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Abstract
Modern high-performance architectures require extremely accurate
branch prediction to overcome the performance limitations of con-
ditional branches. We present a framework that categorizes branch
prediction schemes by the way in which they partition dynamic
branches and by the kind of predictor that they use. The framework
allows us to compare and contrast branch prediction schemes, and
to analyze why they work. We use the framework to show how a
static correlated branch prediction scheme increases branch bias
and thus improves overall branch prediction accuracy. We also use
the framework to identify the fundamental differences between
static and dynamic correlated branch prediction schemes. This
study shows that there is room to improve the prediction accuracy
of existing branch prediction schemes.

Keywords: branch prediction, branch correlation, branch stream
characteristics.

1 Introduction

Recent work in branch prediction has led to the development of
both hardware and software schemes that achieve good prediction
accuracy by exploiting branch correlation [4, 9, 11, 14, 15, 16, 17].
However, little attention has been paid towhy these schemes
behave better than prior ones and towhere further improvements
can be made. In this paper, we describe an analytic framework that
helps answer these questions based on the fundamental character-
istics of the branch prediction problem. In addition, we use the
observations based upon this framework to indicate potentially-
fruitful research directions that will allow computer architects to
improve branch prediction accuracy. Further improvements in
branch prediction accuracy will enhance the effectiveness of global
instruction schedulers and the performance of multiple-instruction-
issue machines.

Branch prediction addresses two basic problems: predicting the
direction of conditional branches, and quickly fetching instructions
from the predicted target. These problems can be addressed sepa-
rately, and in this paper, we limit ourselves to the former. In other
words, we consider abranch prediction scheme to be a technique
for improving performance by anticipating the outcome of condi-
tional branches. Other work has shown how to couple a branch
prediction scheme with a branch target buffer to eliminate the per-
formance penalties of branches [7].

Why branch prediction schemes perform differently is just as
important as how well they perform. Only after explaining why a
scheme works can one understand appropriate ways to improve or
alter it. Recent work by McFarling [9] and by Chang et al. [4] uses
analysis, reasoning, and experimentation to devise better hardware
schemes for correlated branch prediction. In particular, McFarling
[9] noticed significant redundancy in the two-level index of the
correlation-based branch prediction scheme proposed by Pan, So,
and Rahmeh [11]. By hashing the branch history with the branch
address, McFarling’sgshare scheme often improves prediction
accuracy under the constraint of a fixed-size table of predictors.
Similarly, Chang et al. [4] noticed that, for a fixed-size table of pre-
dictors, branches biased to one particular branch direction more
than 95% of the time exhibited better prediction accuracies on a
two-level adaptive scheme [14] when one decreased the branch
history length, while the rest of the branches exhibited better pre-
diction accuracies when one increased the branch history length.
This observation led them to propose several new hybrid branch
prediction schemes with better overall prediction accuracies.

Still, it is more difficult to understand the actual workings of
today’s branch prediction schemes than it needs to be. To make it
easier to develop optimizations such as those proposed by McFar-
ling [9] and Chang et al. [4], we present a unifying framework that
allows one to analyze and categorize branch prediction schemes.
Because the framework is based on a theoretical model of the
branch prediction problem, it is general enough to encompass all
branch prediction schemes proposed to date. The framework
focuses attention on how a prediction scheme assigns the dynamic
branches of the program to individual predictors. This information
then directs our analysis of and our search for weaknesses in a par-
ticular scheme, and allows us to isolate and compare different fac-
tors that affect prediction accuracy. In particular, we explore the
fundamental differences between hardware- and software-based
branch prediction schemes that exploit branch correlation. This
analysis suggests several ways to improve the overall prediction
accuracy of today’s branch prediction schemes.

Section 2 describes our framework for classifying and analyzing
branch prediction schemes. To demonstrate the generality of our
framework, Section 2 presents many of today’s popular branch
prediction schemes in framework terms. In Section 3, we use the
framework to explore the issues in when (and thus why) static
schemes for correlated branch prediction work. Section 4 goes on
to compare the differences between static and dynamic schemes
for correlated branch prediction. As an example of the power of
our approach, we also describe changes to correlation-based static
and dynamic prediction schemes that improve their overall predic-
tion accuracy. Section 5 summarizes the findings of this work.This paper is available from the Center for Research in Computing

Technology, Division of Applied Sciences, Harvard University as
technical report TR-06-95. A shorter version will appear in thePro-
ceedings of the 22nd Annual International Symposium on Com-
puter Architecture, June 1995.
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2 A Framework for Branch Prediction

Given a conditional branch in a program, the goal of a branch pre-
diction scheme is to predict accurately the outcome of that condi-
tional branch (i.e. that the branch will take or that the branch will
fall through).1 The most accurate branch prediction schemes pre-
dict the next action of a branch based on some function of the past
actions of that branch and possibly other branches in the program.
To understand the capabilities of these branch prediction schemes
and to compare competing schemes in a meaningful manner, we
must be able to identify and quantify the important properties of
branch prediction schemes. To achieve this goal, this section
defines a set of mathematical tools that allow us to analyze pro-
gram and branch behavior in an abstract manner.

2.1 Basic Definitions and Goals

Let a branch execution ,  be a pair
consisting of an identifier  and a direction variable

. Intuitively, the identifier uniquely specifies a static
branch in a program, and the direction variable indicates the direc-
tion that the branch went. We define anexecution stream or just
stream as a sequence of branch executions. Intuitively, this corre-
sponds to a branch trace of one invocation of a program, identify-
ing in trace order the conditional branches executed and the
directions that they went. A stream can also be formed by concate-
nating the streams of multiple invocations of a program (possibly
with different inputs). We refer to the original stream of all execu-
tions in a run of the program as theprogram execution stream. A
substream of a stream  is a subsequence of .

A predictor is a simple mechanism that predicts the next direction
of a stream. A predictor may consider program characteristics (e.g.
the opcode of the next branch to predict) in addition to any part of
the past program execution stream.2 Theaccuracy of a predictor is
the number of correct predictions divided by the total number of
predictions; accuracy measures how closely the predicted stream
matches the actual stream.

A prediction scheme is a comprehensive mechanism that takes a
program execution stream, divides it into substreams, and directs
each substream to a unique predictor. Figure 1 illustrates this con-
cept. The objective in dividing the execution stream into sub-
streams is that each substream should be more accurately
predictable by its predictor. The accuracy of the prediction scheme
is the total number of correct predictions divided by the total num-
ber of predictions.

1. As a point of interest, the goal of a branch prediction scheme is slightly different
than the goal of the computer architect. A computer architect’s goal is to find a
branch prediction scheme that provides the best performance (at possibly the
smallest cost), and this may not be the scheme with the best prediction accuracy.

2. Here, we mean past program execution stream in the most general sense so that we
can consider branch executions from previous runs of the program (as are required
for a profile-based predictor).
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Figure 1. Framework for describing any prediction scheme. The
divider mechanism splits the program execution stream into sub-

streams, each of which is predicted by a single predictor.
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2.2 Dividing Streams

Based on our formal definition of a prediction scheme, the key to
building a more accurate prediction scheme involves the selection
of the “right” divider and “good” predictors. In this subsection, we
review several current methods for dividing a stream, and we dis-
cuss the intuition behind these approaches. Once we have
described the important properties of streams that relate to the
problem of branch prediction, we then discuss existing predictors
and their important characteristics.

Existing schemes divide the program execution stream in a variety
of interesting ways. In the simplest case, the divider is the identity
function; the program execution stream is fed to a single predictor.
The prediction scheme that statically predicts all branches taken
[12] and the prediction scheme that uses a single 2-bit saturating
up/down counter for all branches [7] are both examples of the
identity divider function.

The most popular divider function in today’s microprocessors par-
titions the program execution stream based on the static branch
identifier. This partitioning ideally forms one substream for each
static branch in the program (aper-branch substream) as shown in
Figure 2. Formally, if there are  static branches in the program,
then the divider creates  substreams, one for each static branch
identifier. The divider assigns the  execution  to
the substream that corresponds to . The intuition behind this
divider is that each branch should have its own predictor because
the characteristics and past history of this branch are a good pre-
dictor of its future behavior. Both the per-branch 2-bit counter
scheme3 [7] and per-branch profile-based prediction scheme [10]
partition the program execution stream in this manner.

More recent branch prediction schemes further subdivide the per-
branch streams. The intuition behind these schemes is that finer
decomposition of a per-branch stream can increase the predictabil-
ity of the individual substreams. For instance, Pan, So, and Rah-
meh [11] describe a scheme (which Yeh and Patt callGAs [14])
that partitions each per-branch stream based on the pattern of
directions of the  preceding branch executions in the program
execution stream, as illustrated in Figure 3. The intuition here is
that sections of code deal with related information, so tests of one
condition are likely to be placed near tests of related conditions.
Formally, consider the  execution in the program execution
stream, . TheGAs scheme considers not just , but
also the directions of the  preceding executions ,

,..., . These  bits are called thepattern historyof pre-
ceding branch executions. The  pattern bits are used to further

3. In this subsection, we ignore implementation issues that keep us from obtaining a
hardware predictor per static branch. These issues are addressed in Section 2.4 and
Section 4. Here, we are concerned only with the ideal intent of the branch predic-
tion scheme.
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Figure 2. Subdividing the program execution stream into
per-branch substreams.
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divide a per-branch stream (based on ) into  substreams. We
refer to these substreams asper-branch global-pattern streams.

As another way to subdivide per-branch streams, Yeh and Patt
describe a scheme calledPAs[15] that uses the last  branches in a
per-branch stream to further partition that per-branch stream. This
leads to a different set of substreams from theGAs scheme. For-
mally, consider the  branch execution in the program execution
stream,  which is an execution of branch . Let ,

,...,  be the indices of the  previous executions of branch

. ThePAs scheme uses the pattern , ,...,  rather than the

pattern , ,...,  to subdivide the per-branch stream

(based on ) into  substreams. Since the former pattern is
determined only by executions of one branch, ,PAs does not
exploit any inter-branch correlation; instead it is designed to
exploit repeating patterns in the execution of a single branch. For
example, on a loop branch that iterates a constant  times,PAs
approaches 100% branch prediction accuracy, because it will gen-
erate substreams consisting solely of a single branch direction (i.e.
it can recognize the pattern of  taken branches that will be fol-
lowed by a fall-through branch). We refer to these substreams as
per-branch branch-pattern streams.

As a last example of how to subdivide per-branch substreams, we
consider our scheme for static correlated branch prediction (scbp)
[17]. This scheme divides both by branch and by thepath of
branches that led to the executed branch. A path differs from a pat-
tern because it includes both the branch identifiers and the exe-
cuted directions, not just the concatenation of direction bits. So our
static correlated scheme uses the vector

to encode the path by which  was reached, and it uses this vector
to subdivide the per-branch stream (based on ) into

 substreams. We refer to these
substreams asper-branch global-path streams.

2.3 Predictors and Streams

Under our framework, the divider presents each substream to a sin-
gle predictor. Each predictor considers some combination of the
program characteristics, the past branch execution stream, and its
own internal state (if any) in making a branch prediction. In this
subsection, we review the range of existing predictors, and we dis-
cuss the characteristics of streams that make them predictable.

bi 2
k
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1

Figure 3. Subdivision in theGAs scheme. In addition to branch
identifier, the pattern ofk preceding branches in the program

execution stream is used to further divide the branch streams, so
there is one stream per pattern per branch.
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Predictors can be classified into two major types: static predictors
and dynamic predictors. A static predictor must fix its prediction
before the program runs, while a dynamic predictor is allowed to
change its prediction during program execution. Streams that are
largely invariant in branch direction can be accurately predicted by
a static predictor. We say that a stream isstrongly biased if the fre-
quency of one direction is much greater than the frequency of the
other direction, and that it isweakly biased if the frequencies are
close to equal. We refer to the more prevalent direction of the
stream as themajority direction; the other direction is conversely
theminority.

Researchers have investigated a variety of static program and
branch characteristics to help determine the appropriate static pre-
diction for an execution stream. For example, the simple static
branch prediction scheme that always predicts branches to take
[12] uses the statistical fact that branches tend to take more often
than they fall through. The “backwards taken forwards not taken”
(BTFNT) scheme [12] bases the static prediction on the sign of a
branch’s target offset. Other schemes employ a predictor that com-
putes predictions as a function of the opcode of the branch [7].
Finally, methods like those described by Ball and Larus [2] use
sophisticated heuristics about the program structure to generate a
static prediction for each branch.

Other than the static characteristics of the program and the
branches in the program, researchers use a profile of the dynamic
behavior of the program branches, gathered during an earlier pro-
gram run, to set the static prediction of each branch. If the majority
direction remains the same from the profile (training) to the testing
run, then a profiled static predictor will perform well. To date,
researchers have used only the overall bias of the past branch exe-
cution to set the static prediction. In our earlier paper [17], we used
other characteristics of the past execution stream, but we used this
information to reorganize the program so that its individual branch
streams are more strongly biased.

In contrast, dynamic predictors canadapt to track the bias of a
stream during a single execution of a program. This has the added
benefit of not requiring any training or profiling before the pro-
gram run. Surprisingly, there are very few designs for dynamic
predictors. By far, the most popular dynamic predictor is the 2-bit
saturating, up/down counter [12]. This predictor forms the basis of
all of the correlated branch predictors described by McFarling [9],
Pan et al. [11], and Yeh and Patt [14, 15, 16].

Lee and Smith [7] observed that the execution streams of most
program branches tend to occur in long runs4 and that ann-bit
counter predictor can exploit this regularity. Smith [12] further
observed that a 2-bit counter empirically provides an appropriate
amount ofdamping (or hysteresis) to changes in stream direction.
A 1-bit counter has no damping (it simply records the direction of
the last branch), and 3-bit and higher counters do not appear to
offer large cost/benefit advantages over 2-bit counters [12]. Damp-
ing trades off adaptability for vulnerability to short minority runs.
A 2-bit counter is excellent at predicting streams with long minor-
ity runs, and it is damped enough to ignore minority runs of length
1. This allows loop branches, for instance, to incur just one mispre-
dict per loop, instead of two mispredicts (one on loop exit and one
on loop reentry).

The distribution of minority run lengths in a stream strongly
relates to the effectiveness of today’s dynamic predictors. Streams
with long runs of one direction followed by long runs of the other

4. A run is a substring of the stream that consists entirely of one direction, and is
bounded on either side by executions that go in the opposite direction (or the
beginning or end of the stream). Note that a proper substring of a run is not itself a
run.
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direction can be accurately predicted by a dynamic predictor but
not by a static predictor. However, a large distribution of short
minority runs can cause a dynamic predictor to exhibit worse accu-
racy than a static predictor because the dynamic predictor adapts
too slowly to the changes in the runs.

One other interesting property is thefrequency of recurrent pat-
terns in a stream. Apattern is a non-empty string . A
recurrent pattern is a substring that occurs multiple times in a
stream. Unlike bias and distribution of runs, which are typically
used to predict streams that have been divided, this property is
exploited by some dividers (e.g. thePAs scheme [15]).

2.4 Implementation Details

To this point, our explanations of existing branch prediction
schemes focused on the ideal implementation of a scheme. For
example, the explanation above describes a per-branch dynamic
prediction scheme based on 2-bit counters as able to assign each
per-branch stream to a unique 2-bit counter. In actual implementa-
tions of per-branch 2-bit counter schemes, this is believed to be
impractical. Implementors usually solve this by using just the
least significant bits of the branch address as an index into a table
of  counters. This means that, if two conditional branches have
the same  lowest bits, their branch streams will be intermingled
and sent to a single 2-bit predictor. We call this effectaliasing, as
the original intent of the 2-bit counter scheme was to provide a sin-
gle predictor per static branch.

Issues in aliasing have led researchers to develop different branch
prediction schemes that we would classify as based on the same
ideal branch prediction model. For instance, theGAs scheme [14]
and McFarling’sgshare scheme [9] both ideally divide the pro-
gram execution stream into per-branch global-history substreams,
and both use a 2-bit counter as the base predictor. Thegshare
scheme requires fewer 2-bit counters for fixed values of  and
because it exclusive-ors, rather than concatenates, the  bits of
pattern history with the  bits of branch address when indexing
into the limited table of 2-bit counters. This gives a requirement of

 counters, instead of  counters. Section 4.2 shows
that aliasing potentially limits the effectiveness of the ideal divider
by intermingling streams that we would ideally like separated.

Static branch prediction schemes that can fix a prediction to each
static branch in the program obviously do not suffer from these
effects of aliasing. However, static schemes have their own poten-
tial limitations due to implementation details. For example, the
implementation of our algorithm for static correlated branch pre-
diction [17] does not distinguish between paths that cross a proce-
dure call or return boundary. In other words, they effectively
truncate the vector that is used to divide the stream in the cases
where a path crosses a procedure boundary. This truncationmerges
streams that would be separated by a more sophisticated divider.
We distinguish aliasing from merging: aliasing combines streams
from different static branches, while merging combines streams
from one static branch.

2.5 Hybrid Approaches

Recent work in branch prediction by McFarling [9] and Chang [4]
has proposed hybrid branch prediction schemes which group
together multiple basic prediction schemes. The hybrid schemes,
either statically or dynamically, select the basic prediction scheme
that performs best on a stream. The model in this section can easily
be extended to cover hybrid schemes; however, this paper focuses
on the power in our model to analyze and improve the individual

w 0 1,{ } *∈
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prediction schemes. Benefits to basic schemes will of course
improve the hybrid schemes that include them.

The framework illustrates two distinct avenues of research for
improving the accuracy of a branch prediction scheme: one could
attempt to improve the sophistication of the ideal model; or one
could attempt to remove limitations imposed by current implemen-
tation details. The next two sections give examples of each of these
approaches, for both static and dynamic branch prediction
schemes.

3 Why Static Correlated Prediction Works

The framework described in the previous section gives us a set of
terms that can be used to describe, compare, and contrast the
behavior of branch prediction schemes. In this section, we exam-
ine a simple application of this framework to a pair of similar pre-
diction schemes: per-branch static profile prediction and our static
correlated profile prediction [17]. Per-branch static profiling has
been shown to work well in a number of studies [5, 10]. In this sec-
tion, we show how our code transformation exploits branch corre-
lation to increase branch bias.

As noted in Section 2, bias is key to static branch prediction. Fig-
ure 4 plots the distribution of taken branch frequency averaged
over all benchmarks and data sets. Table 1 presents a summary of
our benchmarks and experimental methodology. The “Self His-
tory” bars in Figure 4 show that, even for executables produced by
today’s compilers, most of the dynamic branches are strongly
biased. This U-shaped distribution is what makes per-branch static
branch prediction effective.

The effect of exploiting branch correlation is to divide each per-
branch stream into several separate streams, discriminating by cor-
relation paths in addition to the static branch identifier. The “Path
History” bars in Figure 4 show the distribution of taken branch fre-
quency after our transformation to exploit branch correlation [17].
Compared to the “Self History” bars, the “Path History” bars
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set run. The “Self-History” bars indicate the branch bias in the original

executables. The “Path-History” bars indicate the branch bias of executa-
bles after transformation to exploit branch correlation with a history

depth of 12. The bias values represent the midpoint of a range, e.g. the
“10%” bars capture bias values between 5% and 15%. Although this

graph averages over all benchmarks and data sets, the trend of increased
bias occurred in each individual run. These results train and test on the

same dataset.
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exhibit a larger percentage of strongly biased branches. Over 70%
of dynamic branches now occur in streams that are highly predict-
able. In other words, the more finely subdivided per-branch global-
path substreams are more predictable than the coarsely divided
per-branch substreams. As we show further in Section 4.3, correla-
tion shifts the distribution of streams and their dynamic branches
toward stronger bias.

For static profile prediction to be practical, the static predictions
chosen must be valid across invocations of the program. If the
majority direction of a stream differs between the profiled (train-
ing) data set and the running (testing) data set, then a static predic-
tor will suffer. Fisher and Freudenberger [5] examined a number of
different benchmarks and data sets under static profile prediction,
and determined that good prediction could be achieved even while
training and testing on different data sets. Our experiences so far

Benchmark and Data Set
Descriptions

Total
Branches
Executed

Static
Branches
Touched

awk [awk]: pattern-directed scanning/processing, GNU ver. 2.15.5

a extensive test of awk’s capabilities 2.54M 1393

b simple scanning and printing 0.62M 835

c generate max array of 3 arrays 4.99M 968

compress [comp]: compression using adaptive Lempel-Ziv, SPECint92

in SPECint92 reference input 11.4M 277

jarg jargon dictionary (1MB of ASCII) 13.1M 280

ps 15-page postscript paper 2.0M 268

diff [diff]: differential file comparator, GNU version 2.6

a two C files with 3 diffs 0.43M 646

b two latex files with many diffs 0.27M 704

xsim xsim sources with many diffs 0.72M 711

eqntott [eqn]: boolean equation to truth table conversion, SPECint92

fx2fp 8-bit fix to floating point encoder 29.4M 533

tbra MIPS R2000 taken branch decode 19.3M 528

espresso [esp]: boolean minimization, SPECint92

bca SPECint92 reference input 73.9M 1722

cps SPECint92 reference input 83.1M 1845

ti SPECint92 reference input 87.4M 1899

grep [grep]: pattern searching program, GNU version 2.0

a search for a constant string (2 hits) 0.07M 611

khad complex regular exp. (100% hits) 0.14M 966

re3 search for a regular exp. (21 hits) 0.33M 878

sc [sc]: spreadsheet program, SPECint92

l1 SPECint92 short input 23.5M 1614

lb1 SPECint92 reference input 179.3M 1642

lb3 SPECint92 reference input 44.4M 1538

xlisp [li]: lisp interpreter, SPECint92

newt square root via Newton’s method 0.11M 550

q4 4 queens problem 0.41M 605

q7 7 queens problem 32.4M 605

Table 1: Benchmark and data set descriptions. The results in this paper
were derived from trace-driven simulations. We collected the traces
using ATOM v1.1 [13]. We compiled the SPECint92 benchmarks

using cc version 2.0.0 and the optimization level specified in the SPEC
makefiles. The additional benchmarks were compiled using gcc v2.6.0

(-O3). All of the experiments were performed on a DEC 3000/400
running OSF/1 version 2.0.

with various static correlated branch prediction schemes show
similar results, although we have not yet done a comprehensive
study. An exhaustive treatment of data variance is outside the
scope of this paper.

4 Comparing Correlated Schemes

This section uses the framework to tackle the much harder prob-
lem of comparing static and dynamic correlated branch prediction
schemes. Superficially, one can compare the prediction accuracy
reported by the designers of static and dynamic correlated
schemes, but this numerical comparison is unenlightening. For
example, in an earlier paper [17], we found that our static corre-
lated branch prediction scheme did not achieve as high a predic-
tion accuracy as the published dynamic correlated schemes. We
cannot conclude from these results, however, that the dynamic
schemes are necessarily better than static schemes since these
schemes differ in more than their base predictors.

Aside from the fundamental differences between a static and a
dynamic predictor, our framework suggests that there are three
major implementation differences in the divider function: the use
of path versus pattern history, the aliasing of multiple (possibly
unrelated) branches to the same predictor, and the lack of correla-
tion information across procedure call boundaries. Path history is
used in our software prediction scheme, while all current corre-
lated branch prediction schemes based on a hardware table of pre-
dictors use pattern history. The aliasing of per-branch streams
occurs in hardware-based branch prediction schemes but not in the
profiled branch prediction schemes. Finally, our software scheme
for correlated branch prediction, unlike the hardware-based
schemes, does not exploit correlation across procedure call and
return boundaries. Each of these implementation differences can
be seen as a limitation that keeps the implemented divider from
behaving as precisely as an ideal mathematical divider. Sections
4.1 through 4.3 show, by focusing ongshare [9], GAs [14], and our
static correlated branch prediction scheme (scbp) [17], that the
removal of these implementation differences can improve the pre-
diction accuracy of correlated branch prediction schemes.

Once we have equalized the divider function, an interesting ques-
tion to ask is how much benefit one gets from the use of a dynamic
predictor in a correlated scheme. Section 4.4 presents one answer
to this question by comparing the prediction accuracy of a corre-
lated branch prediction scheme that uses either static predictors or
2-bit dynamic predictors. This experiment uses a theoretical
divider function that is uninhibited by the implementation effects
of Sections 4.1 through 4.3. Through this experiment, we can
begin to understand the true need for dynamic predictors. By
understanding where a dynamic predictor is beneficial, we expect
to understand how to develop new code transformations to
improve the static prediction schemes.

4.1 Paths versus Patterns

As explained in Section 2.2, an implementation difference exists
between the divider used in ourscbp scheme and the one used in
an idealGAs scheme. Ourscbpscheme is based on a per-branch
global-path divider that uses a history consisting of a path vector
(path history), whileGAs is based on a per-branch global-pattern
divider that uses a history consisting of the pattern of the directions
of the most-recent branch executions (pattern history). Path history
should provide better correlation information than pattern history,
because path history is a superset of pattern history. Path informa-
tion includes the branches by which the current branch was
reached, not just the pattern of directions that they went to reach
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the current branch. For example, path information can differentiate
between two streams in which two branches take to reach a third
block. Figure 5 shows a simple example where that path history
achieves a better prediction accuracy than the pattern history.

To quantify the benefits of path information, we simulated ascbp
scheme that used only pattern information, and we compared the
prediction accuracy of this scheme against the prediction accuracy
of the per-branch profile scheme and ascbp scheme using path his-
tory. These results are summarized in Figure 6. For all bench-
marks, the pattern-basedscbp scheme shows significant
improvements over per-branch static profile prediction. There is a
small improvement in mispredict rate when path history is used,
ranging from negligible indiff.a to removing 14% of mispredicted
branches inespresso.bca. There is a measurable benefit to exploit-
ing path history instead of pattern history, but the majority of
advantage is gained just from pattern information.

From this result in static branch prediction, we would like to gen-
eralize to say that all branch prediction schemes could be
improved by incorporating path history. But to do this, we need to
isolate out the other factors that affect prediction accuracy so that
these other factors do not overwhelm the gains due to using path
instead of pattern history (and thus cloud the results). We will
return to this issue at the end of the next section.

Figure 5. Example illustrating the benefit of path history over
pattern history. PathAMY andBMY are indistinguishable using

pattern history, but distinguishable using path history.

pathAMY:
pattern history = “tt”
path outcome forY = 0% take

pathBMY:

pattern history = “tt”
path outcome forY = 100% take

A
if aa==0

B
if aa==2

M
if …

Y
if aa>0
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Figure 6. Mispredict rates of per-branch static branch prediction, static
correlated branch prediction using pattern history, and static correlated
branch prediction using path history. Both correlated schemes use a his-
tory depth of . All schemes train and test on the same data set.k 12=

4.2 Aliasing

One important factor that differentiates a static profiled branch
prediction scheme from a dynamic branch prediction scheme
stems from the fact that dynamic branch prediction schemes map
unevenly distributed information like branch address and pattern
history into indexed, regular hardware structures (i.e. a table of
predictors). In Section 2.4, we defined the term aliasing to describe
the situation when, due to implementation limitations, a divider
forces streams from different branches to map to the same predic-
tor. A static profiled branch prediction scheme does not suffer from
aliasing effects since each branch encodes its predictor function.

Aliasing does not directly imply penalties to prediction accuracy.
If two branches with different majority direction alias to the same
counter, but one executes 1,000 times followed by the other exe-
cuting 1,000 times, the loss due to aliasing is negligible. However,
if the two branches alternate in trace order, then aliasing may cause
significant misprediction. To relate aliasing back to prediction
accuracy, we define three kinds of aliasing: If an aliased counter
predicts an execution correctly while the corresponding per-stream
counter predicts it incorrectly, we call that execution an instance of
constructive aliasing since the aliasing improves prediction accu-
racy. Conversely, if the aliased counter mispredicts while a per-
stream counter would have predicted correctly, we call that an
instance ofdestructive aliasing since the aliasing reduces predic-
tion accuracy. Finally, if the aliased counter predicts an execution
correctly (incorrectly) and the corresponding per-stream counter
predicts correctly (incorrectly) too, we call that execution an
instance ofharmless aliasing since the aliasing does not change
prediction accuracy.

Our intuition is that aliasing is generally bad for prediction accu-
racy. Since a branch prediction table is a kind of cache, aliasing is
analogous to conflict misses in a cache. Instead of suffering con-
flict misses though, aliased predictors suffer from muddled predic-
tions. As in a cache, increasing the size of the prediction table can
help to reduce conflicts (and increase prediction accuracy), as is
shown in most of the dynamic branch prediction literature [10, 11,
14, 15, 16]. Chang et al. [4] show benefits to separating out
strongly biased branches from weakly biased branches, noting that
using static prediction on the strongly biased branches reduces
contention (aliasing) in the table of 2-bit counters. Unlike cache
conflict misses though, aliasing can be constructive or harmless in
addition to destructive. It is important then to understand how
aliasing affects the design space of dynamic branch prediction
schemes. In particular, we investigate the question of how often
aliasing happens in dynamic correlated branch prediction schemes
and how this aliasing affects the prediction accuracy.

To see how common aliasing is, we instrumented our hardware
simulations to count the number of static branches that map to
each 2-bit counter. We examined the usage patterns of the per-
branch 2-bit counter scheme, theGAs scheme, and thegshare
scheme for a fixed size table of 4096 2-bit counters. As an example
of the type of results we saw, Figure 7 plots the distribution of the
number of branches that alias to each counter for each scheme
under theawk.a benchmark. From Figure 7, one can see that alias-
ing happens infrequently in the standard 2-bit counter scheme.
This makes sense since all benchmarks touch noticeably fewer
than 4096 static branches (see Table 1). Aliasing increases inGAs,
and reaches very high levels undergshare since these schemes
produce significantly more than 4096 substreams from their divid-
ers. Undergshare, running theespresso andsc benchmarks, alias-
ing happens so often that in some cases no counters have fewer
than three different branches aliased to them. Figure 8 shows detail
on constructive versus destructive aliasing inawk.a undergshare;
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Figure 7. Aliasing in a 4096 counter table forawk.a under the per-branch 2-bit counter (12 bits of branch address),GAs (6 bits of branch address concat-
enated with 6 bits of branch history), andgshare (12 bits of branch address exclusive-ored with 12 bits of branch history) schemes. White squares repre-

sent unused counters; black squares represent counters with seven or more aliased streams.

Per-branch 2bc GAs gshare

Figure 8. Constructive and destructive aliasing inawk.a under thegshare scheme. In the left graph, gray scale indicates constructive aliasing, with black
representing the maximum attained value of 32. In the right graph, gray scale indicates destructive aliasing, with black representing a difference of 32 or

more correct incorrect predictions due to destructive aliasing.

Constructive Aliasing Destructive Aliasing

constructive aliasing is both rare and much smaller in magnitude
that destructive aliasing.

The more aggressive correlated branch prediction schemes pro-
duced more substreams under the assumption that this aggressive
subdividing would produce more predictable streams. As shown
by the prediction accuracies of the schemes in Figure 9, this deci-
sion can lead (though it does not always) to a design with a worse
prediction accuracy.

If we remove aliasing from the experiment in Figure 9, an
unaliased per-branch global-pattern branch prediction scheme
should achieve a higher branch accuracy than eitherGAs or
gshare. To verify this, we modified our hardware simulation so
that each per-branch, global pattern stream was assigned its own
counter, then recorded how many executions led to destructive and
constructive aliasing. Figure 10 presents the results of this experi-
ment for all benchmarks. Clearly, aliasing happens regularly, and it
happens destructively. There is often a significant improvement in
the prediction accuracy for removing aliasing effects. Better
dynamic prediction schemes are theoretically possible if those
schemes can exploit the same pattern and address information as
gshare without suffering destructive aliasing effects.
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Thegrep.a bar in Figure 10 is the exception to the trend: theGAs
scheme shows higher prediction accuracy than the unaliased pat-
tern divider. From Table 1, one can see thatgrep.a executes very
few branches. The worse prediction accuracy seems to be a result
of the start-up costs of training a 2-bit counter to match a stream’s
bias. Since the unaliased divider produces more streams than the
GAs divider, the unaliased divider pays a larger training cost. This
larger training cost is significant on short benchmark runs; it might
be reduced if schemes that use dynamic predictors could merge
streams with similar initial values.

Once we have removed the effects due to aliasing, we are in posi-
tion to evaluate the benefit of path history over pattern history in
dynamic schemes. We extended our simulator to use an unaliased
path-history divider with dynamic predictors. The mispredict rates
for this path-based predictor are presented in Figure 11. Using
paths improves the mispredict rate on the majority of our bench-
marks. As in thegrep.a case from Figure 10, a few of the short
benchmarks exhibit worse prediction accuracy under path rather
than pattern history due to start-up training costs. Since the magni-
tude of benefits from a path-based divider are sometimes small,
designers must take care that improvements in prediction accuracy
due to path history are not swamped by aliasing penalties intro-
duced as part of the modified scheme.

4.3 Cross-Procedure Correlation

So far, the differences we have explored between static and
dynamic correlated branch prediction schemes only hurt the pre-
diction accuracy of the dynamic schemes. Yet the overall predic-
tion accuracy of the dynamic schemes is often better. To explain
this disparity, we collected statistics of cases where the hardware
prediction schemes achieved better per-branch accuracy and then
examined the kinds of correlation that occurred. The vast majority
of such cases turned out to be cross-procedure correlation:
branches that occurred just after a procedure entry or just after a
procedure return.

Our scbp scheme [17] cannot preserve correlation information
across procedure calls. The scheme encodes correlation history
into the program counter by duplicating basic blocks. A particular
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Figure 10. Comparing the mispredict rates of correlated branch predic-
tion schemes that contain aliasing and a branch prediction scheme with a

true per-branch, global-pattern divider. All of the schemes use 2-bit
counters;GAs uses a history depth of 6 branches, whilegshare and the
unaliased pattern scheme use a history depth of 12 branches. TheGAs
andgshare schemes use 4096 counters; the pattern history scheme uses

one counter per stream.

copy of a basic block implies some set of previous execution paths.
The problem is that the value of the program counter is effectively
reset on a procedure call or return, eliminating correlation informa-
tion across procedure calls. In terms of the framework, this means
that the static scheme’s divider is not always capable of using all of
the components of the path history vector; the portion of the paths
in the vector before a call boundary are merged into a single path.5

In the extreme, a branch just after a call or return will have no his-
tory information available. In contrast, hardware schemes ignore
procedure call boundaries, since they record conditional branch
directions in additional hardware state.

Some examples of cross-procedure correlation are obvious once
they are pointed out:

• The eqntott benchmark in the SPECint92 suite uses a quick-
sort routine to sort bit vectors. A variety of different generic
bit-vector comparison functions are passed toqst(). Each of
these compare routines branches to different return points
corresponding to equal, less than, or greater than return val-
ues;qst() then immediately branches based on the return val-
ues. The branch that tests the return value is completely
determined by that the branch that set the return value.

• The garbage collector’smark() function in thexlisp bench-
mark callslivecar() to determine when to follow a node’s left
sublist. The switch statement insidelivecar() returns the con-
stant FALSE in many cases; this FALSE return value is then
immediately checked bymark().

These kinds of cross-procedure correlation led us to ask how accu-
rately a static prediction scheme could predict if it were possible to
preserve path information across procedure boundaries. We modi-
fied our trace and simulation environment to record paths across
procedure call boundaries, and to simulate the prediction accuracy
that would be obtained if a code transformation could preserve all
desired correlation information across calls. The prediction accu-
racy results where we trained and tested on the same data set are
summarized in Figure 12. In these results,compress shows very

5. Merging is not always harmful. As part of ourscbp algorithm, we perform per-
branch analysis that intentionally merges path streams with the same majority
direction. There is no penalty for this kind of merging when using a static predic-
tor; scbp exploits this harmless merging to reduce overall code expansion.
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depth of 12 branches, and a divider without aliasing effects (i.e. one 2-bit
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tern and path history dividers, respectively.
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little benefit from cross-procedure correlation, but this makes
sense becausecompress is implemented as one large loop in a sin-
gle procedure. In some benchmarks, likeeqntott and awk, more
than half of the mispredictions were removed. Other benchmarks
showed more modest improvements.

The results in Figure 12 are not necessarily what we would expect
from actual implementations of cross-call correlated static
schemes, because they train and test on the same data set. This
gives best possible static prediction accuracy, rather than what
would occur if different training and testing data sets were used.
However, these results show that using cross-call correlation we
can achieve better static prediction accuracy than was previously
believed possible.

Having discussed the implementation differences in dividers, we
can now revisit the effect of correlation on bias that we began to
explore in Section 3. Figure 13 extends the results shown in Figure
4, adding a new series of columns that shows the bias of streams
generated by an unaliased, cross-call, path divider. The improved
divider further steepens the U-shaped distribution of bias.

Exploiting Cross-Procedure Correlation Statically

We have not yet found a simple code transformation that can gen-
erally preserve correlation across calls. However, a number of
techniques may be useful: selective inlining [6], template forma-
tion, and multiple entry points [1].

Fisher and Freudenberger point out that sophisticated ILP compil-
ers already expect to perform aggressive inlining [5]. Inlining all
procedures is impractical, since it is exponential in the depth and
degree of the program call graph. But since a small number of pro-
cedures make up the majority of program execution cycles [3], it is
also likely that a small number of procedures are the best candi-
dates for inlining to extract correlation. Thelivecar() routine in
xlisp is a great candidate for inlining: it is called in just one place,
and it is defined to be local to thexldmem.c source file. After inlin-
ing livecar(), an optimizing compiler could fold the logically cor-
related branches into a single branch, decreasing the number of
static and dynamic branches in the program, and reducing cycle
count.

The eqntott case, above, is more complicated. Branches inqst()
correlate into the generic comparison routine that is passed as a
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Figure 12. Mispredict rates of scbp using path history (same as the third
series in Figure 6) and simulated mispredict rates for cross-call pattern
and cross-call path history dividers with static predictors. These results

use a history depth of 12 and train and test on the same dataset.

function pointer. It is not possible for a compiler to simply inline
the comparison routine. However, it would be possible for a com-
piler or programmer to build different versions ofqst(), as ifqst()
were a C++ style template function that was instantiated for each
comparison function. Since C functions are not first-class types,
we could perform function variable propagation analysis to deter-
mine all of the possible comparison functions. In fact, ineqntott,
the comparison functions are constants passed in each call ofqst(),
so we could curry (specialize) theqst()call at compile time into a
call to the appropriate version ofqst().

We can preserve some correlation state across procedure calls by
making multiple copies of procedure entry points, one for each rel-
evant past execution history. This allows us to better predict callee
branches that correlate back to the caller, but does not help us with
the more common case of caller branches that correlate into some
utility function.

4.4 Adaptability

The fundamental difference between the static and dynamic corre-
lated schemes is the predictors they use. Dynamic predictors can
adapt to track streams during an invocation of the program, while
static predictors cannot. This raises the question of whether some
streams require the adaptivity of a dynamic predictor to achieve
good prediction accuracy. To examine this question, we used the
same approach of the previous subsections: subtract out the differ-
ences, and see what results. Once again, we used a divider with a
path history of length 12 and no aliasing effects. We also made the
divider ignore procedure call boundaries like the divider in a hard-
ware implementation.

We classified streams from the divider as “Static Better”, “Equal”,
or “Dynamic Better”, depending on whether a static predictor, nei-
ther predictor, or a 2-bit counter best predicted the stream. Figure
14 shows the distribution of streams for each benchmark and data
set. The “Static Better” bars shows the percentage of streams
which were better predicted by a perfectly trained static predictor;
the “Static +1” bars show the percentage of streams where the
static predictor predicted correctly just one more time than the 2-
bit counter. The large number of “Static +1” streams have a major-
ity fall-through direction, and since our simulation initializes 2-bit
counters to predict weakly taken, the 2-bit counter incur a mispre-
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dict on the first execution in those strongly-biased streams. The
“Dynamic +1” streams are very rare, and there is a small but visi-
ble number of “Dynamic Better” streams.

The absolute number of “Dynamic Better” streams is less than
1,000 for all benchmarks exceptespresso. This suggests that there
are ways to build better hybrid static/dynamic prediction schemes
than that proposed by Chang et al [4]. Their scheme assigns all
branches with low bias to dynamic predictors. If we can assign
only the rare adaptive streams (which might be aliased together or
aliased with statically predictable streams in Chang et al.’s
scheme) to their own predictors, while using static predictors for
the remaining branches, we should be able to achieve even better
prediction accuracy with fewer counters than previous hybrid
schemes.

Despite the small percentage of “Dynamic Better” streams in Fig-
ure 14, those streams are an important component of overall pre-
diction accuracy. Figure 16 gives details about thecomp.in bar
from Figure 14, plotting the difference in correct predictions. Even
though the number of “Dynamic Better” streams is small, the
“Dynamic Better” tail is significantly larger than the “Static Bet-
ter” tail. The integral over the tails gives the differences in correct
predictions between schemes using only static predictors and
schemes using only dynamic predictors. The “Static Predictor” and
“2-bit Counter” bars of Figure 16 compare the mispredict rates of
such schemes. Even though we exaggerated the benefit with a
static predictor by assuming perfect training, Figure 16 shows that
the number of dynamic branches that occur in streams with long
runs of the minority branch direction is significant—ignoring them
will affect prediction accuracy. However, since the number of
static streams requiring an adaptive predictor is very small, the
possibility exists for a compiler to selectively apply techniques
like predication [8] to these few streams. The vast majority of
streams can be handled using simple static branch prediction tech-
niques.

Hybrid prediction schemes can mix static and dynamic predictors
in one scheme. The “Best Predictor per Stream” bars show the
mispredict rate as if the best predictor (2-bit counter or static) for a

0%

20%

40%

60%

80%

100%

aw
k.

a

aw
k.

b

aw
k.

c

co
m

p.
in

co
m

p.
ja

rg

co
m

p.
ps

di
ff.

a

di
ff.

b

di
ff.

xs
im

eq
n.

fx
2f

p

eq
n.

tb
ra

es
p.

bc
a

es
p.

cp
s

es
p.

ti

gr
ep

.a

gr
ep

.k
ha

d

gr
ep

.r
e3

sc
.l1

sc
.lb

1

sc
.lb

3

li.
ne

w
t

li.
q4

li.
q7

S
tr

ea
m

s 
(%

)

Static Better
Static +1
Equal
Dynamic +1
Dynamic Better

Figure 14. Distribution of streams under an unaliased, cross-call, path
divider, depending on whether the streams were predicted better by a per-

fectly trained static divider or by a 2-bit counter. The “+1” categories
contain streams where one of the predictor types correctly predicted just
one more execution than the other predictor type. The “Better” categories
contains streams where one predictor correctly predicts greater than one

more execution than the other predictor.

stream was assigned on a per-stream basis, instead of assigning all
streams to a single kind of divider. These bars show that schemes
using a mix of static and dynamic predictors can achieve very high
prediction accuracies.

In the long term, adaptability may be the only thing that separates
dynamic and static schemes, since static schemes can take cross-
call correlation into account, and dynamic schemes can exploit
path history and may be able to reduce aliasing problems. Correla-
tion provides a useful tool to reduce the amount of adaptivity (both
in dynamic branches and stream distribution) in a program, but no
current methods allow us to completely eliminate the need for
adaptivity. Hybrid schemes that use the techniques explored in this
paper may be able to find efficient ways to separate and handle
adaptive streams.
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4.5 Variation with History Depth

As a check that our model has identified the factors that cause dif-
ferences in prediction accuracy among the different schemes, we
examined the effect of changing the history depth ( ) with an
unaliased, cross-call, path history divider. Figures 17, 18, and 19
depict these three dividers with perfectly-trained static predictors,
2-bit counter predictors, and the best predictor per stream, respec-
tively. As expected, prediction accuracy improves with greater his-
tory depth, although we again see worse accuracy due to training
startup in some of the 2-bit counter runs.
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Figure 17. Static predictors and an unaliased, cross-call, path divider with
varying history depths.
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Figure 18. 2-bit counter predictors and an unaliased, cross-call, path
divider with varying history depths.
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Figure 19. Best predictor per stream (2-bit counter or perfectly trained
static) and an unaliased, cross-call, path divider with varying history

depths.

5 Conclusions and Future Work

Before one can build better branch prediction schemes, one must
understand how and why existing schemes work. We presented a
framework for analyzing and categorizing branch prediction
schemes. The framework partitions schemes into two major parts:
a divider andpredictors. Dividers attempt to partition the program
execution stream into substreams that are individually more pre-
dictable than the original stream. All known branch prediction
schemes fit into this framework. The framework provided the
motivation for all of the studies in this paper, allowing us to practi-
cally and systematically analyze the differences between schemes.

Profiled per-branch static branch prediction works because pro-
grams have a large percentage of branches that are strongly biased.
Correlation changes the distribution of streams to increase the per-
centage of branches that are strongly biased. Correlation reduces
the diversity of branch streams, making profiled static correlated
branch prediction more accurate than profiled per-branch static
branch prediction.

Under our framework, state-of-the-art static and dynamic predic-
tion schemes differ in four major qualities: use of pattern versus
path history, aliasing effects, ability to exploit cross-procedure cor-
relation, and adaptivity.

• Path history is slightly better than pattern history in exploiting
branch correlation.

• Correlated dynamic branch prediction schemes utilize more
2-bit counters in their tables, but simultaneously increase the
amount of aliasing. Removing the effect of aliasing increases
prediction accuracy, suggesting that work should be done to
limit aliasing in dynamic branch prediction schemes.

• Cross procedure correlation limits the accuracy of static
branch prediction schemes. We showed some large potential
benefits to cross-procedure correlation in static schemes. We
are pursuing several practical techniques that allow static
schemes to exploit cross procedure correlation.

• The percentage of adaptive streams is small, but that the
dynamic branches executed in adaptive streams are signifi-
cant.

We have not reached the limits of existing basic branch prediction
schemes. We have demonstrated potential for increased prediction
accuracy in each of the areas above. Dynamic branch prediction
schemes will benefit from methods to control aliasing and to
exploit path history. Static branch prediction schemes will benefit
from techniques that exploit cross-procedure correlation and
reduce the need for adaptive predictors.
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8 Tables

This section tabulates the data that were used to generate the
graphs in this paper. See the original figures for detailed explana-
tions of experimental conditions.

In Table 2, the “Stat” column counts the distribution of static
streams in the program; the “Dyn” column weights those streams
by the number of dynamic branch executions in those streams. The
“Dyn” columns were used to produce the histograms.

Table 2: Bias Histograms in Figures 4 and 13

%
Taken

Static Per-
Branch (k=0)

Static
Correlated

(k=12)

Cross-Call
Static

Correlated
(k=12)

Stat Dyn Stat Dyn Stat Dyn

0% 40.09 22.45 35.6 26.4 41.97 30.52

10% 1.81 5.37 2.3 5.6 1.08 4.23

20% 1.47 3.21 1.8 2.7 0.93 2.34

30% 1.75 3.58 2.1 2.0 1.07 1.38

40% 1.47 4.04 1.7 1.6 0.70 1.18

50% 3.50 3.06 2.7 1.4 1.41 1.17

60% 1.53 2.68 1.6 1.7 0.75 1.30

70% 2.24 2.80 2.4 2.0 1.03 1.33

80% 3.17 4.94 2.6 3.5 1.34 2.33

90% 4.12 8.13 3.9 6.4 1.81 4.64

100% 38.83 39.73 43.5 46.7 47.91 49.59
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Table 3: Mispredict Rates of Static Predictor
Schemes in Figures 6 and 13

Bench-
mark and
Data Set

Static
Per-

Branch
 (k=0)

Static Correlated
(k=12)

Cross-Call Static
Correlated

(k=12)

Pattern Path Pattern Path

awk.a 6.99 5.36 5.31 2.88 2.65

awk.b 4.86 4.35 4.28 1.89 1.67

awk.c 7.31 6.00 5.99 3.27 3.02

comp.in 14.35 11.51 11.5 11.35 11.33

comp.jarg 14.74 11.15 11.11 11.04 11.02

comp.ps 14.64 13.3 13.24 13.11 13.04

diff.a 4.21 4.02 4.02 3.55 3.53

diff.b 3.68 3.06 2.94 2.52 2.44

diff.xsim 3.96 3.20 3.07 2.69 2.61

eqn.fx2fp 9.00 5.68 5.10 3.63 3.50

eqn.tbra 9.32 5.33 5.10 3.10 3.01

esp.bca 12.57 5.04 4.33 4.19 3.41

esp.cps 15.16 6.59 6.13 6.01 5.33

esp.ti 13.67 5.95 5.49 5.42 4.68

grep.a 8.86 8.49 8.37 8.12 7.98

grep.khad 11.77 3.42 3.31 2.46 2.22

grep.re3 7.33 4.43 4.41 4.15 4.08

sc.l1 7.39 4.02 3.96 3.26 3.13

sc.lb1 11.10 4.52 4.46 3.65 3.54

sc.lb3 6.18 3.59 3.26 2.84 2.47

li.newt 11.87 8.65 8.18 3.39 2.80

li.q4 11.92 7.43 7.27 3.75 3.53

li.q7 11.87 7.59 7.39 4.11 3.90

Table 4: Mispredict Rates of 2-bit Counter
Predictor Schemes in Figures 9, 10, and 11

Bench-
mark and
Data Set

Implementable Schemes Unaliased

2bc GAs gshare Pattern Path

awk.a 6.29 5.15 5.68 2.98 2.86

awk.b 5.00 4.54 3.18 2.26 2.10

awk.c 8.43 6.61 7.88 3.26 2.99

comp.in 13.18 11.55 11.70 10.37 10.34

comp.jarg 14.10 12.24 12.12 10.64 10.59

comp.ps 15.12 14.36 15.18 13.19 13.00

diff.a 4.97 4.16 4.12 3.92 3.95

diff.b 4.04 3.31 3.52 3.19 3.19

diff.xsim 4.17 3.38 3.51 3.16 3.15

eqn.fx2fp 7.41 2.87 2.23 2.15 2.06

eqn.tbra 6.64 2.43 1.81 1.75 1.74

esp.bca 9.18 4.12 4.04 3.35 3.25

esp.cps 11.37 6.38 5.98 4.24 4.03

esp.ti 10.97 6.43 5.68 3.92 3.63

grep.a 10.28 10.60 12.20 11.55 12.07

grep.khad 5.49 5.46 6.51 5.19 5.24

grep.re3 5.35 5.07 5.57 4.99 4.95

sc.l1 4.34 3.64 4.44 2.32 2.22

sc.lb1 5.08 3.70 3.71 2.94 2.88

sc.lb3 3.87 3.45 4.34 2.15 2.05

li.newt 10.93 7.60 5.71 5.04 4.83

li.q4 12.80 5.31 4.72 3.57 3.50

li.q7 11.89 5.08 4.31 3.19 3.03
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Table 5: Distribution of Streams in Figure 14

Bench-
mark and
Data Set

Dynamic
Equal

Static

Better +1 +1 Better

awk.a 358 51 8887 10618 395

awk.b 17 4 2218 2303 67

awk.c 82 12 3577 3774 155

comp.in 144 5 1244 606 413

comp.jarg 109 6 1276 622 438

comp.ps 113 7 1023 558 313

diff.a 26 3 1991 1584 85

diff.b 20 7 2837 2197 98

diff.xsim 55 24 4314 3822 244

eqn.fx2fp 376 20 3784 2882 248

eqn.tbra 152 7 3237 2568 138

esp.bca 2545 370 36803 31864 4032

esp.cps 6509 631 53386 48797 6348

esp.ti 4815 567 49066 45512 5135

grep.a 3 3 1658 2081 159

grep.khad 7 7 3920 4033 85

grep.re3 15 8 3323 3141 110

sc.l1 635 58 11720 9389 473

sc.lb1 609 56 12147 9936 611

sc.lb3 224 22 8431 7076 234

li.newt 19 3 1879 1906 76

li.q4 37 7 2219 2400 110

li.q7 49 6 2417 2780 168

Table 6: Mispredict Rates of Static,
Dynamic, and Best Predictors under an

Unaliased, Path History, Cross-Call
Divider in Figure 16

Bench-
mark and
Data Set

Static
Predictor

2-bit
Counter

Best
Predictor

per Stream

awk.a 2.65 2.86 2.31

awk.b 1.67 2.10 1.53

awk.c 3.02 2.99 2.54

comp.in 11.33 10.34 9.87

comp.jarg 11.02 10.59 9.81

comp.ps 13.04 13.00 12.18

diff.a 3.53 3.95 3.36

diff.b 2.44 3.19 2.20

diff.xsim 2.61 3.15 2.42

eqn.fx2fp 3.50 2.06 2.02

eqn.tbra 3.01 1.74 1.69

esp.bca 3.41 3.25 2.98

esp.cps 5.33 4.03 3.76

esp.ti 4.68 3.63 3.39

grep.a 7.98 12.06 7.88

grep.khad 2.22 5.23 2.19

grep.re3 4.08 4.95 3.74

sc.l1 3.13 2.22 2.14

sc.lb1 3.54 2.88 2.80

sc.lb3 2.47 2.05 1.92

li.newt 2.80 4.83 2.68

li.q4 3.53 3.50 2.66

li.q7 3.90 3.03 2.78
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Table 7: Mispredict Rates with Varying History Depths and Unaliased, Cross-
Call, Path Dividers in Figures 17, 18, and 19

Bench-mark and
Data Set

Static Predictor 2-bit Counter Predictor Best Predictor per Stream

k=11 k=12 k=13 k=11 k=12 k=13 k=11 k=12 k=13

awk.a 2.77 2.65 2.56 2.95 2.86 2.82 2.43 2.31 2.22

awk.b 1.84 1.67 1.63 2.24 2.10 2.05 1.67 1.53 1.49

awk.c 3.11 3.02 2.74 3.12 2.99 2.74 2.65 2.54 2.31

comp.in 12.01 11.33 11.22 10.64 10.34 10.29 10.17 9.87 9.80

comp.jarg 11.63 11.02 10.99 10.93 10.59 10.55 10.10 9.81 9.75

comp.ps 13.18 13.04 13.00 13.23 13.00 12.97 12.35 12.18 12.13

diff.a 3.61 3.53 3.50 4.02 3.95 3.95 3.45 3.36 3.33

diff.b 2.55 2.44 2.43 3.23 3.19 3.26 2.30 2.20 2.19

diff.xsim 2.68 2.61 2.59 3.17 3.15 3.19 2.50 2.42 2.39

eqn.fx2fp 3.57 3.50 3.44 2.11 2.06 1.98 2.07 2.02 1.94

eqn.tbra 3.02 3.01 2.95 1.76 1.74 1.72 1.71 1.69 1.67

esp.bca 4.17 3.41 3.37 3.34 3.25 3.24 3.09 2.98 2.95

esp.cps 5.74 5.33 5.22 4.15 4.03 4.01 3.89 3.76 3.72

esp.ti 4.97 4.68 4.57 3.71 3.63 3.59 3.48 3.39 3.34

grep.a 8.08 7.98 7.80 11.75 12.06 12.37 7.97 7.88 7.76

grep.khad 2.35 2.22 2.15 5.19 5.23 5.35 2.32 2.19 2.12

grep.re3 4.12 4.08 4.01 4.91 4.95 4.95 3.79 3.74 3.71

sc.l1 3.23 3.13 2.90 2.30 2.22 2.16 2.20 2.14 2.08

sc.lb1 3.63 3.54 3.39 2.95 2.88 2.82 2.85 2.80 2.73

sc.lb3 2.91 2.47 2.37 2.21 2.05 1.98 2.07 1.92 1.85

li.newt 2.93 2.80 2.76 4.79 4.83 5.01 2.77 2.68 2.64

li.q4 3.87 3.53 3.45 3.52 3.50 3.46 2.78 2.66 2.58

li.q7 4.18 3.90 3.81 3.07 3.03 2.92 2.88 2.78 2.69


