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Heterogeneity of T Cell Responses to Pandemic pH1N1
Monovalent Vaccine in HIV-Infected Pregnant Women

Adriana Weinberg,1 Petronella Muresan,2 Kelly Richardson,1 Terence Fenton,2

Teresa Dominguez,1 Anthony Bloom,3 D. Heather Watts,4,* Mark J. Abzug,1

Sharon A. Nachman,5 and Myron J. Levin,1 for the P1086 Study Team

Abstract

We investigated the Th1 protective and regulatory T and B cell (Treg and Breg) responses to pH1N1 monovalent
influenza vaccine (IIV1) in HIV-infected pregnant women on combination antiretroviral therapy (cART). Per-
ipheral blood mononuclear cells (PBMCs) from 52 study participants were cryopreserved before and after vac-
cination and analyzed by flow cytometry. pH1N1-specific Th1, Treg, and Breg responses were measured in
PBMCs after in vitro stimulation with pH1N1 and control antigen. The cohort analysis did not detect changes in
pH1N1-Th1, Treg, or Breg subsets postvaccination. However, individual analyses distinguished subjects who
mounted vigorous Th1 responses postvaccination from others who did not. Postvaccination, high pH1N1-Th1
correlated with high pH1N1-Treg and Breg responses, suggesting that low influenza effector responses did not
result from excessive vaccine-induced immune regulation. High postvaccination pH1N1-Th1 responses correlated
with baseline high PHA- and pH1N1-IFN-c ELISpot and circulating CD4+CD39+% and CD8+CD39+% Treg, with
low CD8+ cell numbers and CD19+FOXP3+% Breg, but not with CD4+ cell numbers or HIV viral load. These data
highlight the heterogeneity of T cell responses to vaccines in HIV-infected individuals on cART. Predictors of
robust Th1 responses to IIV include CD8+ cell numbers, T cell functionality, and circulating Breg and Treg.

Introduction

Influenza infections are frequent and have increased
morbidity in HIV-infected children and adults, including

pregnant women, which underscores the importance of vaccine-
conferred protection. Multiple studies showed poor antibody
responses to influenza vaccines in HIV-infected individuals.1–4

However, studies also showed the efficacy of trivalent in-
activated seasonal influenza vaccines (IIV3) in HIV-infected
adults including pregnant women.3,4

This implies that antibody titers against influenza mea-
sured by hemagglutination inhibition (HAI) may not be a
good surrogate of protection in HIV-infected individuals.
HAI titers ‡1:40 were shown to decrease the incidence of
influenza disease in immune-competent young adults by
50%, and the ability of IIVs to generate HAI titers ‡40 has

been used as a benchmark to predict vaccine efficacy and to
ensure FDA approval of new IIV products. Although a
majority of studies conducted in immune-competent IIV
recipients supports the value of the HAI ‡40 standard as a
predictor of protection, recent studies have disputed the
validity of this HAI standard both in immune-competent
children and adults.5–7 Some potential explanations for the
apparent lack of surrogacy of HAI titers in HIV-infected
individuals include the following: (1) HAI-measured anti-
bodies may not constitute a mechanistic surrogate of pro-
tection and their ability to predict protection against
influenza is highly dependent on host factors, such as im-
munologic competency or age,8 and (2) HIV-infected in-
dividuals may be highly heterogeneous with respect to
immune responses due to varying degrees of immune de-
ficiency that may not be totally reflected by CD4 cell
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numbers, HIV plasma RNA levels, or use of combination
antiretroviral therapy (cART).

P1086 was a study of the International Maternal Pediatric
Adolescent AIDS Clinical Trials (IMPAACT) network that
investigated the safety and immunogenicity of two double
doses of the pandemic H1N1 (pH1N1) IIV1 in HIV-infected
pregnant women on cART. The primary analysis of P1086
showed that the immunization regimen was safe, but the im-
munogenicity measured by HAI titers was lower compared
with historical immune-competent adult vaccinees.9 In a sub-
sequent study of the B and T cell responses to pH1N1 in P1086
participants, we found that only pH1N1 HAI titers and IgG
memory B cells increased after vaccination, whereas interferon
gamma (IFN-c) ELISpot-measured effector T cells (Teff) de-
creased, and IgA memory B cells and granzyme B (GrB) Teff
did not significantly change from prevaccination to postvacci-
nation.10 Surprisingly, however, the B and T cell responses to
pH1N1 vaccine in P1086 participants were generally positively
correlated despite their median trajectories over time going in
different directions. This observation led us to hypothesize that
some important interrelationships in immune responses to
pH1N1 IIV1 may be identified by correlation analyses, even in
cases in which summary statistics did not indicate significant or
consistent changes in group medians.

In this exploratory study, we expanded the immunoge-
nicity analysis of the pH1N1 IIV1 in a subset of HIV-infected
pregnant women from P1086 by evaluating pH1N1-specific
Th1 and cytotoxic responses and regulatory responses to
vaccination. Th1 and cytotoxic cell-mediated immunity
(CMI) is generally protective against viral infections and
both human and animal studies showed its protective role
against influenza.11–19

Participants and Methods

Study design

HIV-infected women 18 to 39 years of age, 14 to 34 weeks
gestation, and on antiretroviral therapy, who consented to this
study as per local IRB stipulations, received two 30 lg doses
of unadjuvanted, inactivated pH1N1 vaccine, 21 to 28 days
apart, at 31 U.S. IMPAACT sites, as previously described.9

Serum, plasma, and peripheral blood mononuclear cells
(PBMCs) were collected and cryopreserved at entry before
administration of the first dose of vaccine, before adminis-
tration of the second dose (21 to 28 days postdose 1), and 10
to 14 days postdose 2. PBMCs were collected at entry and
after each vaccination on the first half of participants enrolled
at sites that were certified to cryopreserve PBMCs through
the Immunology Quality Assurance program of the Division
of AIDS of the National Institute of Allergy and Infectious
Diseases. Here we report on the baseline and postdose 1 CMI
responses.

Flow cytometry

PBMCs were frozen, stored, shipped, and thawed as per
the IMPAACT version of the HIV/AIDS Network Co-
ordination protocol (www.hanc.info/labs/Pages/SOPs.aspx).
After overnight rest, PBMCs with viability ‡70% and viable
recovery ‡50% were resuspended at 106 PBMC/ml in RPMI
1640 supplemented with antibiotics and 10% human AB
blood group serum and were stimulated for 48 h with 2

TCID50/cell of A/California/7/2009 Pandemic X-179A
H1N1 Influenza virus or medium control in the presence of
1 lg/ml of each of anti-CD28 (BD Biosciences; L293) and
anti-CD49d (BD Biosciences; B7651) monoclonal antibodies
(mAbs). Brefeldin A (Sigma-Aldrich) was added to a final
concentration of 10 lg/ml for the last 12–15 h of the incu-
bation. After washing and counting, PBMCs were surface
stained using the following conjugated mAbs: anti-CD3-
PECy7, anti- CD8-APC-AF 750, and anti-CD19-PECy5, and
then fixed and permeabilized with Cytofix/Cytoperm (BD
Biosciences) and stained with anti-IL-10-APC, anti-FOXP3-
FITC, anti-TGF-b-PE (Cederlane; TB21), anti-MIP1b-PE
(BD Biosciences; D21-1351), anti-TNF-a-PerCP Cy5.5
(Biolegend; MAb11), anti-Perforin-APC (Biolegend; dG9),
and anti-IL-2-FITC (BD Biosciences; 5344.111). Total T and
B cells and subpopulations were counted on Guava easyCyte
8HT (Millipore) and analyzed with FlowJo (Treestar). Sub-
sets were expressed as a percentage of the parent CD3+CD4+,
CD3+CD8+, or CD3-CD19+ cell population.

Statistical methods

This was an exploratory substudy for which no sample size
calculations were performed. Baseline characteristics were
summarized using descriptive measures. Changes in pH1N1-
specific effector, memory, and regulatory T cell subsets from
baseline to postimmunization were assessed using the Wil-
coxon matched pairs signed-rank tests. The final flow cyto-
metric analyses were restricted to samples with ‡100 events
in the CD4+, CD8+, or CD19+ anchor gates. A sensitivity
analysis showed that the inclusion of samples with <100
events in the anchor gates would not have changed the results.
Spearman correlation analyses were performed to assess the
strength of associations and test their statistical significance.
All analyses were performed using SAS Version 9.2 (SAS
Institute Inc.) and graphs were produced using the R soft-
ware.

Results

Characteristics of the study population

This study used PBMCs from 52 subjects enrolled in the
P1086 parent study who completed vaccination before de-
livery and had cryopreserved PBMCs stored before and after
vaccination. At enrollment, women had a mean age of 27
years, and medians of 33% CD4+ T cells and 1.9 log10 HIV
RNA copies/ml of plasma, all of which were similar to the
baseline measures of the total population in the parent study
(Table 1).

Th1 and cytotoxic CMI responses to pH1N1
monovalent vaccine measured by flow cytometry

pH1N1-specific Th1 responses were characterized by
the expression of interleukin-2 (IL-2) and tumor necrosis
factor-alpha (TNF-a), and cytotoxic responses by expres-
sion of perforin in pH1N1-stimulated PBMCs after subtraction
of mock-stimulated controls. pH1N1-specific MIP1b expres-
sion, which is an integral component of both Th1 and cytotoxic
responses, was also measured on stimulated CD4+ and CD8+ T
cells. In aggregate, there were no significant changes from
baseline to postdose 1 in the pH1N1-specific T cell immunity
(Table 2 and Supplementary Table S1; Supplementary Data
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are available online at www.liebertpub.com/aid). However,
further analyses showed that Th1 CMI responses to vaccination
were highly correlated (Table 3). This level of coordination of
the protective CMI responses suggested that the differences
among subjects represented a true difference in their ability
to respond to the vaccine as opposed to a random finding.

Regulatory T cell responses to vaccination

To determine the effect that T cell regulation may play in
the modulation of the protective immune response to the
pH1N1 vaccine in HIV-infected pregnant women, we ex-
amined the changes from baseline to postdose 1 of multiple
subsets of T and B regulatory subsets characterized by the
expression of FoxP3, IL-10, and/or TGF-b (Table 4 and
Supplementary Table S2). In aggregate, we did not find
significant changes in pH1N1-specific regulatory T or B cell
after pH1N1 vaccination except for a small decrease in the
CD4+TGF-b+% (median difference = -0.99%; p = 0.02).

Further analyses of Treg responses revealed heterogeneity
similar to that observed for the Th1 and cytotoxic T cell
responses (data not shown). Surprisingly, however, when we
examined the correlations between changes from baseline to
postvaccination between pH1N1-specific Th1 and cytotoxic
protective responses and regulatory responses (Fig. 1), we
found significant positive correlations of Th1 and cytotoxic
protective with regulatory responses to the vaccine, sug-
gesting coordination instead of antagonism of these re-
sponses.

Baseline characteristics associated with CMI
responses to pH1N1 immunization

To determine the factors that may contribute to the pro-
tective T cell responses generated by influenza vaccination,
we performed correlation analyses of the baseline immuno-
logic, virologic, and select demographic characteristics with
pH1N1-specific CD4+MIP1b+% increases after vaccination
used as a general exemplification of protective responses
(Table 5). The data showed that baseline CD4+ T cells and
HIV plasma RNA load were not associated with pH1N1-
specific CD4+MIP1b+ changes after vaccination. However,
the increase in pH1N1-specific CMI after vaccination was
associated with high baseline pH1N1- and PHA-IFN-c
spot-forming cells, high circulating CD4+CD39+% and
CD8+CD39+% Treg of unknown specificity, and low cir-
culating CD19+FOXP3+% Breg of unknown specificity.

Discussion

This study showed that HIV-infected pregnant women had
highly heterogeneous Th1 and cytotoxic T cell responses to
pH1N1 demonstrated by the wide interquartile differences,
such that significant group changes from baseline were not
observed. However, correlation analyses indicated that this
heterogeneity did not merely represent random variation,
since these analyses revealed patterns of interrelationships
across the effector T cell data. The CMI response to influenza
vaccines is important because it is essential for protective
antibody responses11–13 and it generates cytotoxic T cells that
clear virally infected cells.14–19 The strongest predictors of
protective Th1 and cytotoxic CMI responses to pH1N1 IIV1
were high baseline IFN-c ELISpot results after in vitro

Table 1. Demographics and HIV
Disease Characteristics

Characteristic All Substudy

Number of subjects 119 52
Race

Black 71 (60%) 32 (62%)

Ethnicity
Latino 41 (34%) 21 (40%)

Age (years)
Median 29 27
Interquartile range (IQR) (22, 32) (23, 31)

Gestational age (weeks)
Median 25 27
IQR (20, 29) (21, 30)

Receiving ARVs 119 (100%) 52 (100%)
Type of ARV regimen

HAART 112 (94%) 46 (88%)
Other 7 (6%) 6 (12%)

CD4 percent
Median 32 33
IQR (23, 39) (27, 41)

CD4 count (cells/mm3)
Median 481 496
IQR (350, 647) (388, 635)

CD8 percent
Median 46 44
IQR (38, 52) (38, 51)

CD8 count (cells/mm3)
Median 686 643
IQR (529, 893) (527, 851)
N N = 109 N = 49

log10 RNA count
Mediana 1.9 1.9
IQR (1.7, 2.6) (1.7, 2.6)

aThe lower limit of detection varied among subjects depending on
the assay used at the clinical research site; RNA values below the
limit of detection were replaced with the lower detection limit of the
assay.

Table 2. Change in pH1N1-Specific Th1
and Cytotoxic T Cell Subsets from Baseline

to Postdose 1 pH1N1 Vaccine

Variable (%)a,b Median (IQR) p valuec

CD4+IL-2+ -0.17 (-1.98, 2.02) 0.93
CD4+MIP1b+ 0.53 (-2.05, 2.38) 0.81
CD4+MIP1b+IL-2+ -0.09 (-0.46, 0.49) 0.91
CD4+PERF+ -0.12 (-2.85, 2.21) 0.79
CD4+TNF-a+ -0.56 (-2.27, 1.21) 0.31
CD4+PERF+TNF-a+ -0.32 (-0.76, 0.79) 0.69
CD8+IL-2+ 0.56 (-2.31, 1.94) 0.85
CD8+MIP1b+ 0.58 (-2.60, 4.32) 0.35
CD8+MIP1b+IL-2+ 0.14 (-0.79, 1.44) 0.53
CD8+PERF+ -0.24 (-3.59, 3.93) 0.65
CD8+TNF-a+ -0.69 (-2.79, 2.62) 0.62
CD8+PERF+TNF-a+ -0.37 (-1.45, 1.66) 0.77

aN = 49.
bSubsets, measured by flow cytometry, are expressed as a

percentage of the parent CD4+ or CD8+ B cell population.
cWilcoxon matched pairs signed-rank tests.
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PBMC stimulation with pH1N1 or PHA. The lack of speci-
ficity of the baseline IFN-c ELISpot results that predicted a
good specific CMI response to pH1N1 vaccination suggested
that they functioned as a measure of the overall ability of
the host to mount CMI responses. The corollary of this
observation is that nonspecific high ELISpot responses in
HIV-infected individuals may predict their ability to mount
specific CMI to vaccines and/or infections in general.

We found a marginal association of high pH1N1-CMI re-
sponses with low CD8+ T cells, which is in agreement with
previous reports,20 but we did not find any associations with
other traditional markers of HIV disease such as CD4+ cell
numbers or plasma HIV load. It is important to note that all
women in this study received cART and a majority had high
CD4+ cell numbers and <1,000 HIV RNA c/ml of plasma,
which leaves open the possibility that subjects with a wider
range of values on these variables may exhibit an association
of CD4+ cell numbers and plasma HIV load with CMI re-
sponses to vaccination. It is also important to mention that in
our previous studies we showed a positive association of entry
CD4+ T cells with the magnitude of antibody responses to this
vaccine and a negative association of HIV viral load with
pH1N1-specific IFN-c ELISpot responses after vaccination.

To determine if T cell regulation played a role in the het-
erogeneity of the CMI responses to pH1N1 vaccine, we inves-
tigated the relationship of pH1N1-specific Th1 and cytotoxic T
cell responses to the vaccine with circulating, nonspecific Treg
and Breg at baseline and with pH1N1-specific Treg and Breg
after vaccination. pH1N1-specific effector T cell responses to
vaccination correlated with high pH1N1-specific Treg and Breg
after vaccination, suggesting that Treg and Breg were generated
through a feedback mechanism as previously proposed.21 High
CMI responses to pH1N1 vaccine also correlated with low
circulating CD19+FOXP3+% Breg at baseline, albeit not with
the better characterized CD19+IL-10+% Breg subset. Never-
theless, the data suggest that a high nonspecific B cell regula-
tory environment may reduce CMI responses to vaccination
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Table 4. Change of pH1N1-Specific Regulatory

T and B Cell Subsets from Baseline

to Postdose 1 pH1N1 Vaccine

Variable (%)a,b Median (IQR) p valuec

CD4+FoxP3+ 0.29 (-2.50, 1.59) 0.97
CD4+IL-10+ 0.37 (-2.08, 1.78) 0.87
CD4+IL-10+FoxP3+ -0.04 (-0.34, 0.18) 0.40
CD4+TGF-b+ 20.99 (23.83, 0.87) 0.02
CD4+TGF-b+FoxP3+ -0.11 (-0.56, 0.27) 0.14
CD8+FoxP3+ 0.51 (-2.59, 3.65) 0.53
CD8+IL-10+ 0.55 (-2.23, 2.26) 0.40
CD8+IL-10+FoxP3+ 0.12 (-0.40, 0.82) 0.48
CD8+TGF-b+ -0.79 (-3.59, 1.21) 0.18
CD8+TGF-b+FoxP3+ -0.15 (-0.55, 0.85) 0.98
CD19+FoxP3+ 0.47 (-1.53, 2.54) 0.46
CD19+IL-10+ -0.71 (-4.13, 2.70) 0.47
CD19+IL-10+FoxP3+ -0.01 (-0.16, 0.33) 0.49
CD19+TGF-b+ 0.08 (-3.66, 1.11) 0.51
CD19+TGF-b+FoxP3+ 0.01 (-0.35, 0.24) 0.73

aN = 45
bSubsets, measured by flow cytometry, are expressed as a

percentage of the parent CD4+, CD8+, or CD19+ population.
cWilcoxon matched pairs signed-rank test.
Bold represents the values that were significant at a 0.05 level.
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similarly to the effect of Breg on HIV-1-specific T cell re-
sponses of infected individuals.22 In contrast, high pH1N1-
specific CMI responses after vaccination correlated with
high baseline circulating CD4+CD39+% and CD8+CD39+%
Treg, which was surprising in view of their presumed reg-
ulatory activity. CD4+CD39+ Treg are increased in HIV-
infected individuals.23–25

Although CD39+ Treg have not been shown to correlate
with opportunistic infections or any AIDS or non-AIDS ad-
verse events, they have been presumed to contribute to the
immune suppression that characterizes HIV infection
through diminution of IL-2 synthesis.24 CD39 is an ectoen-
zyme that converts ATP to ADP/AMP. CD39 acts in concert
with CD73, which converts ATP, ADP, and AMP to adeno-
sine, which binds to the adenosine receptor and activates the
T cell inhibitory pathway. Interestingly, CD73+ Treg have
been associated with decreased T cell activation, inflamma-
tion, and general immune preservation, while CD39+ Treg
have been associated with HIV immune suppression.26–28

In summary, the effect of CD39+ Treg in the context of HIV
infection is controversial and needs to be further investigated.
Our data also need to be confirmed and mechanistically ex-
plained in future studies. As new Treg counteractive treatment
modalities are being developed,29–31 it is important to con-
tinue to study the relationship of Treg and Breg with CMI
responses to vaccination, which may provide a framework to
understand the potential for increasing responses to vaccines
in HIV-infected individuals by manipulation of their Treg and
Breg populations.

This study had some limitations, including the investiga-
tion of a small subset of CMI responses and Treg and Breg. In
addition, we did not have a control group of HIV-uninfected
pregnant women to definitively show that the heterogeneity
of the responses was HIV specific. In line with the explor-
atory nature of the study, we did not adjust the analyses for
multiple comparisons in order to capture all possible signals,
and the results presented here need to be confirmed by ad-
ditional studies.

FIG. 1. Correlations be-
tween change from baseline
to postdose 1 in pH1N1-
specific CD4+MIP1b+% and
regulatory T cell subsets.
Data were derived from pe-
ripheral blood mononuclear
cells (PBMC) of 52 HIV-
infected pregnant women
collected before and 21–28
days after the administration
of a double-dose of pH1N1
IIV1. Data points represent
pH1N1-specific T cell subset
frequencies at postvaccina-
tion after subtraction of pre-
vaccination frequencies. The
coefficients of correlations
and p values measured with
the Spearman correlation test
shown on the graphs demon-
strate highly significant as-
sociations between the
changes in CD4+MIP1b+% (x
axes), representing Th1 re-
sponses, in response to vac-
cination and selected Treg-
and Breg-subset% changes (y
axes) after vaccination.
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Our findings are highly significant for the medical practice,
because health care providers frequently use CD4+ cell
numbers and HIV load to gauge the optimal time for vaccine
administration to HIV-infected individuals. Our data indicate
that in HIV-infected pregnant women on cART, the predic-
tive value of these traditional markers is reduced for CMI
responses. In contrast, nonspecific CMI responses had a
strong predictive value for T cell vaccine immunogenicity. If
confirmed in other groups of HIV-infected individuals, this
observation may suggest the value of assessing CMI function
(by ELISpot or other cytokine production) as an indicator of
optimal timing for vaccination.
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