp for n� p.
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Microbiota population dynamics modelling. We considered a total of seven cases
in our model. Below, we show the equations used to describe the population
dynamics in each of these cases:


 No feedback (Fig. 5a): dx
dt ¼ ðG�R�DÞx


 Nutrient limitation (Fig. 5b): dx
dt ¼ g c� xð Þx�Rx�Dx


 Interactions with other bacteria (Fig. 5c): dx
dt ¼ Gxðc� xÞx�Rx� kp � x � y;

dy
dt ¼ Gy c� yð Þy�Ry� kp � x � y


 Adaptation (Fig. 5d): dx
dt ¼ g c� xð Þx�Rx� dmax exp � tdtð Þþ 1ð Þdminx


 Physiological removal (Supplementary Fig. 6a): dx
dt ¼ Gx � rx2 �Dx


 Immune response (Supplementary Fig. 6b): dx
dt ¼ Gx �Rx� kIIx; dI

dt ¼ kII
ðcI � IÞx


 Bacteriophage killing (Supplementary Fig. 6c): dx
dt ¼ Gx �Rx� kBBx;

dB
dt ¼ kBSkBBx

Here, G is the exponential growth rate, R is the removal rate, D is the death rate, g
is the logistic growth rate, c is the carrying capacity, Gx and Gy are the logistic
growth rates of species x and species y, respectively, kp is the strength of the
interaction between species x and y, (dmaxþ 1)dmin is the maximal death rate, tD is
the rate at which the death rate decays towards the steady-state death rate, dmin is
the steady-state death rate, r is the physiological removal rate, kI is immune
response rate, cI is the maximal immune response level, kB is the rate of
bacteriophage infection, and kBS is the burst size of the bacteriophage. We denote
the bacterium of interest using x, the other species as y, the strength of the immune
response using I, and the bacteriophages using B. We did not include a separate
death term in the ‘interactions with other bacteria’ case (Fig. 5c) as in this case
death is mediated by interactions with other bacteria.

For the plots in Fig. 5a, we used G¼ 1/3 h�1, R¼ 1/6 h�1, and varied D from 0
to 1/3 h�1. For the plots in Fig. 5b, we used g¼ 1/3 h�1, R¼ 1/6 h�1, c¼ 1 and
varied D from 0 to 1/3 h�1. For the plots in Fig. 5c. we used Gx¼ 1/3 h�1,
Gy¼½ h�1, R¼ 1/6 h�1, and varied kp from �1 to 1. For the plots in Fig. 5d, we
used g¼ 1/3 h�1, R¼ 1/6 h�1, dmax¼ 30, tD¼0.5, and varied dmin from 0 to
1/3 h�1. For the plots in Supplementary Fig. 6a, we used G¼ 1/3 h�1 r¼ 1/3,
and varied D from 0 to 1/3 h�1. For the plots in Supplementary Fig. 6b, we used
G¼ 1/3 h�1, R¼ 1/6 h�1, and cI¼ 1, and varied kI from 0 to 1. For the plots in
Supplementary Fig. 6c, we used G¼ 1/3 h�1, R¼ 1/6 h�1, kBS¼ 50, and varied kB

from 0 to 1.
The simple cases (No feedback, nutrient limitation and physiological removal)

were solved analytically using the DSolve function in Mathematica 10.2. All other
cases were solved numerically using MATLAB.
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