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Abstract Why branch prediction schemes perform differently is just as
important as how well they perform. Only after explaining why a

Modern high-performance architectures require extremely accurat&cheme works can one understand appropriate ways to improve or
branch prediction to overcome the performance limitations of con-alter it. Recent work by McFarling [9] and by Chang et al. [4] uses
ditional branches. We present a framework that categorizes branchnalysis, reasoning, and experimentation to devise better hardware
prediction schemes by the way in which they partition dynamic schemes for correlated branch prediction. In particular, McFarling
branches and by the kind of predictor that they use. The frameworl9] noticed significant redundancy in the two-level index of the
allows us to compare and contrast branch prediction schemes, angbrrelation-based branch prediction scheme proposed by Pan, So,
to analyze why they work. We use the framework to show how aand Rahmeh [11]. By hashing the branch history with the branch
static correlated branch prediction scheme increases branch biasddress, McFarling'gyshare scheme often improves prediction
and thus improves overall branch prediction accuracy. We also us@accuracy under the constraint of a fixed-size table of predictors.
the framework to identify the fundamental differences between Similarly, Chang et al. [4] noticed that, for a fixed-size table of pre-
static and dynamic correlated branch prediction schemes. Thislictors, branches biased to one particular branch direction more
study shows that there is room to improve the prediction accuracythan 95% of the time exhibited better prediction accuracies on a
of existing branch prediction schemes. two-level adaptive scheme [14] when one decreased the branch
history length, while the rest of the branches exhibited better pre-
diction accuracies when one increased the branch history length.
This observation led them to propose several new hybrid branch
prediction schemes with better overall prediction accuracies.

Keywords: branch prediction, branch correlation, branch stream
characteristics.

1 Introduction Still, it is more difﬁcqlt to understand t_he actual workings of _
Recent work in branch prediction has led to the development oftoday’s branch prediction schemes than it needs to be. To make it

both hardware and software schemes that achieve good predictiofi@Sier to develop optimizations such as those proposed by McFar-
accuracy by exploiting branch correlation [4, 9, 11, 14, 15, 16, 17].1ing [9] and Chang et al. [4], we present a unifying framework that

However, litle attention has been paid why these schemes ~allows one to analyze and categorize branch prediction schemes.
behave Better than prior ones andmuerefurther improvements Because the framework is based on a theoretical model of the
can be made. In this paper, we describe an analytic framework tha2ranch prediction problem, it is general enough to encompass all

helps answer these questions based on the fundamental charactéf@nch prediction schemes proposed to date. The framework
istics of the branch prediction problem. In addition, we use the focuses attention on how a prediction scheme assigns the dynamic

observations based upon this framework to indicate potentially-branches of the program to individual predictors. This information
fruitful research directions that will allow computer architects to then directs our analysis of and our search for weaknesses in a par-
improve branch prediction accuracy. Further improvements inticular scheme, and allows us to isolate and compare different fac-

branch prediction accuracy will enhance the effectiveness of globafors that affect prediction accuracy. In particular, we explore the
instruction schedulers and the performance of multiple-instruction-fundamental differences between hardware- and software-based

branch prediction schemes that exploit branch correlation. This
analysis suggests several ways to improve the overall prediction
Branch prediction addresses two basic problems: predicting theaccuracy of today’s branch prediction schemes.

direction of conditional branches, and quickly fetching instructions . ) o )
from the predicted target. These problems can be addressed sepa€ction 2 describes our framework for classifying and analyzing
rately, and in this paper, we limit ourselves to the former. In otherPranch prediction schemes. To demonstrate th? generality of our
words, we consider laranch prediction schem® be a technique framework, Section 2 presents many of today’s popular branch
for improving performance by anticipating the outcome of condi- prediction schemes in framework terms. In Section 3, we use the
tional branches. Other work has shown how to couple a brancHf@mework to explore the issues in when (and thus why) static

prediction scheme with a branch target buffer to eliminate the per_schemes for correlated branch prediction work. Section 4 goes on
formance penalties of branches [7]. to compare the differences between static and dynamic schemes

for correlated branch prediction. As an example of the power of
our approach, we also describe changes to correlation-based static

. . . . . and dynamic prediction schemes that improve their overall predic-
This paper is available from the Center for Research in Computingio, accyracy. Section 5 summarizes the findings of this work.
Technology, Division of Applied Sciences, Harvard University as

technical report TR-06-95. A shorter version will appear irPtiee
ceedings of the 22nd Annual International Symposium on Com-
puter ArchitectureJune 1995.

issue machines.




2 A Framework for Branch Prediction 2.2 Dividing Streams

Given a conditional branch in a program, the goal of a branch pre-Based on our formal definition of a prediction scheme, the key to
diction scheme is to predict accurately the outcome of that condi-pyilding a more accurate prediction scheme involves the selection
tional branch (i.e. that the branch will take or that the branch will of the “right” divider and “good” predictors. In this subsection, we

fall through) The most accurate branch prediction schemes pre-review several current methods for dividing a stream, and we dis-
dict the next action of a branch based on some function of the pasgyss the intuition behind these approaches. Once we have
actions of that branch and possibly other branches in the programgescribed the important properties of streams that relate to the

To understand the capabilities of these branch prediction schemegroblem of branch prediction, we then discuss existing predictors
and to compare competing schemes in a meaningful manner, Weynd their important characteristics.

must be able to identify and quantify the important properties of o ) ) )
branch prediction schemes. To achieve this goal, this sectionEXisting schemes divide the program execution stream in a variety
defines a set of mathematical tools that allow us to analyze pro-Of interesting ways. In the simplest case, the divider is the identity
gram and branch behavior in an abstract manner. function; the program execution stream is fed to a single predictor.
The prediction scheme that statically predicts all branches taken
[12] and the prediction scheme that uses a single 2-bit saturating
up/down counter for all branches [7] are both examples of the
identity divider function.

2.1 Basic Definitions and Goals

Let abranch executiore = (b d, ed Zx {0, 1} be a pair
consisting of an identifierb0 Z and a direction variable The most popular divider function in today’s microprocessors par-
dO {0, 1} . Intuitively, the identifier uniquely specifies a static titions the program execution stream based on the static branch
branch in a program, and the direction variable indicates the direcidentifier. This partitioning ideally forms one substream for each
tion that the branch went. We define eecution streanor just static branch in the program [far-branch substreajras shown in
streamas a sequence of branch executions. Intuitively, this corre-Figure 2. Formally, if there ane  static branches in the program,
sponds to a branch trace of one invocation of a program, identify-then the divider creatas substreams, one for each static branch
ing in trace order the conditional branches executed and theidentifier. The divider assigns théh executign= (b, d;) to
directions that they went. A stream can also be formed by concatethe substream that correspondsbto . The intuition behind this
nating the streams of multiple invocations of a program (possibly divider is that each branch should have its own predictor because
with different inputs). We refer to the original stream of all execu- the characteristics and past history of this branch are a good pre-
tions in a run of the program as thegram execution streani dictor of its future behavior. Both the per-branch 2-bit counter
substreanof a streans is a subsequenceof . schemé@ [7] and per-branch profile-based prediction scheme [10]

. . . . . L artition the program execution stream in this manner.
A predictoris a simple mechanism that predicts the next direction P prog

of a stream. A predictor may consider program characteristics (e.g.

the opcode of the next branch to predict) in addition to any part of Branch 3 substream
the past program execution streaffheaccuracyof a predictor is > [ [ [ ][]}
the number of correct predictions divided by the total number of
predictions; accuracy measures how closely the predicted stream Branch 4 substream
matches the actual stream. BS1 03| gl g TTTTT 11

A prediction schemés a comprehensive mechanism that takes a
program execution stream, divides it into substreams, and directs Branch 5 substream
each substream to a unique predictor. Figure 1 illustrates this con- - T [T 1]
cept. The objective in dividing the execution stream into sub-
streams is that each substream should be more accurately
predictable by its predictor. The accuracy of the prediction scheme
is the total number of correct predictions divided by the total num-
ber of predictions.

Figure 2. Subdividing the program execution stream into
per-branch substreams.

More recent branch prediction schemes further subdivide the per-

divider branch streams. The intuition behind these schemes is that finer

_ mechanism  substreams  predicto decomposition of a per-branch stream can increase the predictabil-

program execution ity of the individual substreams. For instance, Pan, So, and Rah-

stream % meh [11] describe a scheme (which Yeh and PattGa# [14])

b5 | b3 | b4 | b5 op that partitions each per-branch stream based on the pattern of
1]1]01]1 directions of thek preceding branch executions in the program
% execution stream, as illustrated in Figure 3. The intuition here is

that sections of code deal with related information, so tests of one

Figure 1. Framework for describing any prediction scheme. T condition are likely to be placed near tests of related conditions.
divider mechanism splits the program execution stream into s Formally, consider thdéth  execution in the program execution

streams, each of which is predicted by a single predictor. streame; = (b, d,) . Th&Asscheme considers not just , but

also the directions of thek preceding executiods , ,
d _2,...,di _k - Thesek bits are called thattern historyof pre-
ceding branch executions. The pattern bits are used to further

1. As a point of interest, the goal of a branch prediction scheme is slightly different
than the goal of the computer architect. A computer architect’s goal is to find a
branch prediction scheme that provides the best performance (at possibly the
smallest cost), and this may not be the scheme with the best prediction accuracy. 3. In this subsection, we ignore implementation issues that keep us from obtaining a

2. Here, we mean past program execution stream in the most general sense so that we hardware predictor per static branch. These issues are addressed in Section 2.4 and
can consider branch executions from previous runs of the program (as are required Section 4. Here, we are concerned only with the ideal intent of the branch predic-
for a profile-based predictor). tion scheme.




divide a per-branch stream (basedpn ) mlio substreams. WePredictors can be classified into two major types: static predictors

refer to these substreamspes-branch global-pattern streams and dynamic predictors. A static predictor must fix its prediction
before the program runs, while a dynamic predictor is allowed to
Branch 3 change its prediction during program execution. Streams that are
Pattern 1010 largely invariant in branch direction can be accurately predicted by
- T 1111 a static predictor. We say that a streastigngly biasedf the fre-
quency of one direction is much greater than the frequency of the
Branch 3 other direction, and that it iseakly biasedf the frequencies are
53 54 T 52 55 T 55 Pattern 1011 close to equal. We refer to the more prevalent direction of the
11110l 1l I - [ [ TT] stream as thenajority direction; the other direction is conversely
Branch 3 theminority.
Pattern 1111 Researchers have investigated a variety of static program and
Pattern 1011 - [ [ TT] branch characteristics to help determine the appropriate static pre-
diction for an execution stream. For example, the simple static
Figure 3. Subdivision in th@Asscheme. In addition to branch branch prediction scheme that always predicts branches to take
identifier, the pattern df preceding branches in the program [12] uses the statistical fact that branches tend to take more often
execution stream is used to further divide the branch streams than they fall through. The “backwards taken forwards not taken”
there is one stream per pattern per branch. (BTENT) scheme [12] bases the static prediction on the sign of a

branch’s target offset. Other schemes employ a predictor that com-
putes predictions as a function of the opcode of the branch [7].
As another way to subdivide per-branch streams, Yeh and PatFinally, methods like those described by Ball and Larus [2] use
describe a scheme callBds[15] that uses the lakt branches in a sophisticated heuristics about the program structure to generate a
per-branch stream to further partition that per-branch stream. Thisstatic prediction for each branch.
leads to a different set of substreams from@i#es scheme. For-

mally, consider theth  branch execution in the program executionOther than the static characteristics of the program and the

> O . branches in the program, researchers use a profile of the dynamic
streame = (b, d.) which is an execution of bradqh . Llet , . . .

i A . behavior of the program branches, gathered during an earlier pro-
l2.---l) be the indices of thle  previous executions of branch gram run, to set the static prediction of each branch. If the majority
b, . ThePAsscheme uses the pattedlr; d|2, d'&" rather than the direction remains the same from the profile (training) to the testing

patternd. . d . ,.d to subdivide the per-branch stream  fun, then a profiled static predictor will perform well. To date,
i-17i-2 i-k researchers have used only the overall bias of the past branch exe-

ok . .
(based onb; ) inte2”  substreams. Since the former pattern isytion to set the static prediction. In our earlier paper [17], we used
determined only by executions of one branbh, PAS does not  gther characteristics of the past execution stream, but we used this

exploit any inter-branch correlation; instead it is designed o jnformation to reorganize the program so that its individual branch
exploit repeating patterns in the execution of a single branch. Fokyreams are more strongly biased.

example, on a loop branch that iterates a consterk tiPASS,

approaches 100% branch prediction accuracy, because it will genin contrast, dynamic predictors cadaptto track the bias of a
erate substreams consisting solely of a single branch direction (i.estream during a single execution of a program. This has the added
it can recognize the pattern of taken branches that will be fol-benefit of not requiring any training or profiling before the pro-
lowed by a fall-through branch). We refer to these substreams agram run. Surprisingly, there are very few designs for dynamic
per-branch branch-pattern streams predictors. By far, the most popular dynamic predictor is the 2-bit

As a last example of how to subdivide per-branch substreams Wsaturating, up/down counter [12]. This predictor forms the basis of

consider our scheme for static correlated branch predictidop ( %I;r?f;thael Cﬁr{flztri;j gﬁ?: dplgzttj;cft&rsl%eslcg]lbed by McFarling [9],
[17]. This scheme divides both by branch and by phéh of ’ ! T
branches that led to the executed branch. A path differs from a pattee and Smith [7] observed that the execution streams of most
tern because it includes both the branch identifiers and the exeprogram branches tend to occur in long fuasd that am-bit
cuted directions, not just the concatenation of direction bits. So ourcounter predictor can exploit this regularity. Smith [12] further
static correlated scheme uses the vector observed that a 2-bit counter empirically provides an appropriate
(b d ). (b .d ) (b _..d ) amount ofdamping(or hysteresis) to changes in stream direction.
=1 -1 AR =2 Hi =27 A -k T -k A 1-bit counter has no damping (it simply records the direction of
the last branch), and 3-bit and higher counters do not appear to
to encode the path by whith ~ was reached, and it uses this vectasffer large cost/benefit advantages over 2-bit counters [12]. Damp-
to subdivide the per-branch stream (based bn ) intoing trades off adaptability for vulnerability to short minority runs.
(2 x number of static branchps substreams. We refer to these A 2-bit counter is excellent at predicting streams with long minor-

substreams gger-branch global-patistreams. ity runs, and it is damped enough to ignore minority runs of length
1. This allows loop branches, for instance, to incur just one mispre-
2.3 Predictors and Streams dict per loop, instead of two mispredicts (one on loop exit and one

on loop reentry).

Under our framework, the divider presents each substream to a Sifrhe distribution of minority run lengths in a stream strongly

gle predictor. Each predictor considers some combination of there|ates to the effectiveness of today’s dynamic predictors. Streams
program characteristics, the past branch execution stream, and igjith |ong runs of one direction followed by long runs of the other
own internal state (if any) in making a branch prediction. In this
subsection, we review the range of existing predictors, and we dis-

o : 4. A run is a substring of the stream that consists entirely of one direction, and is
cuss the characteristics of streams that make them predictable. bounded on either side by executions that go in the opposite direction (or the

beginning or end of the stream). Note that a proper substring of a run is not itself a
run.




direction can be accurately predicted by a dynamic predictor butprediction schemes. Benefits to basic schemes will of course
not by a static predictor. However, a large distribution of short improve the hybrid schemes that include them.

minority runs can cause a dynamic predictor to exhibit worse accu- . .
ty y P t:s[he framework illustrates two distinct avenues of research for

improving the accuracy of a branch prediction scheme: one could
attempt to improve the sophistication of the ideal model; or one

One other interesting property is tfrequency of recurrent pat-  could attempt to remove limitations imposed by current implemen-

ternsin a stream. Apatternis a non-empty stringv 0 {0, 1} * . A tation details. The next two sections give examples of each of these
recurrent pattern is a substring that occurs multiple times in a approaches, for both static and dynamic branch prediction

stream. Unlike bias and distribution of runs, which are typically schemes.

used to predict streams that have been divided, this property is

exploited by some dividers (e.g. tRAsscheme [15]). 3 Why Static Correlated Prediction Works

2.4 Implementation Details The framework described in the previous section gives us a set of

terms that can be used to describe, compare, and contrast the
To this point, our explanations of existing branch prediction behavior of branch prediction schemes. In this section, we exam-
schemes focused on the ideal implementation of a scheme. Fadne a simple application of this framework to a pair of similar pre-
example, the explanation above describes a per-branch dynamidiction schemes: per-branch static profile prediction and our static
prediction scheme based on 2-bit counters as able to assign eadorrelated profile prediction [17]. Per-branch static profiling has
per-branch stream to a unique 2-bit counter. In actual implementabeen shown to work well in a number of studies [5, 10]. In this sec-
tions of per-branch 2-bit counter schemes, this is believed to beion, we show how our code transformation exploits branch corre-
impractical. Implementors usually solve this by using justjthe lation to increase branch bias.

least significant bits of the branch address as an index into a tab

of 2 counters. This means that, if two conditional branches haveﬁs noted in Section 2, bias is key to static branch prediction. Fig-
the samg lowest bits, their branch streams will be intermingledure 4 plots the distribution of taken branch frequency averaged

and sent to a single 2-bit predictor. We call this efédieising as over all benchmarks and data sets. Table 1 presents a summary of
the original intent of the 2-bit counter scheme was to provide a sin-CU" Penchmarks and experimental methodology. The “Self His-

: : tory” bars in Figure 4 show that, even for executables produced by
gle predictor per static branch. ; . -

today’s compilers, most of the dynamic branches are strongly

Issues in aliasing have led researchers to develop different branchiased. This U-shaped distribution is what makes per-branch static
prediction schemes that we would classify as based on the samieranch prediction effective.
ideal branch prediction model. For instance, @fesscheme [14]
and McFarling’'sgsharescheme [9] both ideally divide the pro-

too slowly to the changes in the runs.

50

gram execution stream into per-branch global-history substreams, O Self History
and both use a 2-bit counter as the base predictor.gShare s
scheme requires fewer 2-bit counters for fixed valugs of kand 40

because it exclusive-ors, rather than concatenatek the  bits of
pattern history with the bits of branch address when indexing
into the limited table of 2-bit counters. This gives a requirement of
Zmax( k) counters, instead d{k+J counters. Section 4.2 shows
that aliasing potentially limits the effectiveness of the ideal divider
by intermingling streams that we would ideally like separated.

35
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20 +
15
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10 +

Static branch prediction schemes that can fix a prediction to each 5 ﬁ
static branch in the program obviously do not suffer from these 0 ‘FI N [ m ‘ (M= (m m ﬁ

effects of aliasing. However, static schemes have their own poten- s £ £ £ £ £ £ s £ £ =
tial limitations due to implementation details. For example, the S 3 ]« 8 § 83 8 R 8 8 8

implementation of our algorithm for static correlated branch pre- Percent Taken

diction [17] does not distinguish between paths that cross a proce- Figure 4. Histogram of branch bias, weighted by execution frequenc
dure call or return boundary. In other words, they effectively This plot averages over all benchmarks, giving equal weight to each
truncate the vector that is used to divide the stream in the cases set run. The “Self-History” bars indicate the branch bias in the origin
where a path crosses a procedure boundary. This trunoatiges executables. The “Path-History” bars indicate the branch bias of exec
streams that would be separated by a more sophisticated divider ples after transformation to exploit branch correlation with a history
We distinguish aliasing from merging: aliasing combines streams depth of 12. The bias values represent the midpoint of a range, e.g.
from different static branches, while merging combines streams  “10%" bars capture bias values between 5% and 15%. Although th

from one static branch. graph averages over all benchmarks and data sets, the trend of incre
bias occurred in each individual run. These results train and test on
2.5 Hybrid Approaches same dataset.

Recent work in branch prediction by McFarling [9] and Chang [4]

has proposed hybrid branch prediction schemes which grouprhe effect of exploiting branch correlation is to divide each per-
together multiple basic prediction schemes. The hybrid schemespranch stream into several separate streams, discriminating by cor-
either statically or dynamically, select the basic prediction schemerelation paths in addition to the static branch identifier. The “Path
that performs best on a stream. The model in this section can easilMistory” bars in Figure 4 show the distribution of taken branch fre-
be extended to cover hybrid schemes; however, this paper focuseguency after our transformation to exploit branch correlation [17].
on the power in our model to analyze and improve the individual Compared to the “Self History” bars, the “Path History” bars



with various static correlated branch prediction schemes show

Total Static . X
Benchmark and Data Set similar results, although we have not yet done a comprehensive
D ot Branches Branches . L . .
escriptions Executed | Touched study. An exhaustive treatment of data variance is outside the

- - - scope of this paper.
awk [awk]: pattern-directed scanning/processing, GNU ver. 2.15.5

a extensive test of awk’s capabilities 2.54 1393 .
_ _ o 4 Comparing Correlated Schemes
b simple scanning and printing 0.62 835
c generate max array of 3 arrays 4.99M 968 This section uses the framework to tackle the much harder prob-

lem of comparing static and dynamic correlated branch prediction

compress [comp]: compression using adaptive Lempel-Ziv, SPECint92 L .
schemes. Superficially, one can compare the prediction accuracy

in SPECint92 reference input 114 2 reported by the designers of static and dynamic correlated
jarg jargon dictionary (IMB of ASCII) 13.1M 280 schemes, but this numerical comparison is unenlightening. For
ps 15-page postscript paper 2.0M 268 example, in an earlier paper [17], we found that our static corre-

lated branch prediction scheme did not achieve as high a predic-

diff [diff]: differential file comparator, GNU version 2.6 tion accuracy as the published dynamic correlated schemes. We

a two C files with 3 diffs 0.43M 646 cannot conclude from these results, however, that the dynamic
b two latex files with many diffs 0.27M 704 schemes are rjecessarily bette_r than stati_c schemes since these
wsim xsim sources with many diffs 0.72M 1 schemes differ in more than their base predictors.
eqntott [eqn]: boolean equation to truth table conversion, SPECint92 Aside from th_e fundamental differences between a static and a
fx2fp 8-bit fix to floating point encoder 29.4M 533 dyn.am.lc predICtor’. our .framework_ Sque.St.s that there.are three
major implementation differences in the divider function: the use
tbra MIPS R2000 taken branch decode 19.3m 528 of path versus pattern history, the aliasing of multiple (possibly
espresso [esp]: boolean minimization, SPECint92 unrelated) branches to the same predictor, and the lack of correla-
bea SPECInto2 reference input 73.9 1792 tion |n.format|on across prchdure call boundarles. Path history is
) ) used in our software prediction scheme, while all current corre-
cps | SPECint92 reference input 83.1 1845 lated branch prediction schemes based on a hardware table of pre-
ti SPECint92 reference input 87.4 1899 dictors use pattern history. The aliasing of per-branch streams
grep [grep]: pattern searching program, GNU version 2.0 occurs in hardware-based branch prediction schemes but not in the
o want string (2 hit 0.01m 611 profiled branch prediction schemes. Finally, our software scheme
a search for a constant string (2 hits) : for correlated branch prediction, unlike the hardware-based
khad complex regular exp. (100% hits 0.14 966 schemes, does not exploit correlation across procedure call and
re3 search for a regular exp. (21 hits 0.33M 878 return boundaries. Each of these implementation differences can

be seen as a limitation that keeps the implemented divider from

: dsheet , SPECint92 ; . : . - :
sc [sc]: spreadsheet program n behaving as precisely as an ideal mathematical divider. Sections

1 SPECint92 short input 23.5M 1614 4.1 through 4.3 show, by focusing gshare[9], GAs[14], and our
Ib1 SPECInt92 reference input 179.34 1642 static correlated branch prediction schersebf [17], that the
b3 SPECInt92 reference input 44.4M 1538 removal of these implementation differences can improve the pre-

diction accuracy of correlated branch prediction schemes.
xlisp [li]: lisp interpreter, SPECint92

Once we have equalized the divider function, an interesting ques-

newt square root via Newton’s method 0.11 550 - . . K
tion to ask is how much benefit one gets from the use of a dynamic
a4 4 queens problem 0.41N 605 predictor in a correlated scheme. Section 4.4 presents one answer
q7 7 queens problem 32.4N 605 to this question by comparing the prediction accuracy of a corre-
Table 1: Benchmark and data set descriptions. The results in this paper |2at§d %ranCh.predlcgpn sche_l_nrw]t_e that ”S?S either static pLedICtO_rS :)I’
were derived from trace-driven simulations. We collected the traces - _'t ynamic pre |_Ct0rS_- his experlmt_ant uses a .t eoretical
using ATOM v1.1 [13]. We compiled the SPECint92 benchmarks divider function that is uninhibited by the implementation effects
using cc version 2.0.0 and the optimization level specified in the SPEC of Sections 4.1 through 4.3. Through this experimenL we can
makefiles. The additional benchmarks were compiled using gcc v2.6.0 ; i i
(-O3). All of the experiments were performed on a DEC 3000/400 beQm to underStand the true_ need _fOI’ d.ynamlc .p.redICtors' By
running OSF/1 version 2.0. understanding where a dynamic predictor is beneficial, we expect

to understand how to develop new code transformations to

exhibit a larger percentage of strongly biased branches. Over 7098MProve the static prediction schemes.

of dynamic branches now occur in streams that are highly predict-

able. In other words, the more finely subdivided per-branch global-4.1 Paths versus Patterns

path substreams are more predictable than the coarsely divided

per-branch substreams. As we show further in Section 4.3, correlaAs explained in Section 2.2, an implementation difference exists
tion shifts the distribution of streams and their dynamic brancheshetween the divider used in oscbpscheme and the one used in
toward stronger bias. an idealGAs scheme. Ouscbpscheme is based on a per-branch
global-path divider that uses a history consisting of a path vector

For static profile prediction to be practical, the static predictions : : :
chosen mlﬁ)st be F\)/alid across invgcations of the progF;am If the(pa.th history), whiléGAsis based on a per-branch global-pattern
majority direction of a stream differs between the profiled ktrain- divider that uses a history consisting of the pattern of the directions

ing) data set and the running (testing) data set, then a static predio-f the most-recent branch executions (pattern history). Path history

: . . hould provide better correlation information than pattern history,
L?;f;vrllniugf:r:'cﬁﬁgf&sagigﬁge:eﬁgrﬂﬁa[esr] S(?t);?i?mr?)?ili m:gnd?cet:oorrf)ecause path history is a superset of pattern history. Path informa-
P P tion includes the branches by which the current branch was

and determined that good prediction could be achieved even whil . S
training and testing on different data sets. Our experiences so fﬁreached, not just the pattern of directions that they went to reach



the current branch. For example, path information can differentiate4 2 A|iasing

between two streams in which two branches take to reach a third

block. Figure 5 shows a simple example where that path historyone important factor that differentiates a static profiled branch

achieves a better prediction accuracy than the pattern history. prediction scheme from a dynamic branch prediction scheme
stems from the fact that dynamic branch prediction schemes map

A B unevenly distributed information like branch address and pattern

if aa== if aa==2 history into indexed, regular hardware structures (i.e. a table of

* L \ predictors). In Section 2.4, we defined the term aliasing to describe
the situation when, due to implementation limitations, a divider

pathAMY: M forces streams from different branches to map to the same predic-
pattern history = “tt” if .. tor. A static profiled branch prediction scheme does not suffer from

path outcome foY = 0% take * \‘ aliasing effects since each branch encodes its predictor function.

pathBMY: Y Aliasing does not directly imply penalties to prediction accuracy.
pattern history = “tt" if aa>0 A If two branches with different majority direction alias to the same

path outcome fo¥ = 100% take counter, but one executes 1,000 times followed by the other exe-
* cuting 1,000 times, the loss due to aliasing is negligible. However,

Figure 5. Example illustrating the benefit of path history ove if.the. .tWO brar)ches gltfernate in trace orderl, then aliasing may qause
pattern history. PatAMY andBMY are indistinguishable using significant mlsmed'cnon' TQ relate 3""".5'”9 back t.o prediction
pattern history, but distinguishable using path history. accuracy, we deflr_le three kinds c_>f aliasing: If an a_Ilased counter
predicts an execution correctly while the corresponding per-stream
counter predicts it incorrectly, we call that execution an instance of
To quantify the benefits of path information, we simulatedtzp constructivealiasing since the aliasing improves prediction accu-
scheme that used only pattern information, and we compared theacy. Conversely, if the aliased counter mispredicts while a per-
prediction accuracy of this scheme against the prediction accuracgtream counter would have predicted correctly, we call that an
of the per-branch profile scheme argthpscheme using path his-  instance ofdestructivealiasing since the aliasing reduces predic-
tory. These results are summarized in Figure 6. For all benchtion accuracy. Finally, if the aliased counter predicts an execution
marks, the pattern-basedcbp scheme shows significant correctly (incorrectly) and the corresponding per-stream counter
improvements over per-branch static profile prediction. There is apredicts correctly (incorrectly) too, we call that execution an
small improvement in mispredict rate when path history is used,instance ofharmlessaliasing since the aliasing does not change
ranging from negligible imliff.a to removing 14% of mispredicted  prediction accuracy.
branches irespresso.bcarhere is a measurable benefit to exploit- . L -
ing path history instead of pattern history, but the majority of Our |nt_umon is that allasw_lg_ls genera_llly be_ld for predlctlon_ accu-
advantage is gained just from pattern information. racy. Since a bran(;h prc.edlctlo.n table is a kind of cache, al!a5|ng is
analogous to conflict misses in a cache. Instead of suffering con-
flict misses though, aliased predictors suffer from muddled predic-
EYrr— tions. As in a cache, increasing the size of the prediction table can
y . h . .
[ Pattern History| help to reduce conflicts (and increase prediction accuracy), as is
B Path History shown in most of the dynamic branch prediction literature [10, 11,
T 14, 15, 16]. Chang et al. [4] show benefits to separating out
strongly biased branches from weakly biased branches, noting that
using static prediction on the strongly biased branches reduces
contention (aliasing) in the table of 2-bit counters. Unlike cache
conflict misses though, aliasing can be constructive or harmless in
Ll addition to destructive. It is important then to understand how
4 LI L 1o |- I L aliasing affects the design space of dynamic branch prediction
ﬂ’ I schemes. In particular, we investigate the question of how often
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aliasing happens in dynamic correlated branch prediction schemes
and how this aliasing affects the prediction accuracy.
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- To see how common aliasing is, we instrumented our hardware
simulations to count the number of static branches that map to
each 2-bit counter. We examined the usage patterns of the per-
branch 2-bit counter scheme, tBAs scheme, and thgshare
scheme for a fixed size table of 4096 2-bit counters. As an example
of the type of results we saw, Figure 7 plots the distribution of the
number of branches that alias to each counter for each scheme
under theawk.abenchmark. From Figure 7, one can see that alias-
From this result in static branch prediction, we would like to gen- ing happens infrequently in the standard 2-bit counter scheme.
eralize to say that all branch prediction schemes could beThis makes sense since all benchmarks touch noticeably fewer
improved by incorporating path history. But to do this, we need tothan 4096 static branches (see Table 1). Aliasing increa&sssn
isolate out the other factors that affect prediction accuracy so thahnd reaches very high levels undghare since these schemes
these other factors do not overwhelm the gains due to using pathroduce significantly more than 4096 substreams from their divid-
instead of pattern history (and thus cloud the results). We will ers. Undegshare running theespressandsc benchmarks, alias-
return to this issue at the end of the next section. ing happens so often that in some cases no counters have fewer
than three different branches aliased to them. Figure 8 shows detail
on constructive versus destructive aliasinguvk.aundergshare

diffx
eqn.fx
eqn.t
grep.K
grep
s
s

Figure 6. Mispredict rates of per-branch static branch prediction, sta
correlated branch prediction using pattern history, and static correla
branch prediction using path history. Both correlated schemes use a
tory depth ofk = 12 . All schemes train and test on the same data ¢



Per-branch 2bc

Figure 7. Aliasing in a 4096 counter table &vk.aunder the per-branch 2-bit counter (12 bits of branch add@as)6 bits of branch address concat
enated with 6 bits of branch history), agghare(12 bits of branch address exclusive-ored with 12 bits of branch history) schemes. White square:
sent unused counters; black squares represent counters with seven or more aliased streams.

Constructive Aliasing Destructive Aliasing
3 I"'Il ¢ I.- '_-

Figure 8. Constructive and destructive aliasingvirk.aunder thegsharescheme. In the left graph, gray scale indicates constructive aliasing, with b
representing the maximum attained value of 32. In the right graph, gray scale indicates destructive aliasing, with black representing a differen
more correct incorrect predictions due to destructive aliasing.

constructive aliasing is both rare and much smaller in magnitude

that destructive aliasing. 6

The more aggressive correlated branch prediction schemes pro- u i O2be
duced more substreams under the assumption that this aggressive o EG*:]S
gshare

subdividing would produce more predictable streams. As shown 12
by the prediction accuracies of the schemes in Figure 9, this deci-
sion can lead (though it does not always) to a design with a worse
prediction accuracy.

If we remove aliasing from the experiment in Figure 9, an
unaliased per-branch global-pattern branch prediction scheme
should achieve a higher branch accuracy than ei@ws or
gshare To verify this, we modified our hardware simulation so
that each per-branch, global pattern stream was assigned its own
counter, then recorded how many executions led to destructive and 0= o o, g '3 g o=m g
constructive aliasing. Figure 10 presents the results of this experi- ' -
ment for all benchmarks. Clearly, aliasing happens regularly, and it
happens destructively. There is often a significant improvement in  Figure 9. Mispredict rates for the per-branch 2-bit counter (12 bits ¢
the prediction accuracy for removing aliasing effects. Better branch address§As(6 bits of branch address concatenated with 6 bi
dynamic prediction schemes are theoretically possible if those of branch history), angshare(12 bits of branch address exclusive-ore
schemes can exploit the same pattern and address information gWith 12 bits of branch history) schemes; each using a table of 4096 2
gsharewithout suffering destructive aliasing effects. counters.
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Figure 10. Comparing the mispredict rates of correlated branch prec
tion schemes that contain aliasing and a branch prediction scheme w
true per-branch, global-pattern divider. All of the schemes use 2-bi
countersGAsuses a history depth of 6 branches, whdbareand the
unaliased pattern scheme use a history depth of 12 branchgsAShe
andgshareschemes use 4096 counters; the pattern history scheme t
one counter per stream.

Figure 11. Mispredict rates of schemes using 2-bit counters, a histo
depth of 12 branches, and a divider without aliasing effects (i.e. one 2
counter per stream). “Unaliased pattern” and “unaliased path” depict

tern and path history dividers, respectively.

Thegrep.abar in Figure 10 is the exception to the trend:Gides copy of a basic block implies some set of previous execution paths.
scheme shows higher prediction accuracy than the unaliased pafFhe problem is that the value of the program counter is effectively
tern divider. From Table 1, one can see trap.aexecutes very  reset on a procedure call or return, eliminating correlation informa-
few branches. The worse prediction accuracy seems to be a resuibn across procedure calls. In terms of the framework, this means
of the start-up costs of training a 2-bit counter to match a stream’shat the static scheme’s divider is not always capable of using all of
bias. Since the unaliased divider produces more streams than thithe components of the path history vector; the portion of the paths
GAsdivider, the unaliased divider pays a larger training cost. Thisin the vector before a call boundary are merged into a singlé path.
larger training cost is significant on short benchmark runs; it mightin the extreme, a branch just after a call or return will have no his-
be reduced if schemes that use dynamic predictors could mergtory information available. In contrast, hardware schemes ignore
streams with similar initial values. procedure call boundaries, since they record conditional branch

L . directions in additional hardware state.
Once we have removed the effects due to aliasing, we are in posi-

tion to evaluate the benefit of path history over pattern history inSome examples of cross-procedure correlation are obvious once
dynamic schemes. We extended our simulator to use an unaliasettiey are pointed out:

path-history divider with dynamic predictors. The mispredict rates
for this path-based predictor are presented in Figure 11. Using
paths improves the mispredict rate on the majority of our bench-
marks. As in thegrep.acase from Figure 10, a few of the short
benchmarks exhibit worse prediction accuracy under path rather
than pattern history due to start-up training costs. Since the magni-
tude of benefits from a path-based divider are sometimes small,
designers must take care that improvements in prediction accuracy
due to path history are not swamped by aliasing penalties intro-

* The eqgntottbenchmark in the SPECint92 suite uses a quick-
sort routine to sort bit vectors. A variety of different generic
bit-vector comparison functions are passeddt{) Each of
these compare routines branches to different return points
corresponding to equal, less than, or greater than return val-
ues;gst() then immediately branches based on the return val-
ues. The branch that tests the return value is completely
determined by that the branch that set the return value.

duced as part of the modified scheme. * The garbage collector®mark() function in thexlisp bench-
mark callslivecar() to determine when to follow a node’s left
4.3 Cross-Procedure Correlation sublist. The switch statement insideecar() returns the con-

stant FALSE in many cases; this FALSE return value is then
So far, the differences we have explored between static and immediately checked byark()

dynamic correlated branch prediction schemes only hurt the pre-These kinds of cross-procedure correlation led us to ask how accu-
diction accuracy of the dynamic schemes. Yet the overall predic-rately a static prediction scheme could predict if it were possible to
tion accuracy of the dynamic schemes is often better. To explairpreserve path information across procedure boundaries. We modi-
this disparity, we collected statistics of cases where the hardwargied our trace and simulation environment to record paths across
prediction schemes achieved better per-branch accuracy and thesrocedure call boundaries, and to simulate the prediction accuracy
examined the kinds of correlation that occurred. The vast majoritythat would be obtained if a code transformation could preserve all
of such cases turned out to be cross-procedure correlationgesired correlation information across calls. The prediction accu-
branches that occurred just after a procedure entry or just after gacy results where we trained and tested on the same data set are
procedure return. summarized in Figure 12. In these resut@mpressshows very

Our scbp scheme [17] cannot preserve correlation information — i
dure calis. The scheme encodes correlation histors' Merging is notl alwayg harmful. As part of asgbpalgorithm, we perform per-
across proceau : Y branch analysis that intentionally merges path streams with the same majority

into the program counter by duplicating basic blocks. A particular  direction. There is no penalty for this kind of merging when using a static predic-
tor; schpexploits this harmless merging to reduce overall code expansion.




little benefit from cross-procedure correlation, but this makes
sense becausmmpresss implemented as one large loop in a sin-

gle procedure. In some benchmarks, ldgntottand awk more %0

. .. [ Self History
than half of the mispredictions were removed. Other benchmarks 45 W Path History
showed more modest improvements. 40 B Cross-Call Path History
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Figure 12. Mispredict rates of scbp using path history (same as the t
series in Figure 6) and simulated mispredict rates for cross-call patt . . . . . . .
and cross-call path history dividers with static predictors. These rest function pOI_nter. It IS not possible f_or a compiler to_SImpIy inline
use a history depth of 12 and train and test on the same dataset the comparison routine. preyer, it WOUld, be pOSSIb|e.fOI’ a com-
piler or programmer to build different versionsagst(), as ifgst()
were a C++ style template function that was instantiated for each
comparison function. Since C functions are not first-class types,
The results in Figure 12 are not necessarily what we would expect’® could perform function variable propagation analysis to deter-
from actual implementations of cross-call correlated static mine all of _the possﬂ;)le comparison functions. I_n faceqntotf
schemes, because they train and test on the same data set. THE comparison functions are constants passed in each gal()f
gives best possible static prediction accuracy, rather than what® W€ could curry (specialize) thet() call at compile time into a
would occur if different training and testing data sets were used.caII to the appropriate version gst()

However, these results show that using cross-call correlation waye can preserve some correlation state across procedure calls by
can achieve better static prediction accuracy than was previouslynaking multiple copies of procedure entry points, one for each rel-
believed possible. evant past execution history. This allows us to better predict callee

Having discussed the implementation differences in dividers, Webranches that correlate back to the caller, but does not hellp us with

can now revisit the effect of correlation on bias that we began toth.e. more common case of caller branches that correlate into some

explore in Section 3. Figure 13 extends the results shown in Figuré’tIIIty function.

4, adding a new series of columns that shows the bias of streams .

generated by an unaliased, cross-call, path divider. The improvedt.4  Adaptability

divider further steepens the U-shaped distribution of bias.

The fundamental difference between the static and dynamic corre-

lated schemes is the predictors they use. Dynamic predictors can

We have not yet found a simple code transformation that can genadapt to track streams during an invocation of the program, while

erally preserve correlation across calls. However, a number ofstatic predictors cannot. This raises the question of whether some

techniques may be useful: selective inlining [6], template forma- Streams require the adaptivity of a dynamic predictor to achieve

tion, and multiple entry points [1]. good prediction accuracy. To examine this question, we used the
] ) o _same approach of the previous subsections: subtract out the differ-

Fisher and Freudenberger point out that sophisticated ILP compilences, and see what results. Once again, we used a divider with a

ers already expect to perform aggressive inlining [5]. Inlining all path history of length 12 and no aliasing effects. We also made the

procedures is impractical, since it is exponential in the depth andgivider ignore procedure call boundaries like the divider in a hard-

degree of the program call graph. But since a small number of proware implementation.

cedures make up the majority of program execution cycles [3], it is N o )

also likely that a small number of procedures are the best candi¥Ve classified streams from the divider as “Static Better”, “Equal’,

Exploiting Cross-Procedure Correlation Statically

dates for inlining to extract correlation. Theecar() routine in  Or “Dynamic Better”, depending on whether a static predictor, nei-
xlispis a great candidate for inlining: it is called in just one place, ther predictor, or a 2-bit counter best predicted the stream. Figure
and it is defined to be local to tkielmem.csource file. After inlin- 14 shows the distribution of streams for each benchmark and data

ing livecar(), an optimizing compiler could fold the logically cor- Set. The “Static Better” bars shows the percentage of streams
related branches into a single branch, decreasing the number d¥hich were better predicted by a perfectly trained static predictor;
static and dynamic branches in the program, and reducing cycldéhe “Static +1" bars show the percentage of streams where the

count. static predictor predicted correctly just one more time than the 2-
) ) bit counter. The large number of “Static +1” streams have a major-
The egntottcase, above, is more complicated. Branchegsi() ity fall-through direction, and since our simulation initializes 2-bit

correlate into the generic comparison routine that is passed as gounters to predict weakly taken, the 2-bit counter incur a mispre-



dict on the first execution in those strongly-biased streams. The
“Dynamic +1" streams are very rare, and there is a small but visi-

ble number of “Dynamic Better” streams.

- ' )
90%
The absolute number of “Dynamic Better” streams is less than

1,000 for all benchmarks exceggpressoThis suggests that the

are ways to build better hybrid static/dynamic prediction schemes ™
than that proposed by Chang et al [4]. Their scheme assigns all s
branches with low bias to dynamic predictors. If we can assign
only the rare adaptive streams (which might be aliased together or
aliased with statically predictable streams in Chang et al.’s

scheme) to their own predictors, while using static predictors for ~ ***
the remaining branches, we should be able to achieve even better =
prediction accuracy with fewer counters than previous hybrid

schemes.

Despite the small percentage of “Dynamic Better” streams in Fig-
ure 14, those streams are an important component of overall pre-

diction accuracy. Figure 16 gives details about ¢hmp.inbar

re

Static Branches

o L | -

comp.in 5000 0 5000 10000 15000 20000 25000 30000
Difference in Dynamic Predictions

from Figure 14, plotting the difference in correct predictions. Even Figure 15. Detailed information on teemp.inbar from Figure 14. The
though the number of “Dynamic Better” streams is small, the horizontal axis shows the difference in correct predictions by the sta
“Dynamic Better” tail is significantly larger than the “Static Bet-

ter” tail. The integral over the tails gives the differences in correct

and 2-bit counter predictors. Positive values correspond to the 2-b
counter predicting more accurately; negative values correspond to 1

predictions between schemes using only static predictors and static predictor predicting more accurately.
schemes using only dynamic predictors. The “Static Predictor” and

“2-bit Counter” bars of Figure 16 compare the mispredict rates of

such schemes. Even though we exaggerated the benefit with a

static predictor by assuming perfect training, Figure 16 shows that

the number of dynamic branches that occur in streams with long 16
runs of the minority branch direction is significant—ignoring them
will affect prediction accuracy. However, since the number of
static streams requiring an adaptive predictor is very small, the 12
possibility exists for a compiler to selectively apply techniques

like predication [8] to these few streams. The vast majority of

streams can be handled using simple static branch prediction tech-
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Figure 14. Distribution of streams under an unaliased, cross-call, pe

divider, depending on whether the streams were predicted better by &

fectly trained static divider or by a 2-bit counter. The “+1” categories

contain streams where one of the predictor types correctly predicted

one more execution than the other predictor type. The “Better” catego

contains streams where one predictor correctly predicts greater than
more execution than the other predictor.
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Figure 16. Mispredict rates under an unaliased, cross-call, path divic

comparing assigning all streams to perfectly trained static predictor

(“Static Predictor”), all streams to 2-bit counters (“2-bit Counter”), an
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stream was assigned on a per-stream basis, instead of assigning all
streams to a single kind of divider. These bars show that schemes
using a mix of static and dynamic predictors can achieve very high
prediction accuracies.

In the long term, adaptability may be the only thing that separates
dynamic and static schemes, since static schemes can take cross-
call correlation into account, and dynamic schemes can exploit
path history and may be able to reduce aliasing problems. Correla-
tion provides a useful tool to reduce the amount of adaptivity (both

in dynamic branches and stream distribution) in a program, but no
current methods allow us to completely eliminate the need for
adaptivity. Hybrid schemes that use the techniques explored in this

Hybrid prediction schemes can mix static and dynamic predictorspaper may be able to find efficient ways to separate and handle
in one scheme. The “Best Predictor per Stream” bars show theadaptive streams.
mispredict rate as if the best predictor (2-bit counter or static) for a

10



4.5 Variation with History Depth

5 Conclusions and Future Work

As a check that our model has identified the factors that cause difBefore one can build better branch prediction schemes, one must
ferences in prediction accuracy among the different schemes, wéinderstand how and why existing schemes work. We presented a
examined the effect of changing the history depth ( ) with anframework for analyzing and categorizing branch prediction
unaliased, cross-call, path history divider. Figures 17, 18, and 19chemes. The framework partitions schemes into two major parts:
depict these three dividers with perfectly-trained static predictors,adivider andpredictors Dividers attempt to partition the program
2-bit counter predictors, and the best predictor per stream, respe@Xecution stream into substreams that are individually more pre-
tively. As expected, prediction accuracy improves with greater his-dictable than the original stream. All known branch prediction
tory depth’ a|th0ugh we again see worse accuracy due to traininéchemes fit into this framework. The framework prOVIded the

startup in some of the 2-bit counter runs.
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motivation for all of the studies in this paper, allowing us to practi-
cally and systematically analyze the differences between schemes.

Profiled per-branch static branch prediction works because pro-
grams have a large percentage of branches that are strongly biased.
Correlation changes the distribution of streams to increase the per-
centage of branches that are strongly biased. Correlation reduces
the diversity of branch streams, making profiled static correlated
branch prediction more accurate than profiled per-branch static
branch prediction.

Under our framework, state-of-the-art static and dynamic predic-
tion schemes differ in four major qualities: use of pattern versus
path history, aliasing effects, ability to exploit cross-procedure cor-
relation, and adaptivity.

 Path history is slightly better than pattern history in exploiting
branch correlation.

Correlated dynamic branch prediction schemes utilize more
2-bit counters in their tables, but simultaneously increase the
amount of aliasing. Removing the effect of aliasing increases
prediction accuracy, suggesting that work should be done to
limit aliasing in dynamic branch prediction schemes.

Cross procedure correlation limits the accuracy of static

branch prediction schemes. We showed some large potential
benefits to cross-procedure correlation in static schemes. We
are pursuing several practical techniques that allow static
schemes to exploit cross procedure correlation.

The percentage of adaptive streams is small, but that the
dynamic branches executed in adaptive streams are signifi-
cant.

We have not reached the limits of existing basic branch prediction
schemes. We have demonstrated potential for increased prediction
accuracy in each of the areas above. Dynamic branch prediction
schemes will benefit from methods to control aliasing and to
exploit path history. Static branch prediction schemes will benefit
from techniques that exploit cross-procedure correlation and
reduce the need for adaptive predictors.
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Table 3: Mispredict Rates of Static Predictor
Schemes in Figures 6 and 13

Table 4: Mispredict Rates of 2-bit Counter
Predictor Schemes in Figures 9, 10, and 11

Static | Static Correlateq| CrosS-call Static .
Bench- _ Correlated Bench- Implementable Schemeg Unaliased

mark and | " (k=12) (k=12) mark and
Data Set B(rlf:n(;:)h ,L Data Set

Pattern Path Patter Path 2bc GAs | gsharg Pattern Path
awk.a 6.99 5.36 5.31 2.88 2.65 awk.a 6.29 5.15 5.64 2.98 2.86
awk.b 4.86 4.35 4.28 1.89 1.6/ awk.b 5.00 4.54 3.18 2.26 2.1p
awk.c 7.31 6.00 5.99 3.27 3.0 awk.c 8.43 6.61 7.88 3.26 2.99
comp.in 14.35 11.51 11.% 11.35 11.33 comp.in 13.18 11.55 11.7 10.37 10.34
comp.jarg 14.74] 11.15 11.11 11.04 11.02 comp.jarg 14.10 12.24 12.1 10.64 10.59
comp.ps 14.64 13.3 13.24 13.11 13.04 comp.ps 15.12 14.3¢ 15.1 13.19 13.p0
diff.a 4.21 4.02 4.02 3.55 3.58 diff.a 4.97 4.16 4.12 3.92 3.95
diff.b 3.68 3.06 2.94 2.52 244 diff.b 4.04 331 3.52 3.19 3.19
diff.xsim 3.96 3.20 3.07 2.69 2.61 diff.xsim 4.17 3.38 3.51 3.16 3.15
egn.fx2fp 9.00 5.68 5.1d 3.68 3.50 egn.fx2fp 7.41 2.87 2.23 2.15 2.06
egn.tbra 9.32 5.33 5.10 3.10 3.01 egn.tbra 6.64 2.43 1.8 1.75 1.74
esp.bca 12.57 5.04 4.38 4.19 341 esp.bca 9.18 4.12 4.0 3.35 3.25
esp.cps 15.14 6.59 6.13 6.01 5.83 esp.cps 11.37 6.3 5.9 4.24 4.03
esp.ti 13.67 5.95 5.44 5.4p 4.68 esp.ti 10.97 6.43 5.64 3.9p 3.63
grep.a 8.86 8.49 8.37 8.1p 7.98 grep.a 10.28)  10.6( 12.2 11.85 12.p7
grep.khad 11.77 3.42 3.31L 2.46 2.22 grep.khad 5.49 5.44 6.5 5.19 5.24
grep.re3 7.33 4.43 4.41 4.15 4.08 grep.re3 5.35 5.07 55 4.99 4.95
sc.l1 7.39 4.02 3.96 3.26 3.138 sc.l1 4.34 3.64 4.44 2.32 2.2P
sc.lbl 11.10 4.52 4.4¢ 3.6p 3.54 sc.lbl 5.08 3.70 3.71 2.94 2.88
sc.lb3 6.18 3.59 3.26 2.84 2.47 sc.lb3 3.87 3.45 4.34 2.1 2.05
li.newt 11.87 8.65 8.18 3.39 2.8p li.newt 10.93 7.60 5.71 5.04 4.88
li.q4 11.92 7.43 7.27) 3.75 3.58 li.q4 12.80 531 4.72 3.57 3.50
li.q7 11.87 7.59 7.39 4.11 3.90 li.q7 11.89 5.08 4.3]1 3.14 3.08
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Table 5: Distribution of Streams in Figure 14

Table 6: Mispredict Rates of Static,

Dynamic, and Best Predictors under an
Unaliased, Path History, Cross-Call

Divider in Figure 16

Bench- Dynamic Static Bench- . . Best
mark and Equal mark and Prset(?itcl:(t?or C?Jhbr:ier Predictor
Data Set | Better +1 +1 Better Data Set per Stream

awk.a 358 51 8887 10618 395 awk.a 2.65 2.86 2.31
awk.b 17 4 2218 2303 67 awk.b 1.67 2.10 1.53
awk.c 82 12 3577 3774 155 awk.c 3.02 2.99 2.54
comp.in 144 5 1244 606 413 comp.in 11.33 10.34 9.8]
comp.jarg 109 6 1274 622 438 comp.jarg 11.02 10.54 9.8
comp.ps 113 71 1023 558 313 comp.ps 13.04 13.0 12.1
diff.a 26 3 1991 1584 85 diff.a 3.53 3.95 3.36
diff.b 20 7 2837 2197 98 diff.b 2.44 3.19 2.20
diff.xsim 55 24 4314 3822 244 diff.xsim 261 3.15 2.42
egn.fx2fp 376 20 3784 2882 248 eqn.fx2fp 3.50 2.06 2.02
egn.tbra 152 7 3237 2568 138 eqgn.tbra 3.01 1.74 1.6
esp.bca 2545 370 36803 31864  40B2 esp.bca 3.41 3.2% 2.9
esp.cps 6509 631 53386 48797 6348 esp.cps 5.33 4.03 3.7
esp.ti 4815 567| 49066 45512 5135 esp.ti 4.68 3.63 3.3¢
grep.a 3 3 1658 2081 159 grep.a 7.98 12.06 7.8
grep.khad 7 7 3920 4033 8p grep.khad 2.22 5.23 2.1
grep.re3 15 8 3323 3141 110 grep.re3 4.08] 4.95 3.7
sc.l1 635 58| 1172(Q 9389 478 sc.l1 3.13 2.22 2.14
sc.lbl 609 56| 12147 9936 611 sc.lbl 3.54 2.88 2.8(
sc.lb3 224 22 8431 7076 234 sc.Ib3 2.47 2.05 1.92
li.newt 19 3 1879 1906 76 li.newt 2.80 4.83 2.68
li.q4 37 7 2219 2400 110 li.g4 3.53 3.50 2.66)
li.q7 49 6 2417 2780 168 li.q7 3.90 3.03 2.78
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Table 7: Mispredict Rates with Varying History Depths and Unaliased, Cross-
Call, Path Dividers in Figures 17, 18, and 19

Bench-mark and Static Predictor 2-bit Counter Predictor Best Predictor per Stream
DataSet  [po11 [ k=12 | k=13 | ket1] kerz| ke13] ket ke1d  kend
awk.a 2.77 2.65 2.56 2.95 2.86 2.82 243 231 2122
awk.b 1.84 1.67 1.63 2.24 2.10 2.05 1.67 153 1149
awk.c 3.11 3.02 2.74 3.12 2.99 2.14 2.65 2,54 2131
comp.in 12.01 11.33 11.22 10.64 10.34 1029 10117 9.87 D.80
comp.jarg 11.63 11.0% 10.9p 10.93 10.h9 10455 10.10 p.81 0.75
comp.ps 13.18 13.04 13.00 13.23 13.p0 12|97 12.35 12.18 12.13
diff.a 3.61 3.53 3.50 4.072 3.95 3.95 3.45 3.86 333
diff.b 2.55 244 243 3.23 3.19 3.2 2.30 2.20 219
diff.xsim 2.68 2.61 2.59 3.17 3.1% 3.19 2.50 2.42 2.39
egn.fx2fp 3.57 3.50 3.44 211 2.06 1.98 2.07 202 194
eqgn.tbra 3.02 3.01 2.95 1.76 1.74 1.y2 171 1169 1.67
esp.bca 4.17 341 3.3 .34 3.25 3.p4 3|09 2.98 2.95
esp.cps 5.74 5.33 5.2p 4.15 4.03 4.01 3(89 3.76 3.72
esp.ti 4.97 4.68 4.57 3.71 3.63 3.59 3.48 3J39 3134
grep.a 8.08 7.98 7.80 11.75 12.06 12.37 7(97 7.88 1.76
grep.khad 2.35 2.23 2.15 5.19 5.23 5.85 2132 2119 2.12
grep.re3 4.12 4.08 4.01 4.91 4.95 4.95 379 3174 3.71
sc.l1 3.23 3.13 2.9¢ 2.30 2.2P 2.16 2.20 214 2,08
sc.lbl 3.63 3.54 3.3¢ 2.95 2.88 2.82 2.85 280 2\73
sc.lb3 291 2.47 2.37 2.21 2.05 1.98 2.07 192 185
li.newt 2.93 2.80 2.76 4.74 4.88 5.01 2.717 2.68 2164
li.q4 3.87 3.53 3.45 3.52 3.50 3.46 2.18 2.66 2,58
li.q7 4.18 3.90 3.81 3.07 3.08 2.92 2.88 2.y8 2169
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